packet/fragmented.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use core::ops::{Range, RangeBounds};
use zerocopy::{SplitByteSlice, SplitByteSliceMut};
use crate::{canonicalize_range, take_back, take_back_mut, take_front, take_front_mut};
/// A wrapper for a sequence of byte slices.
///
/// `FragmentedByteSlice` shares its underlying memory with the slice it was
/// constructed from and, as a result, operations on a `FragmentedByteSlice` may
/// mutate the backing slice.
#[derive(Debug, Eq, PartialEq)]
pub struct FragmentedByteSlice<'a, B: SplitByteSlice>(&'a mut [B]);
/// A single byte slice fragment in a [`FragmentedByteSlice`].
pub trait Fragment: SplitByteSlice {
/// Takes `n` bytes from the front of this fragment.
///
/// After a call to `take_front(n)`, the fragment is `n` bytes shorter.
///
/// # Panics
///
/// Panics if `n` is larger than the length of this `ByteSlice`.
fn take_front(&mut self, n: usize) -> Self;
/// Takes `n` bytes from the back of this fragment.
///
/// After a call to `take_back(n)`, the fragment is `n` bytes shorter.
///
/// # Panics
///
/// Panics if `n` is larger than the length of this `ByteSlice`.
fn take_back(&mut self, n: usize) -> Self;
/// Constructs a new empty `Fragment`.
fn empty() -> Self;
}
/// A type that can produce a `FragmentedByteSlice` view of itself.
pub trait AsFragmentedByteSlice<B: Fragment> {
/// Generates a `FragmentedByteSlice` view of `self`.
fn as_fragmented_byte_slice(&mut self) -> FragmentedByteSlice<'_, B>;
}
impl<O, B> AsFragmentedByteSlice<B> for O
where
B: Fragment,
O: AsMut<[B]>,
{
fn as_fragmented_byte_slice(&mut self) -> FragmentedByteSlice<'_, B> {
FragmentedByteSlice::new(self.as_mut())
}
}
impl<'a> Fragment for &'a [u8] {
fn take_front(&mut self, n: usize) -> Self {
take_front(self, n)
}
fn take_back(&mut self, n: usize) -> Self {
take_back(self, n)
}
fn empty() -> Self {
&[]
}
}
impl<'a> Fragment for &'a mut [u8] {
fn take_front(&mut self, n: usize) -> Self {
take_front_mut(self, n)
}
fn take_back(&mut self, n: usize) -> Self {
take_back_mut(self, n)
}
fn empty() -> Self {
&mut []
}
}
impl<'a, B: 'a + Fragment> FragmentedByteSlice<'a, B> {
/// Constructs a new `FragmentedByteSlice` from `bytes`.
///
/// It is important to note that `FragmentedByteSlice` takes a mutable
/// reference to a backing slice. Operations on the `FragmentedByteSlice`
/// may mutate `bytes` as an optimization to avoid extra allocations.
///
/// Users are encouraged to treat slices used to construct
/// `FragmentedByteSlice`s as if they are not owned anymore and only serve
/// as (usually temporary) backing for a `FragmentedByteSlice`.
pub fn new(bytes: &'a mut [B]) -> Self {
Self(bytes)
}
/// Constructs a new empty `FragmentedByteSlice`.
pub fn new_empty() -> Self {
Self(&mut [])
}
/// Gets the total length, in bytes, of this `FragmentedByteSlice`.
pub fn len(&self) -> usize {
// TODO(brunodalbo) explore if caching the total length in a
// FragmentedByteSlice could be a worthy performance optimization.
self.0.iter().map(|x| x.len()).sum()
}
/// Returns `true` if the `FragmentedByteSlice` is empty.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Slices this `FragmentedByteSlice`, reducing it to only the bytes within
/// `range`.
///
/// `slice` will mutate the backing slice by dropping or shrinking fragments
/// as necessary so the overall composition matches the requested `range`.
