spin/once.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
use core::cell::UnsafeCell;
use core::sync::atomic::{AtomicUsize, Ordering, spin_loop_hint as cpu_relax};
use core::fmt;
/// A synchronization primitive which can be used to run a one-time global
/// initialization. Unlike its std equivalent, this is generalized so that the
/// closure returns a value and it is stored. Once therefore acts something like
/// a future, too.
///
/// # Examples
///
/// ```
/// use spin;
///
/// static START: spin::Once<()> = spin::Once::new();
///
/// START.call_once(|| {
/// // run initialization here
/// });
/// ```
pub struct Once<T> {
state: AtomicUsize,
data: UnsafeCell<Option<T>>, // TODO remove option and use mem::uninitialized
}
impl<T: fmt::Debug> fmt::Debug for Once<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.try() {
Some(s) => write!(f, "Once {{ data: ")
.and_then(|()| s.fmt(f))
.and_then(|()| write!(f, "}}")),
None => write!(f, "Once {{ <uninitialized> }}")
}
}
}
// Same unsafe impls as `std::sync::RwLock`, because this also allows for
// concurrent reads.
unsafe impl<T: Send + Sync> Sync for Once<T> {}
unsafe impl<T: Send> Send for Once<T> {}
// Four states that a Once can be in, encoded into the lower bits of `state` in
// the Once structure.
const INCOMPLETE: usize = 0x0;
const RUNNING: usize = 0x1;
const COMPLETE: usize = 0x2;
const PANICKED: usize = 0x3;
use core::hint::unreachable_unchecked as unreachable;
impl<T> Once<T> {
/// Initialization constant of `Once`.
pub const INIT: Self = Once {
state: AtomicUsize::new(INCOMPLETE),
data: UnsafeCell::new(None),
};
/// Creates a new `Once` value.
pub const fn new() -> Once<T> {
Self::INIT
}
fn force_get<'a>(&'a self) -> &'a T {
match unsafe { &*self.data.get() }.as_ref() {
None => unsafe { unreachable() },
Some(p) => p,
}
}
/// Performs an initialization routine once and only once. The given closure
/// will be executed if this is the first time `call_once` has been called,
/// and otherwise the routine will *not* be invoked.
///
/// This method will block the calling thread if another initialization
/// routine is currently running.
///
/// When this function returns, it is guaranteed that some initialization
/// has run and completed (it may not be the closure specified). The
/// returned pointer will point to the result from the closure that was
/// run.
///
/// # Examples
///
/// ```
/// use spin;
///
/// static INIT: spin::Once<usize> = spin::Once::new();
///
/// fn get_cached_val() -> usize {
/// *INIT.call_once(expensive_computation)
/// }
///
/// fn expensive_computation() -> usize {
/// // ...
/// # 2
/// }
/// ```
pub fn call_once<'a, F>(&'a self, builder: F) -> &'a T
where F: FnOnce() -> T
{
let mut status = self.state.load(Ordering::SeqCst);
if status == INCOMPLETE {
status = self.state.compare_and_swap(INCOMPLETE,
RUNNING,
Ordering::SeqCst);
if status == INCOMPLETE { // We init
// We use a guard (Finish) to catch panics caused by builder
let mut finish = Finish { state: &self.state, panicked: true };
unsafe { *self.data.get() = Some(builder()) };
finish.panicked = false;
status = COMPLETE;
self.state.store(status, Ordering::SeqCst);
// This next line is strictly an optimization
return self.force_get();
}
}
loop {
match status {
INCOMPLETE => unreachable!(),
RUNNING => { // We spin
cpu_relax();
status = self.state.load(Ordering::SeqCst)
},
PANICKED => panic!("Once has panicked"),
COMPLETE => return self.force_get(),
_ => unsafe { unreachable() },
}
}
}
/// Returns a pointer iff the `Once` was previously initialized
pub fn try<'a>(&'a self) -> Option<&'a T> {
match self.state.load(Ordering::SeqCst) {
COMPLETE => Some(self.force_get()),
_ => None,
}
}
/// Like try, but will spin if the `Once` is in the process of being
/// initialized
pub fn wait<'a>(&'a self) -> Option<&'a T> {
loop {
match self.state.load(Ordering::SeqCst) {
INCOMPLETE => return None,
RUNNING => cpu_relax(), // We spin
COMPLETE => return Some(self.force_get()),
PANICKED => panic!("Once has panicked"),
_ => unsafe { unreachable() },
}
}
}
}
struct Finish<'a> {
state: &'a AtomicUsize,
panicked: bool,
}
impl<'a> Drop for Finish<'a> {
fn drop(&mut self) {
if self.panicked {
self.state.store(PANICKED, Ordering::SeqCst);
}
}
}
#[cfg(test)]
mod tests {
use std::prelude::v1::*;
use std::sync::mpsc::channel;
use std::thread;
use super::Once;
#[test]
fn smoke_once() {
static O: Once<()> = Once::new();
let mut a = 0;
O.call_once(|| a += 1);
assert_eq!(a, 1);
O.call_once(|| a += 1);
assert_eq!(a, 1);
}
#[test]
fn smoke_once_value() {
static O: Once<usize> = Once::new();
let a = O.call_once(|| 1);
assert_eq!(*a, 1);
let b = O.call_once(|| 2);
assert_eq!(*b, 1);
}
#[test]
fn stampede_once() {
static O: Once<()> = Once::new();
static mut RUN: bool = false;
let (tx, rx) = channel();
for _ in 0..10 {
let tx = tx.clone();
thread::spawn(move|| {
for _ in 0..4 { thread::yield_now() }
unsafe {
O.call_once(|| {
assert!(!RUN);
RUN = true;
});
assert!(RUN);
}
tx.send(()).unwrap();
});
}
unsafe {
O.call_once(|| {
assert!(!RUN);
RUN = true;
});
assert!(RUN);
}
for _ in 0..10 {
rx.recv().unwrap();
}
}
#[test]
fn try() {
static INIT: Once<usize> = Once::new();
assert!(INIT.try().is_none());
INIT.call_once(|| 2);
assert_eq!(INIT.try().map(|r| *r), Some(2));
}
#[test]
fn try_no_wait() {
static INIT: Once<usize> = Once::new();
assert!(INIT.try().is_none());
thread::spawn(move|| {
INIT.call_once(|| loop { });
});
assert!(INIT.try().is_none());
}
#[test]
fn wait() {
static INIT: Once<usize> = Once::new();
assert!(INIT.wait().is_none());
INIT.call_once(|| 3);
assert_eq!(INIT.wait().map(|r| *r), Some(3));
}
#[test]
fn panic() {
use ::std::panic;
static INIT: Once<()> = Once::new();
// poison the once
let t = panic::catch_unwind(|| {
INIT.call_once(|| panic!());
});
assert!(t.is_err());
// poisoning propagates
let t = panic::catch_unwind(|| {
INIT.call_once(|| {});
});
assert!(t.is_err());
}
#[test]
fn init_constant() {
static O: Once<()> = Once::INIT;
let mut a = 0;
O.call_once(|| a += 1);
assert_eq!(a, 1);
O.call_once(|| a += 1);
assert_eq!(a, 1);
}
}