netstack3_device/queue/
tx.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! TX device queues.

use alloc::vec::Vec;
use core::convert::Infallible as Never;

use derivative::Derivative;
use log::trace;
use netstack3_base::sync::Mutex;
use netstack3_base::{Device, DeviceIdContext, ErrorAndSerializer};
use packet::{
    new_buf_vec, Buf, BufferAlloc, ContiguousBuffer, GrowBufferMut, NoReuseBufferProvider,
    ReusableBuffer, Serializer,
};

use crate::internal::base::DeviceSendFrameError;
use crate::internal::queue::{fifo, DequeueState, EnqueueResult, TransmitQueueFrameError};
use crate::internal::socket::{DeviceSocketHandler, ParseSentFrameError, SentFrame};

/// State associated with a device transmit queue.
#[derive(Derivative)]
#[derivative(Default(bound = "Allocator: Default"))]
pub struct TransmitQueueState<Meta, Buffer, Allocator> {
    pub(super) allocator: Allocator,
    pub(super) queue: Option<fifo::Queue<Meta, Buffer>>,
}

/// Holds queue and dequeue state for the transmit queue.
#[derive(Derivative)]
#[derivative(Default(bound = "Allocator: Default"))]
pub struct TransmitQueue<Meta, Buffer, Allocator> {
    /// The state for dequeued packets that will be handled.
    ///
    /// See `queue` for lock ordering.
    pub(crate) deque: Mutex<DequeueState<Meta, Buffer>>,
    /// A queue of to-be-transmitted packets protected by a lock.
    ///
    /// Lock ordering: `deque` must be locked before `queue` is locked when both
    /// are needed at the same time.
    pub(crate) queue: Mutex<TransmitQueueState<Meta, Buffer, Allocator>>,
}

/// The bindings context for the transmit queue.
pub trait TransmitQueueBindingsContext<DeviceId> {
    /// Signals to bindings that TX frames are available and ready to be sent
    /// over the device.
    ///
    /// Implementations must make sure that the API call to handle queued
    /// packets is scheduled to be called as soon as possible so that enqueued
    /// TX frames are promptly handled.
    fn wake_tx_task(&mut self, device_id: &DeviceId);
}

/// Basic definitions for a transmit queue.
pub trait TransmitQueueCommon<D: Device, C>: DeviceIdContext<D> {
    /// The metadata associated with every packet in the queue.
    type Meta;
    /// An allocator of [`Self::Buffer`].
    type Allocator;
    /// The buffer type stored in the queue.
    type Buffer: GrowBufferMut + ContiguousBuffer;
    /// The context given to `send_frame` when dequeueing.
    type DequeueContext;

    /// Parses an outgoing frame for packet socket delivery.
    fn parse_outgoing_frame<'a, 'b>(
        buf: &'a [u8],
        meta: &'a Self::Meta,
    ) -> Result<SentFrame<&'a [u8]>, ParseSentFrameError>;
}

/// The execution context for a transmit queue.
pub trait TransmitQueueContext<D: Device, BC>: TransmitQueueCommon<D, BC> {
    /// Calls `cb` with mutable access to the queue state.
    fn with_transmit_queue_mut<
        O,
        F: FnOnce(&mut TransmitQueueState<Self::Meta, Self::Buffer, Self::Allocator>) -> O,
    >(
        &mut self,
        device_id: &Self::DeviceId,
        cb: F,
    ) -> O;

    /// Calls `cb` with immutable access to the queue state.
    fn with_transmit_queue<
        O,
        F: FnOnce(&TransmitQueueState<Self::Meta, Self::Buffer, Self::Allocator>) -> O,
    >(
        &mut self,
        device_id: &Self::DeviceId,
        cb: F,
    ) -> O;

    /// Send a frame out the device.
    ///
    /// This method may not block - if the device is not ready, an appropriate
    /// error must be returned.
    fn send_frame(
        &mut self,
        bindings_ctx: &mut BC,
        device_id: &Self::DeviceId,
        dequeue_context: Option<&mut Self::DequeueContext>,
        meta: Self::Meta,
        buf: Self::Buffer,
    ) -> Result<(), DeviceSendFrameError>;
}

