rand/distributions/other.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The implementations of the `Standard` distribution for other built-in types.
use core::char;
use core::num::Wrapping;
#[cfg(feature = "alloc")]
use alloc::string::String;
use crate::distributions::{Distribution, Standard, Uniform};
#[cfg(feature = "alloc")]
use crate::distributions::DistString;
use crate::Rng;
#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};
#[cfg(feature = "min_const_gen")]
use std::mem::{self, MaybeUninit};
// ----- Sampling distributions -----
/// Sample a `u8`, uniformly distributed over ASCII letters and numbers:
/// a-z, A-Z and 0-9.
///
/// # Example
///
/// ```
/// use std::iter;
/// use rand::{Rng, thread_rng};
/// use rand::distributions::Alphanumeric;
///
/// let mut rng = thread_rng();
/// let chars: String = iter::repeat(())
/// .map(|()| rng.sample(Alphanumeric))
/// .map(char::from)
/// .take(7)
/// .collect();
/// println!("Random chars: {}", chars);
/// ```
///
/// # Passwords
///
/// Users sometimes ask whether it is safe to use a string of random characters
/// as a password. In principle, all RNGs in Rand implementing `CryptoRng` are
/// suitable as a source of randomness for generating passwords (if they are
/// properly seeded), but it is more conservative to only use randomness
/// directly from the operating system via the `getrandom` crate, or the
/// corresponding bindings of a crypto library.
///
/// When generating passwords or keys, it is important to consider the threat
/// model and in some cases the memorability of the password. This is out of
/// scope of the Rand project, and therefore we defer to the following
/// references:
///
/// - [Wikipedia article on Password Strength](https://en.wikipedia.org/wiki/Password_strength)
/// - [Diceware for generating memorable passwords](https://en.wikipedia.org/wiki/Diceware)
#[derive(Debug, Clone, Copy)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Alphanumeric;
// ----- Implementations of distributions -----
impl Distribution<char> for Standard {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> char {
// A valid `char` is either in the interval `[0, 0xD800)` or
// `(0xDFFF, 0x11_0000)`. All `char`s must therefore be in
// `[0, 0x11_0000)` but not in the "gap" `[0xD800, 0xDFFF]` which is
// reserved for surrogates. This is the size of that gap.
const GAP_SIZE: u32 = 0xDFFF - 0xD800 + 1;
// Uniform::new(0, 0x11_0000 - GAP_SIZE) can also be used but it
// seemed slower.
let range = Uniform::new(GAP_SIZE, 0x11_0000);
let mut n = range.sample(rng);
if n <= 0xDFFF {
n -= GAP_SIZE;
}
unsafe { char::from_u32_unchecked(n) }
}
}
/// Note: the `String` is potentially left with excess capacity; optionally the
/// user may call `string.shrink_to_fit()` afterwards.
#[cfg(feature = "alloc")]
impl DistString for Standard {
fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, s: &mut String, len: usize) {
// A char is encoded with at most four bytes, thus this reservation is
// guaranteed to be sufficient. We do not shrink_to_fit afterwards so
// that repeated usage on the same `String` buffer does not reallocate.
s.reserve(4 * len);
s.extend(Distribution::<char>::sample_iter(self, rng).take(len));
}
}
impl Distribution<u8> for Alphanumeric {
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u8 {
const RANGE: u32 = 26 + 26 + 10;
const GEN_ASCII_STR_CHARSET: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\
abcdefghijklmnopqrstuvwxyz\
0123456789";
// We can pick from 62 characters. This is so close to a power of 2, 64,
// that we can do better than `Uniform`. Use a simple bitshift and
// rejection sampling. We do not use a bitmask, because for small RNGs
// the most significant bits are usually of higher quality.
loop {
let var = rng.next_u32() >> (32 - 6);
if var < RANGE {
return GEN_ASCII_STR_CHARSET[var as usize];
}
}
}
}
#[cfg(feature = "alloc")]
impl DistString for Alphanumeric {
fn append_string<R: Rng + ?Sized>(&self, rng: &mut R, string: &mut String, len: usize) {
unsafe {
let v = string.as_mut_vec();
v.extend(self.sample_iter(rng).take(len));
}
}
}
impl Distribution<bool> for Standard {
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> bool {
// We can compare against an arbitrary bit of an u32 to get a bool.
// Because the least significant bits of a lower quality RNG can have
// simple patterns, we compare against the most significant bit. This is
// easiest done using a sign test.