/// The returned `FragmentedByteSlice` uses the same (albeit possibly
/// modified) backing mutable slice reference as `self`.
///
/// # Panics
///
/// Panics if the provided `range` is not within the bounds of this
/// `FragmentedByteSlice`, or if the range is nonsensical (the end precedes
/// the start).
pub fn slice<R>(self, range: R) -> Self
where
R: RangeBounds<usize>,
{
let len = self.len();
let range = canonicalize_range(len, &range);
let mut bytes = self.0;
// c is the amount of bytes we need to discard from the beginning of the
// fragments.
let mut c = range.start;
while c != 0 {
let first = &mut bytes[0];
if first.len() > c {
// if the first fragment contains more than c bytes, just take
// c bytes out of its front and we're done.
let _: B = first.take_front(c);
break;
} else {
// otherwise, just account for the first fragment's entire
// length and drop it.
c -= first.len();
bytes = &mut bytes[1..];
}
}
// c is the amount of bytes we need to discard from the end of the
// fragments.
let mut c = len - range.end;
while c != 0 {
let idx = bytes.len() - 1;
let last = &mut bytes[idx];
if last.len() > c {
// if the last fragment contains more than c bytes, just take
// c bytes out of its back and we're done.
let _: B = last.take_back(c);
break;
} else {
// otherwise, just account for the last fragment's entire length
// and drop it.
c -= last.len();
bytes = &mut bytes[..idx];
}
}
Self(bytes)
}
/// Checks whether the contents of this `FragmentedByteSlice` are equal to
/// the contents of `other`.
pub fn eq_slice(&self, mut other: &[u8]) -> bool {
for x in self.0.iter() {
let x = x.as_ref();
if other.len() < x.len() || !x.eq(&other[..x.len()]) {
return false;
}
other = &other[x.len()..];
}
other.is_empty()
}
/// Iterates over all the bytes in this `FragmentedByteSlice`.
pub fn iter(&self) -> impl '_ + Iterator<Item = u8> {
self.0.iter().map(|x| x.iter()).flatten().copied()
}
/// Iterates over the fragments of this `FragmentedByteSlice`.
pub fn iter_fragments(&'a self) -> impl 'a + Iterator<Item = &'a [u8]> + Clone {
self.0.iter().map(|x| x.as_ref())
}
/// Copies all the bytes in `self` into the contiguous slice `dst`.
///
/// # Panics
///
/// Panics if `dst.len() != self.len()`.
pub fn copy_into_slice(&self, mut dst: &mut [u8]) {
for p in self.0.iter() {
let (tgt, nxt) = dst.split_at_mut(p.len());
tgt.copy_from_slice(p.as_ref());
dst = nxt;
}
assert_eq!(dst.len(), 0);
}
/// Returns a flattened version of this buffer, copying its contents into a
/// [`Vec`].
pub fn to_flattened_vec(&self) -> Vec<u8> {
let mut out = Vec::with_capacity(self.len());
for x in self.0.iter() {
out.extend_from_slice(x);
}
out
}
/// Creates an index tuple from a linear index `idx`.
///
/// `get_index` creates a tuple index `(slice, byte)` where `slice` is the
/// index in the backing slice of slices and `byte` is the byte index in the
/// slice at `self.0[slice]` where `(slice, byte)` represents the `idx`th
/// byte in this `FragmentedByteSlice`.
///
/// # Panics
///
/// Panics if `idx` is out of bounds.
fn get_index(&self, mut idx: usize) -> (usize, usize) {
let mut a = 0;
while self.0[a].len() <= idx || self.0[a].len() == 0 {
idx -= self.0[a].len();
a += 1;
}
(a, idx)
}
/// Increments the index tuple `idx`.
///
/// Increments the index tuple `idx` (see
/// [`FragmentedByteSlice::get_index`]) so it references the next byte.
