num_bigint/biguint/
multiplication.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
use super::addition::{__add2, add2};
use super::subtraction::sub2;
#[cfg(not(u64_digit))]
use super::u32_from_u128;
use super::{biguint_from_vec, cmp_slice, BigUint, IntDigits};

use crate::big_digit::{self, BigDigit, DoubleBigDigit};
use crate::Sign::{self, Minus, NoSign, Plus};
use crate::{BigInt, UsizePromotion};

use core::cmp::Ordering;
use core::iter::Product;
use core::ops::{Mul, MulAssign};
use num_traits::{CheckedMul, FromPrimitive, One, Zero};

#[inline]
pub(super) fn mac_with_carry(
    a: BigDigit,
    b: BigDigit,
    c: BigDigit,
    acc: &mut DoubleBigDigit,
) -> BigDigit {
    *acc += DoubleBigDigit::from(a);
    *acc += DoubleBigDigit::from(b) * DoubleBigDigit::from(c);
    let lo = *acc as BigDigit;
    *acc >>= big_digit::BITS;
    lo
}

#[inline]
fn mul_with_carry(a: BigDigit, b: BigDigit, acc: &mut DoubleBigDigit) -> BigDigit {
    *acc += DoubleBigDigit::from(a) * DoubleBigDigit::from(b);
    let lo = *acc as BigDigit;
    *acc >>= big_digit::BITS;
    lo
}

/// Three argument multiply accumulate:
/// acc += b * c
fn mac_digit(acc: &mut [BigDigit], b: &[BigDigit], c: BigDigit) {
    if c == 0 {
        return;
    }

    let mut carry = 0;
    let (a_lo, a_hi) = acc.split_at_mut(b.len());

    for (a, &b) in a_lo.iter_mut().zip(b) {
        *a = mac_with_carry(*a, b, c, &mut carry);
    }

    let (carry_hi, carry_lo) = big_digit::from_doublebigdigit(carry);

    let final_carry = if carry_hi == 0 {
        __add2(a_hi, &[carry_lo])
    } else {
        __add2(a_hi, &[carry_hi, carry_lo])
    };
    assert_eq!(final_carry, 0, "carry overflow during multiplication!");
}

fn bigint_from_slice(slice: &[BigDigit]) -> BigInt {
    BigInt::from(biguint_from_vec(slice.to_vec()))
}

/// Three argument multiply accumulate:
/// acc += b * c
#[allow(clippy::many_single_char_names)]
fn mac3(mut acc: &mut [BigDigit], mut b: &[BigDigit], mut c: &[BigDigit]) {
    // Least-significant zeros have no effect on the output.
    if let Some(&0) = b.first() {
        if let Some(nz) = b.iter().position(|&d| d != 0) {
            b = &b[nz..];
            acc = &mut acc[nz..];
        } else {
            return;
        }
    }
    if let Some(&0) = c.first() {
        if let Some(nz) = c.iter().position(|&d| d != 0) {
            c = &c[nz..];
            acc = &mut acc[nz..];
        } else {
            return;
        }
    }

    let acc = acc;
    let (x, y) = if b.len() < c.len() { (b, c) } else { (c, b) };

    // We use three algorithms for different input sizes.
    //
    // - For small inputs, long multiplication is fastest.
    // - Next we use Karatsuba multiplication (Toom-2), which we have optimized
    //   to avoid unnecessary allocations for intermediate values.
    // - For the largest inputs we use Toom-3, which better optimizes the
    //   number of operations, but uses more temporary allocations.
    //
    // The thresholds are somewhat arbitrary, chosen by evaluating the results
    // of `cargo bench --bench bigint multiply`.

