zx/
vmo.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
// Copyright 2017 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Type-safe bindings for Zircon vmo objects.

use crate::{
    object_get_info_single, object_get_property, object_set_property, ok, sys, AsHandleRef, Bti,
    Handle, HandleBased, HandleRef, Koid, Name, ObjectQuery, Property, PropertyQuery, Resource,
    Rights, Status, Topic,
};
use bitflags::bitflags;
use std::mem::MaybeUninit;
use std::ptr;
use zerocopy::{FromBytes, Immutable};
use zx_sys::PadByte;

/// An object representing a Zircon
/// [virtual memory object](https://fuchsia.dev/fuchsia-src/concepts/objects/vm_object.md).
///
/// As essentially a subtype of `Handle`, it can be freely interconverted.
#[derive(Debug, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[repr(transparent)]
pub struct Vmo(Handle);
impl_handle_based!(Vmo);

static_assert_align!(
    #[doc="Ergonomic equivalent of [sys::zx_info_vmo_t]. Must be ABI-compatible with it."]
    #[repr(C)]
    #[derive(Debug, Copy, Clone, Eq, PartialEq, FromBytes, Immutable)]
    <sys::zx_info_vmo_t> pub struct VmoInfo {
        pub koid <koid>: Koid,
        pub name <name>: Name,
        pub size_bytes <size_bytes>: u64,
        pub parent_koid <parent_koid>: Koid,
        pub num_children <num_children>: usize,
        pub num_mappings <num_mappings>: usize,
        pub share_count <share_count>: usize,
        pub flags <flags>: VmoInfoFlags,
        padding1: [PadByte; 4],
        pub committed_bytes <committed_bytes>: u64,
        pub handle_rights <handle_rights>: Rights,
        cache_policy <cache_policy>: u32,
        pub metadata_bytes <metadata_bytes>: u64,
        pub committed_change_events <committed_change_events>: u64,
        pub populated_bytes <populated_bytes>: u64,
        pub committed_private_bytes <committed_private_bytes>: u64,
        pub populated_private_bytes <populated_private_bytes>: u64,
        pub committed_scaled_bytes <committed_scaled_bytes>: u64,
        pub populated_scaled_bytes <populated_scaled_bytes>: u64,
        pub committed_fractional_scaled_bytes <committed_fractional_scaled_bytes>: u64,
        pub populated_fractional_scaled_bytes <populated_fractional_scaled_bytes>: u64,
    }
);

impl VmoInfo {
    pub fn cache_policy(&self) -> CachePolicy {
        CachePolicy::from(self.cache_policy)
    }
}

impl Default for VmoInfo {
    fn default() -> VmoInfo {
        Self::from(sys::zx_info_vmo_t::default())
    }
}

impl From<sys::zx_info_vmo_t> for VmoInfo {
    fn from(info: sys::zx_info_vmo_t) -> VmoInfo {
        zerocopy::transmute!(info)
    }
}

struct VmoInfoQuery;
unsafe impl ObjectQuery for VmoInfoQuery {
    const TOPIC: Topic = Topic::VMO;
    type InfoTy = sys::zx_info_vmo_t;
}

impl Vmo {
    /// Create a virtual memory object.
    ///
    /// Wraps the
    /// `zx_vmo_create`
    /// syscall. See the
    /// [Shared Memory: Virtual Memory Objects (VMOs)](https://fuchsia.dev/fuchsia-src/concepts/kernel/concepts#shared_memory_virtual_memory_objects_vmos)
    /// for more information.
    pub fn create(size: u64) -> Result<Vmo, Status> {
        Vmo::create_with_opts(VmoOptions::from_bits_truncate(0), size)
    }

    /// Create a virtual memory object with options.
    ///
    /// Wraps the
    /// `zx_vmo_create`
    /// syscall, allowing options to be passed.
    pub fn create_with_opts(opts: VmoOptions, size: u64) -> Result<Vmo, Status> {
        let mut handle = 0;
        let status = unsafe { sys::zx_vmo_create(size, opts.bits(), &mut handle) };
        ok(status)?;
        unsafe { Ok(Vmo::from(Handle::from_raw(handle))) }
    }