/// The core execution context for dequeueing TX frames from the transmit queue.
pub trait TransmitDequeueContext<D: Device, BC>: TransmitQueueContext<D, BC> {
    /// The inner context providing dequeuing.
    type TransmitQueueCtx<'a>: TransmitQueueContext<
            D,
            BC,
            Meta = Self::Meta,
            Buffer = Self::Buffer,
            DequeueContext = Self::DequeueContext,
            DeviceId = Self::DeviceId,
        > + DeviceSocketHandler<D, BC>;

    /// Calls the function with the TX deque state and the TX queue context.
    fn with_dequed_packets_and_tx_queue_ctx<
        O,
        F: FnOnce(&mut DequeueState<Self::Meta, Self::Buffer>, &mut Self::TransmitQueueCtx<'_>) -> O,
    >(
        &mut self,
        device_id: &Self::DeviceId,
        cb: F,
    ) -> O;
}

/// The configuration for a transmit queue.
pub enum TransmitQueueConfiguration {
    /// No queue.
    None,
    /// FiFo queue.
    Fifo,
}

/// An implementation of a transmit queue that stores egress frames.
pub trait TransmitQueueHandler<D: Device, BC>: TransmitQueueCommon<D, BC> {
    /// Queues a frame for transmission.
    fn queue_tx_frame<S>(
        &mut self,
        bindings_ctx: &mut BC,
        device_id: &Self::DeviceId,
        meta: Self::Meta,
        body: S,
    ) -> Result<(), TransmitQueueFrameError<S>>
    where
        S: Serializer,
        S::Buffer: ReusableBuffer;
}

pub(super) fn deliver_to_device_sockets<
    D: Device,
    BC: TransmitQueueBindingsContext<CC::DeviceId>,
    CC: TransmitQueueCommon<D, BC> + DeviceSocketHandler<D, BC>,
>(
    core_ctx: &mut CC,
    bindings_ctx: &mut BC,
    device_id: &CC::DeviceId,
    buffer: &CC::Buffer,
    meta: &CC::Meta,
) {
    let bytes = buffer.as_ref();
    match CC::parse_outgoing_frame(bytes, meta) {
        Ok(sent_frame) => DeviceSocketHandler::handle_frame(
            core_ctx,
            bindings_ctx,
            device_id,
            sent_frame.into(),
            bytes,
        ),
        Err(ParseSentFrameError) => {
            trace!("failed to parse outgoing frame on {:?} ({} bytes)", device_id, bytes.len())
        }
    }
}

impl EnqueueResult {
    fn maybe_wake_tx<D, BC: TransmitQueueBindingsContext<D>>(
        self,
        bindings_ctx: &mut BC,
        device_id: &D,
    ) {
        match self {
            Self::QueuePreviouslyWasOccupied => (),
            Self::QueueWasPreviouslyEmpty => bindings_ctx.wake_tx_task(device_id),
        }
    }
}

enum EnqueueStatus<Meta, Buffer> {
    NotAttempted(Meta, Buffer),
    Attempted,
}

// Extracted to a function without the generic serializer parameter to ease code
// generation.
fn insert_and_notify<
    D: Device,
    BC: TransmitQueueBindingsContext<CC::DeviceId>,
    CC: TransmitQueueContext<D, BC> + DeviceSocketHandler<D, BC>,
>(
    bindings_ctx: &mut BC,
    device_id: &CC::DeviceId,
    inserter: Option<fifo::QueueTxInserter<'_, CC::Meta, CC::Buffer>>,
    meta: CC::Meta,
    body: CC::Buffer,
) -> EnqueueStatus<CC::Meta, CC::Buffer> {
    match inserter {
        // No TX queue so send the frame immediately.
        None => EnqueueStatus::NotAttempted(meta, body),
        Some(inserter) => {
            inserter.insert(meta, body).maybe_wake_tx(bindings_ctx, device_id);
            EnqueueStatus::Attempted
        }
    }
}