/// `increment_index` will stop incrementing and just return a slice index
/// equal to the length of the backing slice if `idx` can't be incremented
/// anymore.
fn increment_index(&self, idx: &mut (usize, usize)) {
if self.0[idx.0].len() > (idx.1 + 1) {
idx.1 += 1;
} else {
idx.0 += 1;
// skip any empty slices:
while idx.0 < self.0.len() && self.0[idx.0].len() == 0 {
idx.0 += 1;
}
idx.1 = 0;
}
}
/// Decrements the index tuple `idx`.
///
/// Decrements the index tuple `idx` (see
/// [`FragmentedByteSlice::get_index`]) so it references the previous byte.
/// `decrement_index` will wrap around to an invalid out of bounds index
/// (slice index is equal to the length of the backing slice) if `idx` is
/// pointing to the `0`th byte.
fn decrement_index(&self, idx: &mut (usize, usize)) {
if idx.1 == 0 {
if idx.0 == 0 {
idx.0 = self.0.len();
idx.1 = 0;
return;
}
idx.0 -= 1;
// skip any empty slices:
while idx.0 != 0 && self.0[idx.0].len() == 0 {
idx.0 -= 1;
}
if self.0[idx.0].len() != 0 {
idx.1 = self.0[idx.0].len() - 1;
} else {
idx.0 = self.0.len();
idx.1 = 0;
}
} else {
idx.1 -= 1;
}
}
/// Tries to convert this `FragmentedByteSlice` into a contiguous one.
///
/// Returns `Ok` if `self`'s backing storage contains 0 or 1 byte slices,
/// and `Err` otherwise.
///
/// If `self`'s backing storage contains 1 byte slice, that byte slice will
/// be replaced with an empty byte slice, and the original used to construct
/// the return value.
pub fn try_into_contiguous(self) -> Result<B, Self> {
if self.0.is_empty() {
Ok(B::empty())
} else if self.0.len() == 1 {
Ok(std::mem::replace(&mut self.0[0], B::empty()))
} else {
Err(self)
}
}
/// Tries to get a contiguous reference to this `FragmentedByteSlice`.
///
/// Returns `Some` if `self`'s backing storage contains 0 or 1 byte slices,
/// and `None` otherwise.
pub fn try_get_contiguous(&self) -> Option<&[u8]> {
match &self.0 {
[] => Some(&[]),
[slc] => Some(slc),
_ => None,
}
}
/// Tries to split this `FragmentedByteSlice` into a contiguous prefix, a
/// (possibly fragmented) body, and a contiguous suffix.
///
/// Returns `None` if it isn't possible to form a contiguous prefix and
/// suffix with the provided `range`.
///
/// # Panics
///
/// Panics if the range is out of bounds, or if the range is nonsensical
/// (the end precedes the start).
pub fn try_split_contiguous<R>(self, range: R) -> Option<(B, Self, B)>
where
R: RangeBounds<usize>,
{
let len = self.len();
let range = canonicalize_range(len, &range);
if len == 0 && range.start == 0 && range.end == 0 {
// If own length is zero and the requested body range is an empty
// body start at zero, avoid returning None in the call to
// last_mut() below.
return Some((B::empty(), FragmentedByteSlice(&mut []), B::empty()));
}
// take foot first, because if we have a single fragment, taking head
// first will mess with the index calculations.
let foot = self.0.last_mut()?;
let take = len - range.end;
if foot.len() < take {
return None;
}
let foot = foot.take_back(take);
let head = self.0.first_mut()?;
if head.len() < range.start {
return None;
}
let head = head.take_front(range.start);
Some((head, self, foot))
}
}
impl<'a, B: 'a + SplitByteSliceMut + Fragment> FragmentedByteSlice<'a, B> {
/// Iterates over mutable references to all the bytes in this
/// `FragmentedByteSlice`.
pub fn iter_mut(&mut self) -> impl '_ + Iterator<Item = &'_ mut u8> {
self.0.iter_mut().map(|x| x.iter_mut()).flatten()
}
/// Copies all the bytes in `src` to `self`.