    /// Create a physically contiguous virtual memory object.
    ///
    /// Wraps the
    /// [`zx_vmo_create_contiguous`](https://fuchsia.dev/fuchsia-src/reference/syscalls/vmo_create_contiguous) syscall.
    pub fn create_contiguous(bti: &Bti, size: usize, alignment_log2: u32) -> Result<Vmo, Status> {
        let mut vmo_handle = sys::zx_handle_t::default();
        let status = unsafe {
            // SAFETY: regular system call with no unsafe parameters.
            sys::zx_vmo_create_contiguous(bti.raw_handle(), size, alignment_log2, &mut vmo_handle)
        };
        ok(status)?;
        unsafe {
            // SAFETY: The syscall docs claim that upon success, vmo_handle will be a valid
            // handle to a virtual memory object.
            Ok(Vmo::from(Handle::from_raw(vmo_handle)))
        }
    }

    /// Read from a virtual memory object.
    ///
    /// Wraps the `zx_vmo_read` syscall.
    pub fn read(&self, data: &mut [u8], offset: u64) -> Result<(), Status> {
        unsafe {
            let status = sys::zx_vmo_read(self.raw_handle(), data.as_mut_ptr(), offset, data.len());
            ok(status)
        }
    }

    /// Provides the thinest wrapper possible over `zx_vmo_read`.
    ///
    /// # Safety
    ///
    /// Callers must guarantee that the buffer is valid to write to.
    pub unsafe fn read_raw(
        &self,
        buffer: *mut u8,
        buffer_length: usize,
        offset: u64,
    ) -> Result<(), Status> {
        let status = sys::zx_vmo_read(self.raw_handle(), buffer, offset, buffer_length);
        ok(status)
    }

    /// Same as read, but reads into memory that might not be initialized, returning an initialized
    /// slice of bytes on success.
    pub fn read_uninit<'a>(
        &self,
        data: &'a mut [MaybeUninit<u8>],
        offset: u64,
    ) -> Result<&'a mut [u8], Status> {
        // SAFETY: This system call requires that the pointer and length we pass are valid to write
        // to, which we guarantee here by getting the pointer and length from a valid slice.
        unsafe {
            self.read_raw(
                // TODO(https://fxbug.dev/42079723) use MaybeUninit::slice_as_mut_ptr when stable
                data.as_mut_ptr().cast::<u8>(),
                data.len(),
                offset,
            )?
        }
        // TODO(https://fxbug.dev/42079723) use MaybeUninit::slice_assume_init_mut when stable
        Ok(
            // SAFETY: We're converting &mut [MaybeUninit<u8>] back to &mut [u8], which is only
            // valid to do if all elements of `data` have actually been initialized. Here we
            // have to trust that the kernel didn't lie when it said it wrote to the entire
            // buffer, but as long as that assumption is valid them it's safe to assume this
            // slice is init.
            unsafe { std::slice::from_raw_parts_mut(data.as_mut_ptr().cast::<u8>(), data.len()) },
        )
    }

    /// Same as read, but returns a Vec.
    pub fn read_to_vec(&self, offset: u64, length: u64) -> Result<Vec<u8>, Status> {
        let len = length.try_into().map_err(|_| Status::INVALID_ARGS)?;
        let mut buffer = Vec::with_capacity(len);
        self.read_uninit(buffer.spare_capacity_mut(), offset)?;
        unsafe {
            // SAFETY: since read_uninit succeeded we know that we can consider the buffer
            // initialized.
            buffer.set_len(len);
        }
        Ok(buffer)
    }

    /// Same as read, but returns an array.
    pub fn read_to_array<T: FromBytes, const N: usize>(
        &self,
        offset: u64,
    ) -> Result<[T; N], Status> {
        // TODO(https://fxbug.dev/42079731): replace with MaybeUninit::uninit_array.
        let array: MaybeUninit<[MaybeUninit<T>; N]> = MaybeUninit::uninit();
        // SAFETY: We are converting from an uninitialized array to an array
        // of uninitialized elements which is the same. See
        // https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#initializing-an-array-element-by-element.
        let mut array = unsafe { array.assume_init() };

        // SAFETY: T is FromBytes, which means that any bit pattern is valid. Interpreting
        // [MaybeUninit<T>] as [MaybeUninit<u8>] is safe because T's alignment requirements
        // are larger than u8.
        //
        // TODO(https://fxbug.dev/42079727): Use MaybeUninit::slice_as_bytes_mut once stable.
        let buffer = unsafe {
            std::slice::from_raw_parts_mut(
                array.as_mut_ptr().cast::<MaybeUninit<u8>>(),
                N * std::mem::size_of::<T>(),
            )
        };

        self.read_uninit(buffer, offset)?;
        // SAFETY: This is safe because we have initialized all the elements in
        // the array (since `read_uninit` returned successfully).
        //
        // TODO(https://fxbug.dev/42079725): replace with MaybeUninit::array_assume_init.
        let buffer = array.map(|a| unsafe { a.assume_init() });
        Ok(buffer)
    }