// Extracted to a function without the generic serializer parameter to ease code
// generation.
fn handle_post_enqueue<
    D: Device,
    BC: TransmitQueueBindingsContext<CC::DeviceId>,
    CC: TransmitQueueContext<D, BC> + DeviceSocketHandler<D, BC>,
>(
    core_ctx: &mut CC,
    bindings_ctx: &mut BC,
    device_id: &CC::DeviceId,
    status: EnqueueStatus<CC::Meta, CC::Buffer>,
) -> Result<(), DeviceSendFrameError> {
    match status {
        EnqueueStatus::NotAttempted(meta, body) => {
            // TODO(https://fxbug.dev/42077654): Deliver the frame to packet
            // sockets and to the device atomically.
            deliver_to_device_sockets(core_ctx, bindings_ctx, device_id, &body, &meta);
            // Send the frame while not holding the TX queue exclusively to
            // not block concurrent senders from making progress.
            core_ctx.send_frame(bindings_ctx, device_id, None, meta, body)
        }
        EnqueueStatus::Attempted => Ok(()),
    }
}

impl<
        D: Device,
        BC: TransmitQueueBindingsContext<CC::DeviceId>,
        CC: TransmitQueueContext<D, BC> + DeviceSocketHandler<D, BC>,
    > TransmitQueueHandler<D, BC> for CC
where
    for<'a> &'a mut CC::Allocator: BufferAlloc<CC::Buffer>,
    CC::Buffer: ReusableBuffer,
{
    fn queue_tx_frame<S>(
        &mut self,
        bindings_ctx: &mut BC,
        device_id: &CC::DeviceId,
        meta: CC::Meta,
        body: S,
    ) -> Result<(), TransmitQueueFrameError<S>>
    where
        S: Serializer,
        S::Buffer: ReusableBuffer,
    {
        let result =
            self.with_transmit_queue_mut(device_id, |TransmitQueueState { allocator, queue }| {
                let inserter = match queue {
                    None => None,
                    Some(q) => match q.tx_inserter() {
                        Some(i) => Some(i),
                        None => return Err(TransmitQueueFrameError::QueueFull(body)),
                    },
                };
                let body = body.serialize_outer(NoReuseBufferProvider(allocator)).map_err(
                    |(e, serializer)| {
                        TransmitQueueFrameError::SerializeError(ErrorAndSerializer {
                            serializer,
                            error: e.map_alloc(|_| ()),
                        })
                    },
                )?;
                Ok(insert_and_notify::<_, _, CC>(bindings_ctx, device_id, inserter, meta, body))
            })?;

        handle_post_enqueue(self, bindings_ctx, device_id, result)
            .map_err(TransmitQueueFrameError::NoQueue)
    }
}

/// An allocator of [`Buf<Vec<u8>>`] .
#[derive(Default)]
pub struct BufVecU8Allocator;

impl<'a> BufferAlloc<Buf<Vec<u8>>> for &'a mut BufVecU8Allocator {
    type Error = Never;

    fn alloc(self, len: usize) -> Result<Buf<Vec<u8>>, Self::Error> {
        new_buf_vec(len)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use alloc::vec;

    use assert_matches::assert_matches;
    use net_declare::net_mac;
    use net_types::ethernet::Mac;
    use netstack3_base::testutil::{
        FakeBindingsCtx, FakeCoreCtx, FakeLinkDevice, FakeLinkDeviceId,
    };
    use netstack3_base::{
        ContextPair, CounterContext, CtxPair, ResourceCounterContext, WorkQueueReport,
    };
    use test_case::test_case;

    use crate::internal::queue::api::TransmitQueueApi;
    use crate::internal::queue::{BatchSize, MAX_TX_QUEUED_LEN};
    use crate::internal::socket::{EthernetFrame, Frame};
    use crate::DeviceCounters;

    #[derive(Default)]
    struct FakeTxQueueState {
        queue: TransmitQueueState<(), Buf<Vec<u8>>, BufVecU8Allocator>,
        transmitted_packets: Vec<(Buf<Vec<u8>>, Option<DequeueContext>)>,
        no_buffers: bool,
        device_counters: DeviceCounters,
    }