///
/// # Panics
///
/// Panics if `self.len() != src.len()`.
pub fn copy_from_slice(&mut self, mut src: &[u8]) {
for p in self.0.iter_mut() {
let (cur, nxt) = src.split_at(p.len());
p.as_mut().copy_from_slice(cur);
src = nxt;
}
assert_eq!(src.len(), 0);
}
/// Copies all the bytes from another `FragmentedByteSlice` `other` into
/// `self`.
///
/// # Panics
///
/// Panics if `self.len() != other.len()`.
pub fn copy_from<BB>(&mut self, other: &FragmentedByteSlice<'_, BB>)
where
BB: SplitByteSlice,
{
// keep an iterator over the fragments in other.
let mut oth = other.0.iter().map(|z| z.as_ref());
// op is the current fragment in other we're copying from.
let mut op = oth.next();
for part in self.0.iter_mut() {
// p is the current fragment in self we're feeding bytes into.
let mut p = part.as_mut();
// iterate until this fragment is all consumed.
while !p.is_empty() {
// skip any empty slices in other.
while op.unwrap().is_empty() {
op = oth.next();
}
// get the current fragment in other.
let k = op.unwrap();
if k.len() <= p.len() {
// if k does not have enough bytes to fill p, copy what we
// can, change p to the region that hasn't been updated, and
// then fetch the next fragment from other.
let (dst, nxt) = p.split_at_mut(k.len());
dst.copy_from_slice(k.as_ref());
p = nxt;
op = oth.next();
} else {
// Otherwise, copy the p.len() first bytes from k, and
// modify op to keep the rest of the bytes in k.
let (src, nxt) = k.split_at(p.len());
p.copy_from_slice(src.as_ref());
op = Some(nxt);
// break from loop, p had all its bytes copied.
break;
}
}
}
// If anything is left in our iterator, panic if it isn't an empty slice
// since the lengths must match.
while let Some(v) = op {
assert_eq!(v.len(), 0);
op = oth.next();
}
}
/// Copies elements from one part of the `FragmentedByteSlice` to another
/// part of itself.
///
/// `src` is the range within `self` to copy from. `dst` is the starting
/// index of the range within `self` to copy to, which will have the same
/// length as `src`. The two ranges may overlap. The ends of the two ranges
/// must be less than or equal to `self.len()`.
///
/// # Panics
///
/// Panics if either the source or destination range is out of bounds, or if
/// `src` is nonsensical (its end precedes its start).
pub fn copy_within<R: RangeBounds<usize>>(&mut self, src: R, dst: usize) {
let Range { start, end } = canonicalize_range(self.len(), &src);
assert!(end >= start);
let len = end - start;
if start == dst || len == 0 {
// no work to do
} else if start > dst {
// copy front to back
let mut start = self.get_index(start);
let mut dst = self.get_index(dst);
for _ in 0..len {
self.0[dst.0][dst.1] = self.0[start.0][start.1];
self.increment_index(&mut start);
self.increment_index(&mut dst);
}
} else {
// copy back to front
let mut start = self.get_index(end - 1);
let mut dst = self.get_index(dst + len - 1);
for _ in 0..len {
self.0[dst.0][dst.1] = self.0[start.0][start.1];
self.decrement_index(&mut start);
self.decrement_index(&mut dst);
}
}
}
/// Attempts to get a contiguous mutable reference to this
/// `FragmentedByteSlice`.
