rand/distributions/
other.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The implementations of the `Standard` distribution for other built-in types.

use core::char;
use core::num::Wrapping;
#[cfg(feature = "alloc")]
use alloc::string::String;

use crate::distributions::{Distribution, Standard, Uniform};
#[cfg(feature = "alloc")]
use crate::distributions::DistString;
use crate::Rng;

#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};
#[cfg(feature = "min_const_gen")]
use std::mem::{self, MaybeUninit};


// ----- Sampling distributions -----

/// Sample a `u8`, uniformly distributed over ASCII letters and numbers:
/// a-z, A-Z and 0-9.
///
/// # Example
///
/// ```
/// use std::iter;
/// use rand::{Rng, thread_rng};
/// use rand::distributions::Alphanumeric;
///
/// let mut rng = thread_rng();
/// let chars: String = iter::repeat(())
///         .map(|()| rng.sample(Alphanumeric))
///         .map(char::from)
///         .take(7)
///         .collect();
/// println!("Random chars: {}", chars);
/// ```
///
/// # Passwords
///
/// Users sometimes ask whether it is safe to use a string of random characters
/// as a password. In principle, all RNGs in Rand implementing `CryptoRng` are
/// suitable as a source of randomness for generating passwords (if they are
/// properly seeded), but it is more conservative to only use randomness
/// directly from the operating system via the `getrandom` crate, or the
/// corresponding bindings of a crypto library.
///
/// When generating passwords or keys, it is important to consider the threat
/// model and in some cases the memorability of the password. This is out of
/// scope of the Rand project, and therefore we defer to the following
/// references:
///
/// - [Wikipedia article on Password Strength](https://en.wikipedia.org/wiki/Password_strength)
/// - [Diceware for generating memorable passwords](https://en.wikipedia.org/wiki/Diceware)
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Alphanumeric;


// ----- Implementations of distributions -----

impl Distribution<char> for Standard {
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> char {
        // A valid `char` is either in the interval `[0, 0xD800)` or
        // `(0xDFFF, 0x11_0000)`. All `char`s must therefore be in
        // `[0, 0x11_0000)` but not in the "gap" `[0xD800, 0xDFFF]` which is
        // reserved for surrogates. This is the size of that gap.
        const GAP_SIZE: u32 = 0xDFFF - 0xD800 + 1;

        // Uniform::new(0, 0x11_0000 - GAP_SIZE) can also be used but it
        // seemed slower.
        let range = Uniform::new(GAP_SIZE, 0x11_0000);

        let mut n = range.sample(rng);
        if n <= 0xDFFF {
            n -= GAP_SIZE;
        }
        unsafe { char::from_u32_unchecked(n) }
    }
}

/// Note: the `String` is potentially left with excess capacity; optionally the
/// user may call `string.shrink_to_fit()` afterwards.
#[cfg(feature = "alloc")]
impl DistString for Standard {
    fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, s: &mut String, len: usize) {
        // A char is encoded with at most four bytes, thus this reservation is
        // guaranteed to be sufficient. We do not shrink_to_fit afterwards so
        // that repeated usage on the same `String` buffer does not reallocate.
        s.reserve(4 * len);
        s.extend(Distribution::<char>::sample_iter(self, rng).take(len));
    }
}

impl Distribution<u8> for Alphanumeric {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u8 {
        const RANGE: u32 = 26 + 26 + 10;
        const GEN_ASCII_STR_CHARSET: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\
                abcdefghijklmnopqrstuvwxyz\
                0123456789";
        // We can pick from 62 characters. This is so close to a power of 2, 64,
        // that we can do better than `Uniform`. Use a simple bitshift and
        // rejection sampling. We do not use a bitmask, because for small RNGs
        // the most significant bits are usually of higher quality.
        loop {
            let var = rng.next_u32() >> (32 - 6);
            if var < RANGE {
                return GEN_ASCII_STR_CHARSET[var as usize];
            }
        }
    }
}

#[cfg(feature = "alloc")]
impl DistString for Alphanumeric {
    fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, string: &mut String, len: usize) {
        unsafe {
            let v = string.as_mut_vec();
            v.extend(self.sample_iter(rng).take(len));
        }
    }
}

impl Distribution<bool> for Standard {
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool {
        // We can compare against an arbitrary bit of an u32 to get a bool.
        // Because the least significant bits of a lower quality RNG can have
        // simple patterns, we compare against the most significant bit. This is
        // easiest done using a sign test.
        (rng.next_u32() as i32) < 0
    }
}

macro_rules! tuple_impl {
    // use variables to indicate the arity of the tuple
    ($($tyvar:ident),* ) => {
        // the trailing commas are for the 1 tuple
        impl< $( $tyvar ),* >
            Distribution<( $( $tyvar ),* , )>
            for Standard
            where $( Standard: Distribution<$tyvar> ),*
        {
            #[inline]
            fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> ( $( $tyvar ),* , ) {
                (
                    // use the $tyvar's to get the appropriate number of
                    // repeats (they're not actually needed)
                    $(
                        _rng.gen::<$tyvar>()
                    ),*
                    ,
                )
            }
        }
    }
}

impl Distribution<()> for Standard {
    #[allow(clippy::unused_unit)]
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, _: &mut R) -> () {
        ()
    }
}
tuple_impl! {A}
tuple_impl! {A, B}
tuple_impl! {A, B, C}
tuple_impl! {A, B, C, D}
tuple_impl! {A, B, C, D, E}
tuple_impl! {A, B, C, D, E, F}
tuple_impl! {A, B, C, D, E, F, G}
tuple_impl! {A, B, C, D, E, F, G, H}
tuple_impl! {A, B, C, D, E, F, G, H, I}
tuple_impl! {A, B, C, D, E, F, G, H, I, J}
tuple_impl! {A, B, C, D, E, F, G, H, I, J, K}
tuple_impl! {A, B, C, D, E, F, G, H, I, J, K, L}