    #[derive(Default)]
    struct FakeTxQueueBindingsCtxState {
        woken_tx_tasks: Vec<FakeLinkDeviceId>,
        delivered_to_sockets: Vec<Frame<Vec<u8>>>,
    }

    type FakeCoreCtxImpl = FakeCoreCtx<FakeTxQueueState, (), FakeLinkDeviceId>;
    type FakeBindingsCtxImpl = FakeBindingsCtx<(), (), FakeTxQueueBindingsCtxState, ()>;

    impl TransmitQueueBindingsContext<FakeLinkDeviceId> for FakeBindingsCtxImpl {
        fn wake_tx_task(&mut self, device_id: &FakeLinkDeviceId) {
            self.state.woken_tx_tasks.push(device_id.clone())
        }
    }

    const SRC_MAC: Mac = net_mac!("AA:BB:CC:DD:EE:FF");
    const DEST_MAC: Mac = net_mac!("FF:EE:DD:CC:BB:AA");

    #[derive(Copy, Clone, Debug, Eq, PartialEq)]
    struct DequeueContext;

    impl TransmitQueueCommon<FakeLinkDevice, FakeBindingsCtxImpl> for FakeCoreCtxImpl {
        type DequeueContext = DequeueContext;
        type Meta = ();
        type Buffer = Buf<Vec<u8>>;
        type Allocator = BufVecU8Allocator;

        fn parse_outgoing_frame<'a, 'b>(
            buf: &'a [u8],
            (): &'b Self::Meta,
        ) -> Result<SentFrame<&'a [u8]>, ParseSentFrameError> {
            Ok(fake_sent_ethernet_with_body(buf))
        }
    }

    fn fake_sent_ethernet_with_body<B>(body: B) -> SentFrame<B> {
        SentFrame::Ethernet(EthernetFrame {
            src_mac: SRC_MAC,
            dst_mac: DEST_MAC,
            ethertype: None,
            body,
        })
    }

    /// A trait providing a shortcut to instantiate a [`TransmitQueueApi`] from a context.
    trait TransmitQueueApiExt: ContextPair + Sized {
        fn transmit_queue_api<D>(&mut self) -> TransmitQueueApi<D, &mut Self> {
            TransmitQueueApi::new(self)
        }
    }

    impl<O> TransmitQueueApiExt for O where O: ContextPair + Sized {}

    impl TransmitQueueContext<FakeLinkDevice, FakeBindingsCtxImpl> for FakeCoreCtxImpl {
        fn with_transmit_queue<
            O,
            F: FnOnce(&TransmitQueueState<(), Buf<Vec<u8>>, BufVecU8Allocator>) -> O,
        >(
            &mut self,
            &FakeLinkDeviceId: &FakeLinkDeviceId,
            cb: F,
        ) -> O {
            cb(&self.state.queue)
        }

        fn with_transmit_queue_mut<
            O,
            F: FnOnce(&mut TransmitQueueState<(), Buf<Vec<u8>>, BufVecU8Allocator>) -> O,
        >(
            &mut self,
            &FakeLinkDeviceId: &FakeLinkDeviceId,
            cb: F,
        ) -> O {
            cb(&mut self.state.queue)
        }

        fn send_frame(
            &mut self,
            _bindings_ctx: &mut FakeBindingsCtxImpl,
            &FakeLinkDeviceId: &FakeLinkDeviceId,
            dequeue_context: Option<&mut DequeueContext>,
            (): (),
            buf: Buf<Vec<u8>>,
        ) -> Result<(), DeviceSendFrameError> {
            let FakeTxQueueState { transmitted_packets, no_buffers, .. } = &mut self.state;
            if *no_buffers {
                Err(DeviceSendFrameError::NoBuffers)
            } else {
                Ok(transmitted_packets.push((buf, dequeue_context.map(|c| *c))))
            }
        }
    }