///
/// Returns `Some` if this `FragmentedByteSlice` is a single contiguous part
/// (or is empty). Returns `None` otherwise.
pub fn try_get_contiguous_mut(&mut self) -> Option<&mut [u8]> {
match &mut self.0 {
[] => Some(&mut []),
[slc] => Some(slc),
_ => None,
}
}
}
/// A [`FragmentedByteSlice`] backed by immutable byte slices.
pub type FragmentedBytes<'a, 'b> = FragmentedByteSlice<'a, &'b [u8]>;
/// A [`FragmentedByteSlice`] backed by mutable byte slices.
pub type FragmentedBytesMut<'a, 'b> = FragmentedByteSlice<'a, &'b mut [u8]>;
#[cfg(test)]
mod tests {
use super::*;
/// Calls `f` with all the possible three way slicings of a non-mutable
/// buffer containing `[1,2,3,4,5]` (including cases with empty slices).
fn with_fragments<F: for<'a, 'b> FnMut(FragmentedBytes<'a, 'b>)>(mut f: F) {
let buff = [1_u8, 2, 3, 4, 5];
for i in 0..buff.len() {
for j in i..buff.len() {
let (a, x) = buff.split_at(i);
let (b, c) = x.split_at(j - i);
let mut frags = [a, b, c];
f(frags.as_fragmented_byte_slice());
}
}
}
/// Calls `f` with all the possible three way slicings of a non-mutable
/// buffer containing `[1,2,3,4,5]` (including cases with empty slices).
fn with_fragments_mut<F: for<'a, 'b> FnMut(FragmentedBytesMut<'a, 'b>)>(mut f: F) {
let buff = [1_u8, 2, 3, 4, 5];
for i in 0..buff.len() {
for j in i..buff.len() {
let mut buff = [1_u8, 2, 3, 4, 5];
let (a, x) = buff.split_at_mut(i);
let (b, c) = x.split_at_mut(j - i);
let mut frags = [a, b, c];
f(frags.as_fragmented_byte_slice());
}
}
}
#[test]
fn test_iter() {
// check iterator over different fragment permutations.
with_fragments(|bytes| {
let mut iter = bytes.iter();
for i in 1_u8..6 {
assert_eq!(iter.next().unwrap(), i);
}
assert!(iter.next().is_none());
assert!(iter.next().is_none());
});
}
#[test]
fn test_eq() {
// check equality over different fragment permutations.
with_fragments(|bytes| {
assert!(bytes.eq_slice([1_u8, 2, 3, 4, 5].as_ref()));
assert!(!bytes.eq_slice([1_u8, 2, 3, 4].as_ref()));
assert!(!bytes.eq_slice([1_u8, 2, 3, 4, 5, 6].as_ref()));
assert!(!bytes.eq_slice(&[]));
});
// check equality for the empty slice case.
let bytes = FragmentedBytes::new_empty();
assert!(!bytes.eq_slice([1_u8, 2, 3, 4, 5].as_ref()));
assert!(bytes.eq_slice(&[]));
}
#[test]
fn test_slice() {
// test all valid ranges with all possible permutations of a three way
// slice.
for i in 0..6 {
for j in i..6 {
with_fragments(|bytes| {
let range = bytes.slice(i..j);
let x = [1_u8, 2, 3, 4, 5];
assert_eq!(&range.to_flattened_vec()[..], &x[i..j], "{}..{}", i, j);
});
}
}
}
#[test]
#[should_panic]
fn test_slice_out_of_range() {
// check that slicing out of range will panic
with_fragments(|bytes| {
let _ = bytes.slice(0..15);
});
}
#[test]
#[should_panic]
fn test_copy_into_slice_too_big() {
// check that copy_into_slice panics for different lengths.
with_fragments(|bytes| {
let mut slice = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
bytes.copy_into_slice(&mut slice[..]);
});
}
#[test]
#[should_panic]
fn test_copy_into_slice_too_small() {
// check that copy_into_slice panics for different lengths.
with_fragments(|bytes| {
let mut slice = [1, 2];
bytes.copy_into_slice(&mut slice[..]);
});
}
#[test]
fn test_copy_into_slice() {
// try copy_into_slice with all different fragment permutations.