#[cfg(feature = "min_const_gen")]
impl<T, const N: usize> Distribution<[T; N]> for Standard
where Standard: Distribution<T>
{
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; N] {
        let mut buff: [MaybeUninit<T>; N] = unsafe { MaybeUninit::uninit().assume_init() };

        for elem in &mut buff {
            *elem = MaybeUninit::new(_rng.gen());
        }

        unsafe { mem::transmute_copy::<_, _>(&buff) }
    }
}

#[cfg(not(feature = "min_const_gen"))]
macro_rules! array_impl {
    // recursive, given at least one type parameter:
    {$n:expr, $t:ident, $($ts:ident,)*} => {
        array_impl!{($n - 1), $($ts,)*}

        impl<T> Distribution<[T; $n]> for Standard where Standard: Distribution<T> {
            #[inline]
            fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] {
                [_rng.gen::<$t>(), $(_rng.gen::<$ts>()),*]
            }
        }
    };
    // empty case:
    {$n:expr,} => {
        impl<T> Distribution<[T; $n]> for Standard {
            fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] { [] }
        }
    };
}

#[cfg(not(feature = "min_const_gen"))]
array_impl! {32, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T,}

impl<T> Distribution<Option<T>> for Standard
where Standard: Distribution<T>
{
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Option<T> {
        // UFCS is needed here: https://github.com/rust-lang/rust/issues/24066
        if rng.gen::<bool>() {
            Some(rng.gen())
        } else {
            None
        }
    }
}

impl<T> Distribution<Wrapping<T>> for Standard
where Standard: Distribution<T>
{
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Wrapping<T> {
        Wrapping(rng.gen())
    }
}


#[cfg(test)]
mod tests {
    use super::*;
    use crate::RngCore;
    #[cfg(feature = "alloc")] use alloc::string::String;

    #[test]
    fn test_misc() {
        let rng: &mut dyn RngCore = &mut crate::test::rng(820);

        rng.sample::<char, _>(Standard);
        rng.sample::<bool, _>(Standard);
    }

    #[cfg(feature = "alloc")]
    #[test]
    fn test_chars() {
        use core::iter;
        let mut rng = crate::test::rng(805);

        // Test by generating a relatively large number of chars, so we also
        // take the rejection sampling path.
        let word: String = iter::repeat(())
            .map(|()| rng.gen::<char>())
            .take(1000)
            .collect();
        assert!(!word.is_empty());
    }

    #[test]
    fn test_alphanumeric() {
        let mut rng = crate::test::rng(806);

        // Test by generating a relatively large number of chars, so we also
        // take the rejection sampling path.
        let mut incorrect = false;
        for _ in 0..100 {
            let c: char = rng.sample(Alphanumeric).into();
            incorrect |= !(('0'..='9').contains(&c) ||
                           ('A'..='Z').contains(&c) ||
                           ('a'..='z').contains(&c) );
        }
        assert!(!incorrect);
    }

    #[test]
    fn value_stability() {
        fn test_samples<T: Copy + core::fmt::Debug + PartialEq, D: Distribution<T>>(
            distr: &D, zero: T, expected: &[T],
        ) {
            let mut rng = crate::test::rng(807);
            let mut buf = [zero; 5];
            for x in &mut buf {
                *x = rng.sample(&distr);
            }
            assert_eq!(&buf, expected);
        }

        test_samples(&Standard, 'a', &[
            '\u{8cdac}',
            '\u{a346a}',
            '\u{80120}',
            '\u{ed692}',
            '\u{35888}',
        ]);
        test_samples(&Alphanumeric, 0, &[104, 109, 101, 51, 77]);
        test_samples(&Standard, false, &[true, true, false, true, false]);
        test_samples(&Standard, None as Option<bool>, &[
            Some(true),
            None,
            Some(false),
            None,
            Some(false),
        ]);
        test_samples(&Standard, Wrapping(0i32), &[
            Wrapping(-2074640887),
            Wrapping(-1719949321),
            Wrapping(2018088303),
            Wrapping(-547181756),
            Wrapping(838957336),
        ]);

        // We test only sub-sets of tuple and array impls
        test_samples(&Standard, (), &[(), (), (), (), ()]);
        test_samples(&Standard, (false,), &[
            (true,),
            (true,),
            (false,),
            (true,),
            (false,),
        ]);
        test_samples(&Standard, (false, false), &[
            (true, true),
            (false, true),
            (false, false),
            (true, false),
            (false, false),
        ]);

        test_samples(&Standard, [0u8; 0], &[[], [], [], [], []]);
        test_samples(&Standard, [0u8; 3], &[
            [9, 247, 111],
            [68, 24, 13],
            [174, 19, 194],
            [172, 69, 213],
            [149, 207, 29],
        ]);
    }
}