    /// Same as read, but returns a `T`.
    pub fn read_to_object<T: FromBytes>(&self, offset: u64) -> Result<T, Status> {
        let mut object = MaybeUninit::<T>::uninit();
        // SAFETY: T is FromBytes, which means that any bit pattern is valid. Interpreting
        // MaybeUninit<T> as [MaybeUninit<u8>] is safe because T's alignment requirements
        // are larger than, or equal to, u8's.
        //
        // TODO(https://fxbug.dev/42079727): Use MaybeUninit::as_bytes_mut once stable.
        let buffer = unsafe {
            std::slice::from_raw_parts_mut(
                object.as_mut_ptr().cast::<MaybeUninit<u8>>(),
                std::mem::size_of::<T>(),
            )
        };
        self.read_uninit(buffer, offset)?;

        // SAFETY: The call to `read_uninit` succeeded so we know that `object`
        // has been initialized.
        let object = unsafe { object.assume_init() };
        Ok(object)
    }

    /// Write to a virtual memory object.
    ///
    /// Wraps the `zx_vmo_write` syscall.
    pub fn write(&self, data: &[u8], offset: u64) -> Result<(), Status> {
        unsafe {
            let status = sys::zx_vmo_write(self.raw_handle(), data.as_ptr(), offset, data.len());
            ok(status)
        }
    }

    /// Efficiently transfers data from one VMO to another.
    pub fn transfer_data(
        &self,
        options: TransferDataOptions,
        offset: u64,
        length: u64,
        src_vmo: &Vmo,
        src_offset: u64,
    ) -> Result<(), Status> {
        let status = unsafe {
            sys::zx_vmo_transfer_data(
                self.raw_handle(),
                options.bits(),
                offset,
                length,
                src_vmo.raw_handle(),
                src_offset,
            )
        };
        ok(status)
    }

    /// Get the size of a virtual memory object.
    ///
    /// Wraps the `zx_vmo_get_size` syscall.
    pub fn get_size(&self) -> Result<u64, Status> {
        let mut size = 0;
        let status = unsafe { sys::zx_vmo_get_size(self.raw_handle(), &mut size) };
        ok(status).map(|()| size)
    }

    /// Attempt to change the size of a virtual memory object.
    ///
    /// Wraps the `zx_vmo_set_size` syscall.
    pub fn set_size(&self, size: u64) -> Result<(), Status> {
        let status = unsafe { sys::zx_vmo_set_size(self.raw_handle(), size) };
        ok(status)
    }

    /// Get the stream size of a virtual memory object.
    ///
    /// Wraps the `zx_vmo_get_stream_size` syscall.
    pub fn get_stream_size(&self) -> Result<u64, Status> {
        let mut size = 0;
        let status = unsafe { sys::zx_vmo_get_stream_size(self.raw_handle(), &mut size) };
        ok(status).map(|()| size)
    }

    /// Attempt to set the stream size of a virtual memory object.
    ///
    /// Wraps the `zx_vmo_set_stream_size` syscall.
    pub fn set_stream_size(&self, size: u64) -> Result<(), Status> {
        let status = unsafe { sys::zx_vmo_set_stream_size(self.raw_handle(), size) };
        ok(status)
    }

    /// Attempt to change the cache policy of a virtual memory object.
    ///
    /// Wraps the `zx_vmo_set_cache_policy` syscall.
    pub fn set_cache_policy(&self, cache_policy: CachePolicy) -> Result<(), Status> {
        let status =
            unsafe { sys::zx_vmo_set_cache_policy(self.raw_handle(), cache_policy as u32) };
        ok(status)
    }

    /// Perform an operation on a range of a virtual memory object.
    ///
    /// Wraps the
    /// [zx_vmo_op_range](https://fuchsia.dev/fuchsia-src/reference/syscalls/vmo_op_range.md)
    /// syscall.
    pub fn op_range(&self, op: VmoOp, offset: u64, size: u64) -> Result<(), Status> {
        let status = unsafe {
            sys::zx_vmo_op_range(self.raw_handle(), op.into_raw(), offset, size, ptr::null_mut(), 0)
        };
        ok(status)
    }

    /// Wraps the [zx_object_get_info](https://fuchsia.dev/fuchsia-src/reference/syscalls/object_get_info.md)
    /// syscall for the ZX_INFO_VMO topic.
    pub fn info(&self) -> Result<VmoInfo, Status> {
        Ok(VmoInfo::from(object_get_info_single::<VmoInfoQuery>(self.as_handle_ref())?))
    }