    if x.len() <= 32 {
        // Long multiplication:
        for (i, xi) in x.iter().enumerate() {
            mac_digit(&mut acc[i..], y, *xi);
        }
    } else if x.len() <= 256 {
        // Karatsuba multiplication:
        //
        // The idea is that we break x and y up into two smaller numbers that each have about half
        // as many digits, like so (note that multiplying by b is just a shift):
        //
        // x = x0 + x1 * b
        // y = y0 + y1 * b
        //
        // With some algebra, we can compute x * y with three smaller products, where the inputs to
        // each of the smaller products have only about half as many digits as x and y:
        //
        // x * y = (x0 + x1 * b) * (y0 + y1 * b)
        //
        // x * y = x0 * y0
        //       + x0 * y1 * b
        //       + x1 * y0 * b
        //       + x1 * y1 * b^2
        //
        // Let p0 = x0 * y0 and p2 = x1 * y1:
        //
        // x * y = p0
        //       + (x0 * y1 + x1 * y0) * b
        //       + p2 * b^2
        //
        // The real trick is that middle term:
        //
        //         x0 * y1 + x1 * y0
        //
        //       = x0 * y1 + x1 * y0 - p0 + p0 - p2 + p2
        //
        //       = x0 * y1 + x1 * y0 - x0 * y0 - x1 * y1 + p0 + p2
        //
        // Now we complete the square:
        //
        //       = -(x0 * y0 - x0 * y1 - x1 * y0 + x1 * y1) + p0 + p2
        //
        //       = -((x1 - x0) * (y1 - y0)) + p0 + p2
        //
        // Let p1 = (x1 - x0) * (y1 - y0), and substitute back into our original formula:
        //
        // x * y = p0
        //       + (p0 + p2 - p1) * b
        //       + p2 * b^2
        //
        // Where the three intermediate products are:
        //
        // p0 = x0 * y0
        // p1 = (x1 - x0) * (y1 - y0)
        // p2 = x1 * y1
        //
        // In doing the computation, we take great care to avoid unnecessary temporary variables
        // (since creating a BigUint requires a heap allocation): thus, we rearrange the formula a
        // bit so we can use the same temporary variable for all the intermediate products:
        //
        // x * y = p2 * b^2 + p2 * b
        //       + p0 * b + p0
        //       - p1 * b
        //
        // The other trick we use is instead of doing explicit shifts, we slice acc at the
        // appropriate offset when doing the add.

        // When x is smaller than y, it's significantly faster to pick b such that x is split in
        // half, not y:
        let b = x.len() / 2;
        let (x0, x1) = x.split_at(b);
        let (y0, y1) = y.split_at(b);

        // We reuse the same BigUint for all the intermediate multiplies and have to size p
        // appropriately here: x1.len() >= x0.len and y1.len() >= y0.len():
        let len = x1.len() + y1.len() + 1;
        let mut p = BigUint { data: vec![0; len] };

        // p2 = x1 * y1
        mac3(&mut p.data, x1, y1);

        // Not required, but the adds go faster if we drop any unneeded 0s from the end:
        p.normalize();

        add2(&mut acc[b..], &p.data);
        add2(&mut acc[b * 2..], &p.data);

        // Zero out p before the next multiply:
        p.data.truncate(0);
        p.data.resize(len, 0);

        // p0 = x0 * y0
        mac3(&mut p.data, x0, y0);
        p.normalize();

        add2(acc, &p.data);
        add2(&mut acc[b..], &p.data);

        // p1 = (x1 - x0) * (y1 - y0)
        // We do this one last, since it may be negative and acc can't ever be negative:
        let (j0_sign, j0) = sub_sign(x1, x0);
        let (j1_sign, j1) = sub_sign(y1, y0);

        match j0_sign * j1_sign {
            Plus => {
                p.data.truncate(0);
                p.data.resize(len, 0);

                mac3(&mut p.data, &j0.data, &j1.data);
                p.normalize();

                sub2(&mut acc[b..], &p.data);
            }
            Minus => {
                mac3(&mut acc[b..], &j0.data, &j1.data);
            }
            NoSign => (),
        }
    } else {
        // Toom-3 multiplication:
        //
        // Toom-3 is like Karatsuba above, but dividing the inputs into three parts.
        // Both are instances of Toom-Cook, using `k=3` and `k=2` respectively.
        //
        // The general idea is to treat the large integers digits as
        // polynomials of a certain degree and determine the coefficients/digits
        // of the product of the two via interpolation of the polynomial product.
        let i = y.len() / 3 + 1;

        let x0_len = Ord::min(x.len(), i);
        let x1_len = Ord::min(x.len() - x0_len, i);

        let y0_len = i;
        let y1_len = Ord::min(y.len() - y0_len, i);

        // Break x and y into three parts, representating an order two polynomial.
        // t is chosen to be the size of a digit so we can use faster shifts
        // in place of multiplications.
        //
        // x(t) = x2*t^2 + x1*t + x0
        let x0 = bigint_from_slice(&x[..x0_len]);
        let x1 = bigint_from_slice(&x[x0_len..x0_len + x1_len]);
        let x2 = bigint_from_slice(&x[x0_len + x1_len..]);

        // y(t) = y2*t^2 + y1*t + y0
        let y0 = bigint_from_slice(&y[..y0_len]);
        let y1 = bigint_from_slice(&y[y0_len..y0_len + y1_len]);
        let y2 = bigint_from_slice(&y[y0_len + y1_len..]);