with_fragments(|bytes| {
let mut slice = [0; 5];
bytes.copy_into_slice(&mut slice[..]);
assert_eq!(slice, &[1, 2, 3, 4, 5][..]);
});
}
#[test]
#[should_panic]
fn test_copy_from_slice_too_big() {
// check that copy_from_slice panics for different lengths.
with_fragments_mut(|mut bytes| {
let slice = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
bytes.copy_from_slice(&slice[..]);
});
}
#[test]
#[should_panic]
fn test_copy_from_slice_too_small() {
// check that copy_from_slice panics for different lengths.
with_fragments_mut(|mut bytes| {
let slice = [1, 2, 3];
bytes.copy_from_slice(&slice[..]);
});
}
#[test]
fn test_copy_from_slice() {
// test copy_from_slice with all fragment permutations.
with_fragments_mut(|mut bytes| {
let slice = [10, 20, 30, 40, 50];
bytes.copy_from_slice(&slice[..]);
assert_eq!(&bytes.to_flattened_vec()[..], &slice[..]);
});
}
#[test]
fn test_copy_from() {
// test copying from another FragmentedByteSlice, going over all
// fragment permutations for both src and dst.
with_fragments(|src| {
with_fragments_mut(|mut dst| {
// zer-out dst
dst.copy_from_slice(&[0; 5][..]);
dst.copy_from(&src);
assert_eq!(&dst.to_flattened_vec()[..], &[1_u8, 2, 3, 4, 5][..]);
})
});
}
#[test]
#[should_panic]
fn test_copy_from_too_long() {
// copying from another FragmentedByteSlice should panic if the lengths
// differ.
let mut a = [0; 2];
let mut b = [0; 2];
let mut frags = [a.as_mut(), b.as_mut()];
with_fragments(|src| {
frags.as_fragmented_byte_slice().copy_from(&src);
});
}
#[test]
#[should_panic]
fn test_copy_from_too_short() {
// copying from another FragmentedByteSlice should panic if the lengths
// differ.
let mut a = [0; 5];
let mut b = [0; 2];
let mut frags = [a.as_mut(), b.as_mut()];
with_fragments(|src| {
frags.as_fragmented_byte_slice().copy_from(&src);
});
}
#[test]
fn test_indexing() {
// Test the internal indexing functions over all fragment permutations.
with_fragments(|bytes| {
for i in 0..5 {
// check that get_index addresses the expected byte.
let mut idx = bytes.get_index(i);
assert_eq!(bytes.0[idx.0][idx.1], (i + 1) as u8);
// check that we can increase it correctly until the end of the
// buffer.
for j in 1..(6 - i - 1) {
bytes.increment_index(&mut idx);
assert_eq!(bytes.0[idx.0][idx.1], (i + j + 1) as u8);
}
// fetch the same index again.
let mut idx = bytes.get_index(i);
assert_eq!(bytes.0[idx.0][idx.1], (i + 1) as u8);
// check that we can decrease it correctly until the beginning
// of the buffer.