    /// Create a new virtual memory object that clones a range of this one.
    ///
    /// Wraps the
    /// [zx_vmo_create_child](https://fuchsia.dev/fuchsia-src/reference/syscalls/vmo_create_child.md)
    /// syscall.
    pub fn create_child(
        &self,
        opts: VmoChildOptions,
        offset: u64,
        size: u64,
    ) -> Result<Vmo, Status> {
        let mut out = 0;
        let status = unsafe {
            sys::zx_vmo_create_child(self.raw_handle(), opts.bits(), offset, size, &mut out)
        };
        ok(status)?;
        unsafe { Ok(Vmo::from(Handle::from_raw(out))) }
    }

    /// Replace a VMO, adding execute rights.
    ///
    /// Wraps the
    /// [zx_vmo_replace_as_executable](https://fuchsia.dev/fuchsia-src/reference/syscalls/vmo_replace_as_executable.md)
    /// syscall.
    pub fn replace_as_executable(self, vmex: &Resource) -> Result<Vmo, Status> {
        let mut out = 0;
        let status = unsafe {
            sys::zx_vmo_replace_as_executable(self.raw_handle(), vmex.raw_handle(), &mut out)
        };
        // zx_vmo_replace_as_executable always invalidates the passed in handle
        // so we need to forget 'self' without executing its drop which will attempt
        // to close the now-invalid handle value.
        std::mem::forget(self);
        ok(status)?;
        unsafe { Ok(Vmo::from(Handle::from_raw(out))) }
    }
}

bitflags! {
    /// Options that may be used when creating a `Vmo`.
    #[repr(transparent)]
    #[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
    pub struct VmoOptions: u32 {
        const RESIZABLE = sys::ZX_VMO_RESIZABLE;
        const TRAP_DIRTY = sys::ZX_VMO_TRAP_DIRTY;
        const UNBOUNDED = sys::ZX_VMO_UNBOUNDED;
    }
}

/// Flags that may be set when receiving info on a `Vmo`.
#[repr(transparent)]
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, FromBytes, Immutable)]
pub struct VmoInfoFlags(u32);

bitflags! {
    impl VmoInfoFlags : u32 {
        const PAGED = sys::ZX_INFO_VMO_TYPE_PAGED;
        const RESIZABLE = sys::ZX_INFO_VMO_RESIZABLE;
        const IS_COW_CLONE = sys::ZX_INFO_VMO_IS_COW_CLONE;
        const VIA_HANDLE = sys::ZX_INFO_VMO_VIA_HANDLE;
        const VIA_MAPPING = sys::ZX_INFO_VMO_VIA_MAPPING;
        const PAGER_BACKED = sys::ZX_INFO_VMO_PAGER_BACKED;
        const CONTIGUOUS = sys::ZX_INFO_VMO_CONTIGUOUS;
        const DISCARDABLE = sys::ZX_INFO_VMO_DISCARDABLE;
        const IMMUTABLE = sys::ZX_INFO_VMO_IMMUTABLE;
        const VIA_IOB_HANDLE = sys::ZX_INFO_VMO_VIA_IOB_HANDLE;
    }
}

bitflags! {
    /// Options that may be used when creating a `Vmo` child.
    #[repr(transparent)]
    #[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
    pub struct VmoChildOptions: u32 {
        const SNAPSHOT = sys::ZX_VMO_CHILD_SNAPSHOT;
        const SNAPSHOT_AT_LEAST_ON_WRITE = sys::ZX_VMO_CHILD_SNAPSHOT_AT_LEAST_ON_WRITE;
        const RESIZABLE = sys::ZX_VMO_CHILD_RESIZABLE;
        const SLICE = sys::ZX_VMO_CHILD_SLICE;
        const NO_WRITE = sys::ZX_VMO_CHILD_NO_WRITE;
        const REFERENCE = sys::ZX_VMO_CHILD_REFERENCE;
        const SNAPSHOT_MODIFIED = sys::ZX_VMO_CHILD_SNAPSHOT_MODIFIED;
    }
}

bitflags! {
    /// Options that may be used when transferring data between VMOs.
    #[repr(transparent)]
    #[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
    pub struct TransferDataOptions: u32 {
    }
}

/// VM Object opcodes
#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
#[repr(transparent)]
pub struct VmoOp(u32);
impl VmoOp {
    pub fn from_raw(raw: u32) -> VmoOp {
        VmoOp(raw)
    }
    pub fn into_raw(self) -> u32 {
        self.0
    }
}