    impl ResourceCounterContext<FakeLinkDeviceId, DeviceCounters> for FakeCoreCtxImpl {
        fn with_per_resource_counters<O, F: FnOnce(&DeviceCounters) -> O>(
            &mut self,
            _resource: &FakeLinkDeviceId,
            cb: F,
        ) -> O {
            // There's only a single device, this is just making the types
            // happy.
            cb(&DeviceCounters::default())
        }
    }

    impl CounterContext<DeviceCounters> for FakeCoreCtxImpl {
        fn with_counters<O, F: FnOnce(&DeviceCounters) -> O>(&self, cb: F) -> O {
            cb(&self.state.device_counters)
        }
    }

    impl TransmitDequeueContext<FakeLinkDevice, FakeBindingsCtxImpl> for FakeCoreCtxImpl {
        type TransmitQueueCtx<'a> = Self;

        fn with_dequed_packets_and_tx_queue_ctx<
            O,
            F: FnOnce(
                &mut DequeueState<Self::Meta, Self::Buffer>,
                &mut Self::TransmitQueueCtx<'_>,
            ) -> O,
        >(
            &mut self,
            &FakeLinkDeviceId: &FakeLinkDeviceId,
            cb: F,
        ) -> O {
            cb(&mut DequeueState::default(), self)
        }
    }

    impl DeviceSocketHandler<FakeLinkDevice, FakeBindingsCtxImpl> for FakeCoreCtxImpl {
        fn handle_frame(
            &mut self,
            bindings_ctx: &mut FakeBindingsCtxImpl,
            _device: &Self::DeviceId,
            frame: Frame<&[u8]>,
            _whole_frame: &[u8],
        ) {
            bindings_ctx.state.delivered_to_sockets.push(frame.cloned())
        }
    }

    #[test]
    fn noqueue() {
        let mut ctx = CtxPair::with_core_ctx(FakeCoreCtxImpl::default());

        let body = Buf::new(vec![0], ..);

        let CtxPair { core_ctx, bindings_ctx } = &mut ctx;
        assert_eq!(
            TransmitQueueHandler::queue_tx_frame(
                core_ctx,
                bindings_ctx,
                &FakeLinkDeviceId,
                (),
                body.clone(),
            ),
            Ok(())
        );
        let FakeTxQueueBindingsCtxState { woken_tx_tasks, delivered_to_sockets } =
            &bindings_ctx.state;
        assert_matches!(&woken_tx_tasks[..], &[]);
        assert_eq!(
            delivered_to_sockets,
            &[Frame::Sent(fake_sent_ethernet_with_body(body.as_ref().into()))]
        );
        assert_eq!(core::mem::take(&mut core_ctx.state.transmitted_packets), [(body, None)]);

        // Should not have any frames waiting to be transmitted since we have no
        // queue.
        assert_eq!(
            ctx.transmit_queue_api().transmit_queued_frames(
                &FakeLinkDeviceId,
                BatchSize::default(),
                &mut DequeueContext,
            ),
            Ok(WorkQueueReport::AllDone),
        );

        let CtxPair { core_ctx, bindings_ctx } = &mut ctx;
        assert_matches!(&bindings_ctx.state.woken_tx_tasks[..], &[]);
        assert_eq!(core::mem::take(&mut core_ctx.state.transmitted_packets), []);
    }

    #[test_case(BatchSize::MAX)]
    #[test_case(BatchSize::MAX/2)]
    fn fifo_queue_and_dequeue(batch_size: usize) {
        let mut ctx = CtxPair::with_core_ctx(FakeCoreCtxImpl::default());

        ctx.transmit_queue_api()
            .set_configuration(&FakeLinkDeviceId, TransmitQueueConfiguration::Fifo);

        for _ in 0..2 {
            let CtxPair { core_ctx, bindings_ctx } = &mut ctx;
            for i in 0..MAX_TX_QUEUED_LEN {
                let body = Buf::new(vec![i as u8], ..);
                assert_eq!(
                    TransmitQueueHandler::queue_tx_frame(
                        core_ctx,
                        bindings_ctx,
                        &FakeLinkDeviceId,
                        (),
                        body
                    ),
                    Ok(())
                );
                // We should only ever be woken up once when the first packet
                // was enqueued.
                assert_eq!(bindings_ctx.state.woken_tx_tasks, [FakeLinkDeviceId]);
            }