for j in 1..=i {
bytes.decrement_index(&mut idx);
assert_eq!(bytes.0[idx.0][idx.1], (i - j + 1) as u8);
}
}
});
}
#[test]
fn test_copy_within() {
with_fragments_mut(|mut bytes| {
// copy last half to beginning:
bytes.copy_within(3..5, 0);
assert_eq!(&bytes.to_flattened_vec()[..], &[4, 5, 3, 4, 5]);
});
with_fragments_mut(|mut bytes| {
// copy first half to end:
bytes.copy_within(0..2, 3);
assert_eq!(&bytes.to_flattened_vec()[..], &[1, 2, 3, 1, 2]);
});
}
#[test]
#[should_panic]
fn test_copy_within_src_out_of_bounds() {
with_fragments_mut(|mut bytes| {
// try to copy out of bounds
bytes.copy_within(3..15, 0);
});
}
#[test]
#[should_panic]
fn test_copy_within_dst_out_of_bounds() {
with_fragments_mut(|mut bytes| {
// try to copy out of bounds
bytes.copy_within(3..5, 15);
});
}
#[test]
#[should_panic]
fn test_copy_within_bad_range() {
with_fragments_mut(|mut bytes| {
// pass a bad range (end before start)
#[allow(clippy::reversed_empty_ranges)]
bytes.copy_within(5..3, 0);
});
}
#[test]
fn test_get_contiguous() {
// If we have fragments, get_contiguous should fail:
with_fragments_mut(|mut bytes| {
assert!(bytes.try_get_contiguous().is_none());
assert!(bytes.try_get_contiguous_mut().is_none());
assert!(bytes.try_into_contiguous().is_err());
});
// otherwise we should be able to get the contiguous bytes:
let mut single = [1_u8, 2, 3, 4, 5];
let mut single = [&mut single[..]];
let mut single = single.as_fragmented_byte_slice();
assert_eq!(single.try_get_contiguous().unwrap(), &[1, 2, 3, 4, 5][..]);
assert_eq!(single.try_get_contiguous_mut().unwrap(), &[1, 2, 3, 4, 5][..]);
assert_eq!(single.try_into_contiguous().unwrap(), &[1, 2, 3, 4, 5][..]);
}
#[test]
fn test_split_contiguous() {
let data = [1_u8, 2, 3, 4, 5, 6];
// try with a single continuous slice
let mut refs = [&data[..]];
let frag = refs.as_fragmented_byte_slice();
let (head, body, foot) = frag.try_split_contiguous(2..4).unwrap();
assert_eq!(head, &data[..2]);
assert_eq!(&body.to_flattened_vec()[..], &data[2..4]);
assert_eq!(foot, &data[4..]);
// try splitting just part of the header
let mut refs = [&data[0..3], &data[3..]];
let frag = refs.as_fragmented_byte_slice();
let (head, body, foot) = frag.try_split_contiguous(2..6).unwrap();
assert_eq!(head, &data[..2]);
assert_eq!(&body.to_flattened_vec()[..], &data[2..]);
assert!(foot.is_empty());
// try splitting just part of the footer
let mut refs = [&data[0..3], &data[3..]];
let frag = refs.as_fragmented_byte_slice();
let (head, body, foot) = frag.try_split_contiguous(..4).unwrap();
assert!(head.is_empty());
assert_eq!(&body.to_flattened_vec()[..], &data[..4]);
assert_eq!(foot, &data[4..]);
// try completely extracting both:
let mut refs = [&data[0..3], &data[3..]];
let frag = refs.as_fragmented_byte_slice();
let (head, body, foot) = frag.try_split_contiguous(3..3).unwrap();
assert_eq!(head, &data[0..3]);
assert_eq!(body.len(), 0);
assert_eq!(foot, &data[3..]);
// try getting contiguous bytes from an empty FragmentedByteSlice:
let frag = FragmentedBytes::new_empty();
let (head, body, foot) = frag.try_split_contiguous(..).unwrap();
assert!(head.is_empty());
assert!(body.is_empty());
assert!(foot.is_empty());
}
#[test]
#[should_panic]
fn test_split_contiguous_out_of_bounds() {
let data = [1_u8, 2, 3, 4, 5, 6];
let mut refs = [&data[..]];
let frag = refs.as_fragmented_byte_slice();
let _ = frag.try_split_contiguous(2..8);
}
#[test]
fn test_empty() {
// Can create empty FragmentedByteSlices with no fragments or with one
// empty fragment.
// is_empty should return true for both cases.
let empty = FragmentedByteSlice::<&'static [u8]>::new_empty();
assert!(empty.is_empty());
let empty = [0_u8; 0];
let mut empty = [&empty[..]];
let empty = empty.as_fragmented_byte_slice();
assert!(empty.is_empty());
}
}