// VM Object Cache Policies.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[repr(u32)]
pub enum CachePolicy {
    Cached = sys::ZX_CACHE_POLICY_CACHED,
    UnCached = sys::ZX_CACHE_POLICY_UNCACHED,
    UnCachedDevice = sys::ZX_CACHE_POLICY_UNCACHED_DEVICE,
    WriteCombining = sys::ZX_CACHE_POLICY_WRITE_COMBINING,
    Unknown = u32::MAX,
}

impl From<u32> for CachePolicy {
    fn from(v: u32) -> Self {
        match v {
            sys::ZX_CACHE_POLICY_CACHED => CachePolicy::Cached,
            sys::ZX_CACHE_POLICY_UNCACHED => CachePolicy::UnCached,
            sys::ZX_CACHE_POLICY_UNCACHED_DEVICE => CachePolicy::UnCachedDevice,
            sys::ZX_CACHE_POLICY_WRITE_COMBINING => CachePolicy::WriteCombining,
            _ => CachePolicy::Unknown,
        }
    }
}

impl Into<u32> for CachePolicy {
    fn into(self) -> u32 {
        match self {
            CachePolicy::Cached => sys::ZX_CACHE_POLICY_CACHED,
            CachePolicy::UnCached => sys::ZX_CACHE_POLICY_UNCACHED,
            CachePolicy::UnCachedDevice => sys::ZX_CACHE_POLICY_UNCACHED_DEVICE,
            CachePolicy::WriteCombining => sys::ZX_CACHE_POLICY_WRITE_COMBINING,
            CachePolicy::Unknown => u32::MAX,
        }
    }
}

assoc_values!(VmoOp, [
    COMMIT =           sys::ZX_VMO_OP_COMMIT;
    DECOMMIT =         sys::ZX_VMO_OP_DECOMMIT;
    LOCK =             sys::ZX_VMO_OP_LOCK;
    UNLOCK =           sys::ZX_VMO_OP_UNLOCK;
    CACHE_SYNC =       sys::ZX_VMO_OP_CACHE_SYNC;
    CACHE_INVALIDATE = sys::ZX_VMO_OP_CACHE_INVALIDATE;
    CACHE_CLEAN =      sys::ZX_VMO_OP_CACHE_CLEAN;
    CACHE_CLEAN_INVALIDATE = sys::ZX_VMO_OP_CACHE_CLEAN_INVALIDATE;
    ZERO =             sys::ZX_VMO_OP_ZERO;
    TRY_LOCK =         sys::ZX_VMO_OP_TRY_LOCK;
    DONT_NEED =        sys::ZX_VMO_OP_DONT_NEED;
    ALWAYS_NEED =      sys::ZX_VMO_OP_ALWAYS_NEED;
    PREFETCH =         sys::ZX_VMO_OP_PREFETCH;
]);

unsafe_handle_properties!(object: Vmo,
    props: [
        {query_ty: VMO_CONTENT_SIZE, tag: VmoContentSizeTag, prop_ty: u64, get:get_content_size, set: set_content_size},
    ]
);

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{Iommu, IommuDescDummy, ObjectType};
    use fidl_fuchsia_kernel as fkernel;
    use fuchsia_component::client::connect_channel_to_protocol;
    use test_case::test_case;
    use zerocopy::KnownLayout;

    #[test]
    fn vmo_create_contiguous_invalid_handle() {
        let status = Vmo::create_contiguous(&Bti::from(Handle::invalid()), 4096, 0);
        assert_eq!(status, Err(Status::BAD_HANDLE));
    }

    #[test]
    fn vmo_create_contiguous() {
        use zx::{Channel, HandleBased, MonotonicInstant};
        let (client_end, server_end) = Channel::create();
        connect_channel_to_protocol::<fkernel::IommuResourceMarker>(server_end).unwrap();
        let service = fkernel::IommuResourceSynchronousProxy::new(client_end);
        let resource =
            service.get(MonotonicInstant::INFINITE).expect("couldn't get iommu resource");
        // This test and fuchsia-zircon are different crates, so we need
        // to use from_raw to convert between the zx handle and this test handle.
        // See https://fxbug.dev/42173139 for details.
        let resource = unsafe { Resource::from(Handle::from_raw(resource.into_raw())) };
        let iommu = Iommu::create_dummy(&resource, IommuDescDummy::default()).unwrap();
        let bti = Bti::create(&iommu, 0).unwrap();

        let vmo = Vmo::create_contiguous(&bti, 8192, 0).unwrap();
        let info = vmo.as_handle_ref().basic_info().unwrap();
        assert_eq!(info.object_type, ObjectType::VMO);

        let vmo_info = vmo.info().unwrap();
        assert!(vmo_info.flags.contains(VmoInfoFlags::CONTIGUOUS));
    }