            let body = Buf::new(vec![131], ..);
            assert_eq!(
                TransmitQueueHandler::queue_tx_frame(
                    core_ctx,
                    bindings_ctx,
                    &FakeLinkDeviceId,
                    (),
                    body.clone(),
                ),
                Err(TransmitQueueFrameError::QueueFull(body))
            );

            let FakeTxQueueBindingsCtxState { woken_tx_tasks, delivered_to_sockets } =
                &mut bindings_ctx.state;
            // We should only ever be woken up once when the first packet
            // was enqueued.
            assert_eq!(core::mem::take(woken_tx_tasks), [FakeLinkDeviceId]);
            // No frames should be delivered to packet sockets before transmit.
            assert_eq!(core::mem::take(delivered_to_sockets), &[]);

            assert!(MAX_TX_QUEUED_LEN > batch_size);
            for i in (0..(MAX_TX_QUEUED_LEN - batch_size)).step_by(batch_size) {
                assert_eq!(
                    ctx.transmit_queue_api().transmit_queued_frames(
                        &FakeLinkDeviceId,
                        BatchSize::new_saturating(batch_size),
                        &mut DequeueContext
                    ),
                    Ok(WorkQueueReport::Pending),
                );
                assert_eq!(
                    core::mem::take(&mut ctx.core_ctx.state.transmitted_packets),
                    (i..i + batch_size)
                        .map(|i| (Buf::new(vec![i as u8], ..), Some(DequeueContext)))
                        .collect::<Vec<_>>()
                );
            }

            assert_eq!(
                ctx.transmit_queue_api().transmit_queued_frames(
                    &FakeLinkDeviceId,
                    BatchSize::new_saturating(batch_size),
                    &mut DequeueContext
                ),
                Ok(WorkQueueReport::AllDone),
            );

            let CtxPair { core_ctx, bindings_ctx } = &mut ctx;
            assert_eq!(
                core::mem::take(&mut core_ctx.state.transmitted_packets),
                (batch_size * (MAX_TX_QUEUED_LEN / batch_size - 1)..MAX_TX_QUEUED_LEN)
                    .map(|i| (Buf::new(vec![i as u8], ..), Some(DequeueContext)))
                    .collect::<Vec<_>>()
            );
            // Should not have woken up the TX task since the queue should be
            // empty.
            let FakeTxQueueBindingsCtxState { woken_tx_tasks, delivered_to_sockets } =
                &mut bindings_ctx.state;
            assert_matches!(&core::mem::take(woken_tx_tasks)[..], &[]);

            // The queue should now be empty so the next iteration of queueing
            // `MAX_TX_QUEUED_FRAMES` packets should succeed.
            assert_eq!(
                core::mem::take(delivered_to_sockets),
                (0..MAX_TX_QUEUED_LEN)
                    .map(|i| Frame::Sent(fake_sent_ethernet_with_body(vec![i as u8])))
                    .collect::<Vec<_>>()
            );
        }
    }

    #[test]
    fn dequeue_error() {
        let mut ctx = CtxPair::with_core_ctx(FakeCoreCtxImpl::default());

        ctx.transmit_queue_api()
            .set_configuration(&FakeLinkDeviceId, TransmitQueueConfiguration::Fifo);

        let CtxPair { core_ctx, bindings_ctx } = &mut ctx;
        let body = Buf::new(vec![0], ..);
        assert_eq!(
            TransmitQueueHandler::queue_tx_frame(
                core_ctx,
                bindings_ctx,
                &FakeLinkDeviceId,
                (),
                body.clone(),
            ),
            Ok(())
        );
        assert_eq!(core::mem::take(&mut bindings_ctx.state.woken_tx_tasks), [FakeLinkDeviceId]);
        assert_eq!(core_ctx.state.transmitted_packets, []);