(rng.next_u32() as i32) < 0
}
}
macro_rules! tuple_impl {
// use variables to indicate the arity of the tuple
($($tyvar:ident),* ) => {
// the trailing commas are for the 1 tuple
impl< $( $tyvar ),* >
Distribution<( $( $tyvar ),* , )>
for Standard
where $( Standard: Distribution<$tyvar> ),*
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> ( $( $tyvar ),* , ) {
(
// use the $tyvar's to get the appropriate number of
// repeats (they're not actually needed)
$(
_rng.gen::<$tyvar>()
),*
,
)
}
}
}
}
impl Distribution<()> for Standard {
#[allow(clippy::unused_unit)]
#[inline]
fn sample<R: Rng + ?Sized>(&self, _: &mut R) -> () {
()
}
}
tuple_impl! {A}
tuple_impl! {A, B}
tuple_impl! {A, B, C}
tuple_impl! {A, B, C, D}
tuple_impl! {A, B, C, D, E}
tuple_impl! {A, B, C, D, E, F}
tuple_impl! {A, B, C, D, E, F, G}
tuple_impl! {A, B, C, D, E, F, G, H}
tuple_impl! {A, B, C, D, E, F, G, H, I}
tuple_impl! {A, B, C, D, E, F, G, H, I, J}
tuple_impl! {A, B, C, D, E, F, G, H, I, J, K}
tuple_impl! {A, B, C, D, E, F, G, H, I, J, K, L}
#[cfg(feature = "min_const_gen")]
impl<T, const N: usize> Distribution<[T; N]> for Standard
where Standard: Distribution<T>
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; N] {
let mut buff: [MaybeUninit<T>; N] = unsafe { MaybeUninit::uninit().assume_init() };
for elem in &mut buff {
*elem = MaybeUninit::new(_rng.gen());
}
unsafe { mem::transmute_copy::<_, _>(&buff) }
}
}
#[cfg(not(feature = "min_const_gen"))]
macro_rules! array_impl {
// recursive, given at least one type parameter:
{$n:expr, $t:ident, $($ts:ident,)*} => {
array_impl!{($n - 1), $($ts,)*}
impl<T> Distribution<[T; $n]> for Standard where Standard: Distribution<T> {
#[inline]
fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] {
[_rng.gen::<$t>(), $(_rng.gen::<$ts>()),*]
}
}
};
// empty case:
{$n:expr,} => {
impl<T> Distribution<[T; $n]> for Standard {
fn sample<R: Rng + ?Sized>(&self, _rng: &mut R) -> [T; $n] { [] }
}
};
}
#[cfg(not(feature = "min_const_gen"))]
array_impl! {32, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T, T,}
impl<T> Distribution<Option<T>> for Standard
where Standard: Distribution<T>
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Option<T> {
// UFCS is needed here: https://github.com/rust-lang/rust/issues/24066
if rng.gen::<bool>() {
Some(rng.gen())
} else {
None
}
}
}
impl<T> Distribution<Wrapping<T>> for Standard
where Standard: Distribution<T>
{
#[inline]
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Wrapping<T> {
Wrapping(rng.gen())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::RngCore;
#[cfg(feature = "alloc")] use alloc::string::String;
#[test]
fn test_misc() {
let rng: &mut dyn RngCore = &mut crate::test::rng(820);
rng.sample::<char, _>(Standard);
rng.sample::<bool, _>(Standard);
}
#[cfg(feature = "alloc")]
#[test]
fn test_chars() {
use core::iter;
let mut rng = crate::test::rng(805);
// Test by generating a relatively large number of chars, so we also
// take the rejection sampling path.
let word: String = iter::repeat(())
.map(|()| rng.gen::<char>())
.take(1000)
.collect();
assert!(!word.is_empty());
}
#[test]
fn test_alphanumeric() {
let mut rng = crate::test::rng(806);
// Test by generating a relatively large number of chars, so we also
// take the rejection sampling path.
let mut incorrect = false;
for _ in 0..100 {
let c: char = rng.sample(Alphanumeric).into();
incorrect |= !(('0'..='9').contains(&c) ||
('A'..='Z').contains(&c) ||
('a'..='z').contains(&c) );
}
assert!(!incorrect);
}
#[test]
fn value_stability() {
fn test_samples<T: Copy + core::fmt::Debug + PartialEq, D: Distribution<T>>(
distr: &D, zero: T, expected: &[T],
) {
let mut rng = crate::test::rng(807);
let mut buf = [zero; 5];
for x in &mut buf {
*x = rng.sample(&distr);
}
assert_eq!(&buf, expected);
}
test_samples(&Standard, 'a', &[
'\u{8cdac}',
'\u{a346a}',
'\u{80120}',
'\u{ed692}',
'\u{35888}',
]);
test_samples(&Alphanumeric, 0, &[104, 109, 101, 51, 77]);
test_samples(&Standard, false, &[true, true, false, true, false]);
test_samples(&Standard, None as Option<bool>, &[
Some(true),
None,
Some(false),
None,
Some(false),
]);
test_samples(&Standard, Wrapping(0i32), &[
Wrapping(-2074640887),
Wrapping(-1719949321),
Wrapping(2018088303),
Wrapping(-547181756),
Wrapping(838957336),
]);
// We test only sub-sets of tuple and array impls
test_samples(&Standard, (), &[(), (), (), (), ()]);
test_samples(&Standard, (false,), &[
(true,),
(true,),
(false,),
(true,),
(false,),
]);
test_samples(&Standard, (false, false), &[
(true, true),
(false, true),
(false, false),
(true, false),
(false, false),
]);
test_samples(&Standard, [0u8; 0], &[[], [], [], [], []]);
test_samples(&Standard, [0u8; 3], &[
[9, 247, 111],
[68, 24, 13],
[174, 19, 194],
[172, 69, 213],
[149, 207, 29],
]);
}
}