    #[test]
    fn vmo_get_size() {
        let size = 16 * 1024 * 1024;
        let vmo = Vmo::create(size).unwrap();
        assert_eq!(size, vmo.get_size().unwrap());
    }

    #[test]
    fn vmo_set_size() {
        // Use a multiple of page size to match VMOs page aligned size
        let start_size = 4096;
        let vmo = Vmo::create_with_opts(VmoOptions::RESIZABLE, start_size).unwrap();
        assert_eq!(start_size, vmo.get_size().unwrap());

        // Change the size and make sure the new size is reported
        let new_size = 8192;
        assert!(vmo.set_size(new_size).is_ok());
        assert_eq!(new_size, vmo.get_size().unwrap());
    }

    #[test]
    fn vmo_get_info_default() {
        let size = 4096;
        let vmo = Vmo::create(size).unwrap();
        let info = vmo.info().unwrap();
        assert!(!info.flags.contains(VmoInfoFlags::PAGER_BACKED));
        assert!(info.flags.contains(VmoInfoFlags::PAGED));
    }

    #[test]
    fn vmo_get_child_info() {
        let size = 4096;
        let vmo = Vmo::create(size).unwrap();
        let info = vmo.info().unwrap();
        assert!(!info.flags.contains(VmoInfoFlags::IS_COW_CLONE));

        let child = vmo.create_child(VmoChildOptions::SNAPSHOT, 0, 512).unwrap();
        let info = child.info().unwrap();
        assert!(info.flags.contains(VmoInfoFlags::IS_COW_CLONE));

        let child = vmo.create_child(VmoChildOptions::SNAPSHOT_AT_LEAST_ON_WRITE, 0, 512).unwrap();
        let info = child.info().unwrap();
        assert!(info.flags.contains(VmoInfoFlags::IS_COW_CLONE));

        let child = vmo.create_child(VmoChildOptions::SLICE, 0, 512).unwrap();
        let info = child.info().unwrap();
        assert!(!info.flags.contains(VmoInfoFlags::IS_COW_CLONE));
    }

    #[test]
    fn vmo_set_size_fails_on_non_resizable() {
        let size = 4096;
        let vmo = Vmo::create(size).unwrap();
        assert_eq!(size, vmo.get_size().unwrap());

        let new_size = 8192;
        assert_eq!(Err(Status::UNAVAILABLE), vmo.set_size(new_size));
        assert_eq!(size, vmo.get_size().unwrap());
    }

    #[test_case(0)]
    #[test_case(1)]
    fn vmo_read_to_array(read_offset: usize) {
        const ACTUAL_SIZE: usize = 5;
        const ACTUAL: [u8; ACTUAL_SIZE] = [1, 2, 3, 4, 5];
        let vmo = Vmo::create(ACTUAL.len() as u64).unwrap();
        vmo.write(&ACTUAL, 0).unwrap();
        let read_len = ACTUAL_SIZE - read_offset;
        assert_eq!(
            &vmo.read_to_array::<u8, ACTUAL_SIZE>(read_offset as u64).unwrap()[..read_len],
            &ACTUAL[read_offset..]
        );
    }

    #[test_case(0)]
    #[test_case(1)]
    fn vmo_read_to_vec(read_offset: usize) {
        const ACTUAL_SIZE: usize = 4;
        const ACTUAL: [u8; ACTUAL_SIZE] = [6, 7, 8, 9];
        let vmo = Vmo::create(ACTUAL.len() as u64).unwrap();
        vmo.write(&ACTUAL, 0).unwrap();
        let read_len = ACTUAL_SIZE - read_offset;
        assert_eq!(
            &vmo.read_to_vec(read_offset as u64, read_len as u64).unwrap(),
            &ACTUAL[read_offset..]
        );
    }