        core_ctx.state.no_buffers = true;
        assert_eq!(
            ctx.transmit_queue_api().transmit_queued_frames(
                &FakeLinkDeviceId,
                BatchSize::default(),
                &mut DequeueContext
            ),
            Err(DeviceSendFrameError::NoBuffers),
        );
        let CtxPair { core_ctx, bindings_ctx } = &mut ctx;
        assert_eq!(core_ctx.state.transmitted_packets, []);
        let FakeTxQueueBindingsCtxState { woken_tx_tasks, delivered_to_sockets } =
            &bindings_ctx.state;
        assert_matches!(&woken_tx_tasks[..], &[]);
        // Frames were delivered to packet sockets before the device was found
        // to not be ready.
        assert_eq!(
            delivered_to_sockets,
            &[Frame::Sent(fake_sent_ethernet_with_body(body.as_ref().into()))]
        );

        core_ctx.state.no_buffers = false;
        assert_eq!(
            ctx.transmit_queue_api().transmit_queued_frames(
                &FakeLinkDeviceId,
                BatchSize::default(),
                &mut DequeueContext
            ),
            Ok(WorkQueueReport::AllDone),
        );
        let CtxPair { core_ctx, bindings_ctx } = &mut ctx;
        assert_matches!(&bindings_ctx.state.woken_tx_tasks[..], &[]);
        // The packet that failed to dequeue is dropped.
        assert_eq!(core::mem::take(&mut core_ctx.state.transmitted_packets), []);
    }

    #[test_case(true; "device no buffers")]
    #[test_case(false; "device has buffers")]
    fn drain_before_noqueue(no_buffers: bool) {
        let mut ctx = CtxPair::with_core_ctx(FakeCoreCtxImpl::default());

        ctx.transmit_queue_api()
            .set_configuration(&FakeLinkDeviceId, TransmitQueueConfiguration::Fifo);

        let CtxPair { core_ctx, bindings_ctx } = &mut ctx;
        let body = Buf::new(vec![0], ..);
        assert_eq!(
            TransmitQueueHandler::queue_tx_frame(
                core_ctx,
                bindings_ctx,
                &FakeLinkDeviceId,
                (),
                body.clone(),
            ),
            Ok(())
        );
        assert_eq!(core::mem::take(&mut bindings_ctx.state.woken_tx_tasks), [FakeLinkDeviceId]);
        assert_eq!(core_ctx.state.transmitted_packets, []);

        core_ctx.state.no_buffers = no_buffers;
        ctx.transmit_queue_api()
            .set_configuration(&FakeLinkDeviceId, TransmitQueueConfiguration::None);

        let CtxPair { core_ctx, bindings_ctx } = &mut ctx;
        let FakeTxQueueBindingsCtxState { woken_tx_tasks, delivered_to_sockets } =
            &bindings_ctx.state;
        assert_matches!(&woken_tx_tasks[..], &[]);
        assert_eq!(
            delivered_to_sockets,
            &[Frame::Sent(fake_sent_ethernet_with_body(body.as_ref().into()))]
        );
        if no_buffers {
            assert_eq!(core_ctx.state.transmitted_packets, []);
        } else {
            assert_eq!(core::mem::take(&mut core_ctx.state.transmitted_packets), [(body, None)]);
        }
    }

    #[test]
    fn count() {
        let mut ctx = CtxPair::with_core_ctx(FakeCoreCtxImpl::default());
        assert_eq!(ctx.transmit_queue_api().count(&FakeLinkDeviceId), None);

        ctx.transmit_queue_api()
            .set_configuration(&FakeLinkDeviceId, TransmitQueueConfiguration::Fifo);

        assert_eq!(ctx.transmit_queue_api().count(&FakeLinkDeviceId), Some(0));

        let CtxPair { core_ctx, bindings_ctx } = &mut ctx;
        let body = Buf::new(vec![0], ..);
        assert_eq!(
            TransmitQueueHandler::queue_tx_frame(
                core_ctx,
                bindings_ctx,
                &FakeLinkDeviceId,
                (),
                body,
            ),
            Ok(())
        );

        assert_eq!(ctx.transmit_queue_api().count(&FakeLinkDeviceId), Some(1));
    }
}