    #[test_case(0)]
    #[test_case(1)]
    fn vmo_read_to_object(read_offset: usize) {
        #[repr(C)]
        #[derive(Debug, Eq, KnownLayout, FromBytes, PartialEq)]
        struct Object {
            a: u8,
            b: u8,
        }

        const ACTUAL_SIZE: usize = std::mem::size_of::<Object>();
        const ACTUAL: [u8; ACTUAL_SIZE + 1] = [10, 11, 12];
        let vmo = Vmo::create(ACTUAL.len() as u64).unwrap();
        vmo.write(&ACTUAL, 0).unwrap();
        assert_eq!(
            vmo.read_to_object::<Object>(read_offset as u64).unwrap(),
            Object { a: ACTUAL[read_offset], b: ACTUAL[1 + read_offset] }
        );
    }

    #[test]
    fn vmo_read_write() {
        let mut vec1 = vec![0; 16];
        let vmo = Vmo::create(4096 as u64).unwrap();
        assert!(vmo.write(b"abcdef", 0).is_ok());
        assert!(vmo.read(&mut vec1, 0).is_ok());
        assert_eq!(b"abcdef", &vec1[0..6]);
        assert!(vmo.write(b"123", 2).is_ok());
        assert!(vmo.read(&mut vec1, 0).is_ok());
        assert_eq!(b"ab123f", &vec1[0..6]);

        // Read one byte into the vmo.
        assert!(vmo.read(&mut vec1, 1).is_ok());
        assert_eq!(b"b123f", &vec1[0..5]);

        assert_eq!(&vmo.read_to_vec(0, 6).expect("read_to_vec failed"), b"ab123f");
    }

    #[test]
    fn vmo_child_snapshot() {
        let size = 4096 * 2;
        let vmo = Vmo::create(size).unwrap();

        vmo.write(&[1; 4096], 0).unwrap();
        vmo.write(&[2; 4096], 4096).unwrap();

        let child = vmo.create_child(VmoChildOptions::SNAPSHOT, 0, size).unwrap();

        child.write(&[3; 4096], 0).unwrap();

        vmo.write(&[4; 4096], 0).unwrap();
        vmo.write(&[5; 4096], 4096).unwrap();

        let mut page = [0; 4096];

        // SNAPSHOT child observes no further changes to parent VMO.
        child.read(&mut page[..], 0).unwrap();
        assert_eq!(&page[..], &[3; 4096][..]);
        child.read(&mut page[..], 4096).unwrap();
        assert_eq!(&page[..], &[2; 4096][..]);
    }

    #[test]
    fn vmo_child_snapshot_at_least_on_write() {
        let size = 4096 * 2;
        let vmo = Vmo::create(size).unwrap();

        vmo.write(&[1; 4096], 0).unwrap();
        vmo.write(&[2; 4096], 4096).unwrap();

        let child = vmo.create_child(VmoChildOptions::SNAPSHOT_AT_LEAST_ON_WRITE, 0, size).unwrap();

        child.write(&[3; 4096], 0).unwrap();

        vmo.write(&[4; 4096], 0).unwrap();
        vmo.write(&[5; 4096], 4096).unwrap();

        let mut page = [0; 4096];

        // SNAPSHOT_AT_LEAST_ON_WRITE child may observe changes to pages it has not yet written to,
        // but such behavior is not guaranteed.
        child.read(&mut page[..], 0).unwrap();
        assert_eq!(&page[..], &[3; 4096][..]);
        child.read(&mut page[..], 4096).unwrap();
        assert!(
            &page[..] == &[2; 4096][..] || &page[..] == &[5; 4096][..],
            "expected page of 2 or 5, got {:?}",
            &page[..]
        );
    }

    #[test]
    fn vmo_child_no_write() {
        let size = 4096;
        let vmo = Vmo::create(size).unwrap();
        vmo.write(&[1; 4096], 0).unwrap();

        let child =
            vmo.create_child(VmoChildOptions::SLICE | VmoChildOptions::NO_WRITE, 0, size).unwrap();
        assert_eq!(child.write(&[3; 4096], 0), Err(Status::ACCESS_DENIED));
    }

    #[test]
    fn vmo_op_range_unsupported() {
        let vmo = Vmo::create(12).unwrap();
        assert_eq!(vmo.op_range(VmoOp::LOCK, 0, 1), Err(Status::NOT_SUPPORTED));
        assert_eq!(vmo.op_range(VmoOp::UNLOCK, 0, 1), Err(Status::NOT_SUPPORTED));
    }

    #[test]
    fn vmo_cache() {
        let vmo = Vmo::create(12).unwrap();

        // Cache operations should all succeed.
        assert_eq!(vmo.op_range(VmoOp::CACHE_SYNC, 0, 12), Ok(()));
        assert_eq!(vmo.op_range(VmoOp::CACHE_INVALIDATE, 0, 12), Ok(()));
        assert_eq!(vmo.op_range(VmoOp::CACHE_CLEAN, 0, 12), Ok(()));
        assert_eq!(vmo.op_range(VmoOp::CACHE_CLEAN_INVALIDATE, 0, 12), Ok(()));
    }

    #[test]
    fn vmo_create_child() {
        let original = Vmo::create(16).unwrap();
        assert!(original.write(b"one", 0).is_ok());

        // Clone the VMO, and make sure it contains what we expect.
        let clone =
            original.create_child(VmoChildOptions::SNAPSHOT_AT_LEAST_ON_WRITE, 0, 16).unwrap();
        let mut read_buffer = vec![0; 16];
        assert!(clone.read(&mut read_buffer, 0).is_ok());
        assert_eq!(&read_buffer[0..3], b"one");

        // Writing to the original will not affect the clone.
        assert!(original.write(b"two", 0).is_ok());
        assert!(original.read(&mut read_buffer, 0).is_ok());
        assert_eq!(&read_buffer[0..3], b"two");
        assert!(clone.read(&mut read_buffer, 0).is_ok());
        assert_eq!(&read_buffer[0..3], b"one");

        // However, writing to the clone will not affect the original.
        assert!(clone.write(b"three", 0).is_ok());
        assert!(original.read(&mut read_buffer, 0).is_ok());
        assert_eq!(&read_buffer[0..3], b"two");
        assert!(clone.read(&mut read_buffer, 0).is_ok());
        assert_eq!(&read_buffer[0..5], b"three");
    }

    #[test]
    fn vmo_replace_as_executeable() {
        use zx::{Channel, HandleBased, MonotonicInstant};

        let vmo = Vmo::create(16).unwrap();

        let info = vmo.as_handle_ref().basic_info().unwrap();
        assert!(!info.rights.contains(Rights::EXECUTE));

        let (client_end, server_end) = Channel::create();
        connect_channel_to_protocol::<fkernel::VmexResourceMarker>(server_end).unwrap();
        let service = fkernel::VmexResourceSynchronousProxy::new(client_end);
        let resource = service.get(MonotonicInstant::INFINITE).expect("couldn't get vmex resource");
        let resource = unsafe { crate::Resource::from(Handle::from_raw(resource.into_raw())) };

        let exec_vmo = vmo.replace_as_executable(&resource).unwrap();
        let info = exec_vmo.as_handle_ref().basic_info().unwrap();
        assert!(info.rights.contains(Rights::EXECUTE));
    }

    #[test]
    fn vmo_content_size() {
        let start_size = 1024;
        let vmo = Vmo::create_with_opts(VmoOptions::RESIZABLE, start_size).unwrap();
        assert_eq!(vmo.get_content_size().unwrap(), start_size);
        vmo.set_content_size(&0).unwrap();
        assert_eq!(vmo.get_content_size().unwrap(), 0);

        // write should not change content size.
        let content = b"abcdef";
        assert!(vmo.write(content, 0).is_ok());
        assert_eq!(vmo.get_content_size().unwrap(), 0);
    }

    #[test]
    fn vmo_zero() {
        let vmo = Vmo::create(16).unwrap();
        let content = b"0123456789abcdef";
        assert!(vmo.write(content, 0).is_ok());
        let mut buf = vec![0u8; 16];
        assert!(vmo.read(&mut buf[..], 0).is_ok());
        assert_eq!(&buf[..], content);

        assert!(vmo.op_range(VmoOp::ZERO, 0, 16).is_ok());
        assert!(vmo.read(&mut buf[..], 0).is_ok());
        assert_eq!(&buf[..], &[0u8; 16]);
    }

    #[test]
    fn vmo_stream_size() {
        let start_size = 1300;
        let vmo = Vmo::create_with_opts(VmoOptions::UNBOUNDED, start_size).unwrap();
        assert_eq!(vmo.get_stream_size().unwrap(), start_size);
        vmo.set_stream_size(0).unwrap();
        assert_eq!(vmo.get_stream_size().unwrap(), 0);

        // write should not change content size.
        let content = b"abcdef";
        assert!(vmo.write(content, 0).is_ok());
        assert_eq!(vmo.get_stream_size().unwrap(), 0);

        // stream size can also grow.
        let mut buf = vec![1; 6];
        vmo.set_stream_size(6).unwrap();
        assert!(vmo.read(&mut buf, 0).is_ok());
        // growing will zero new bytes.
        assert_eq!(buf, vec![0; 6]);
    }
}