        // Let w(t) = x(t) * y(t)
        //
        // This gives us the following order-4 polynomial.
        //
        // w(t) = w4*t^4 + w3*t^3 + w2*t^2 + w1*t + w0
        //
        // We need to find the coefficients w4, w3, w2, w1 and w0. Instead
        // of simply multiplying the x and y in total, we can evaluate w
        // at 5 points. An n-degree polynomial is uniquely identified by (n + 1)
        // points.
        //
        // It is arbitrary as to what points we evaluate w at but we use the
        // following.
        //
        // w(t) at t = 0, 1, -1, -2 and inf
        //
        // The values for w(t) in terms of x(t)*y(t) at these points are:
        //
        // let a = w(0)   = x0 * y0
        // let b = w(1)   = (x2 + x1 + x0) * (y2 + y1 + y0)
        // let c = w(-1)  = (x2 - x1 + x0) * (y2 - y1 + y0)
        // let d = w(-2)  = (4*x2 - 2*x1 + x0) * (4*y2 - 2*y1 + y0)
        // let e = w(inf) = x2 * y2 as t -> inf

        // x0 + x2, avoiding temporaries
        let p = &x0 + &x2;

        // y0 + y2, avoiding temporaries
        let q = &y0 + &y2;

        // x2 - x1 + x0, avoiding temporaries
        let p2 = &p - &x1;

        // y2 - y1 + y0, avoiding temporaries
        let q2 = &q - &y1;

        // w(0)
        let r0 = &x0 * &y0;

        // w(inf)
        let r4 = &x2 * &y2;

        // w(1)
        let r1 = (p + x1) * (q + y1);

        // w(-1)
        let r2 = &p2 * &q2;

        // w(-2)
        let r3 = ((p2 + x2) * 2 - x0) * ((q2 + y2) * 2 - y0);

        // Evaluating these points gives us the following system of linear equations.
        //
        //  0  0  0  0  1 | a
        //  1  1  1  1  1 | b
        //  1 -1  1 -1  1 | c
        // 16 -8  4 -2  1 | d
        //  1  0  0  0  0 | e
        //
        // The solved equation (after gaussian elimination or similar)
        // in terms of its coefficients:
        //
        // w0 = w(0)
        // w1 = w(0)/2 + w(1)/3 - w(-1) + w(2)/6 - 2*w(inf)
        // w2 = -w(0) + w(1)/2 + w(-1)/2 - w(inf)
        // w3 = -w(0)/2 + w(1)/6 + w(-1)/2 - w(1)/6
        // w4 = w(inf)
        //
        // This particular sequence is given by Bodrato and is an interpolation
        // of the above equations.
        let mut comp3: BigInt = (r3 - &r1) / 3u32;
        let mut comp1: BigInt = (r1 - &r2) >> 1;
        let mut comp2: BigInt = r2 - &r0;
        comp3 = ((&comp2 - comp3) >> 1) + (&r4 << 1);
        comp2 += &comp1 - &r4;
        comp1 -= &comp3;

        // Recomposition. The coefficients of the polynomial are now known.
        //
        // Evaluate at w(t) where t is our given base to get the result.
        //
        //     let bits = u64::from(big_digit::BITS) * i as u64;
        //     let result = r0
        //         + (comp1 << bits)
        //         + (comp2 << (2 * bits))
        //         + (comp3 << (3 * bits))
        //         + (r4 << (4 * bits));
        //     let result_pos = result.to_biguint().unwrap();
        //     add2(&mut acc[..], &result_pos.data);
        //
        // But with less intermediate copying:
        for (j, result) in [&r0, &comp1, &comp2, &comp3, &r4].iter().enumerate().rev() {
            match result.sign() {
                Plus => add2(&mut acc[i * j..], result.digits()),
                Minus => sub2(&mut acc[i * j..], result.digits()),
                NoSign => {}
            }
        }
    }
}

fn mul3(x: &[BigDigit], y: &[BigDigit]) -> BigUint {
    let len = x.len() + y.len() + 1;
    let mut prod = BigUint { data: vec![0; len] };

    mac3(&mut prod.data, x, y);
    prod.normalized()
}

fn scalar_mul(a: &mut BigUint, b: BigDigit) {
    match b {
        0 => a.set_zero(),
        1 => {}
        _ => {
            if b.is_power_of_two() {
                *a <<= b.trailing_zeros();
            } else {
                let mut carry = 0;
                for a in a.data.iter_mut() {
                    *a = mul_with_carry(*a, b, &mut carry);
                }
                if carry != 0 {
                    a.data.push(carry as BigDigit);
                }
            }
        }
    }
}

fn sub_sign(mut a: &[BigDigit], mut b: &[BigDigit]) -> (Sign, BigUint) {
    // Normalize:
    if let Some(&0) = a.last() {
        a = &a[..a.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)];
    }
    if let Some(&0) = b.last() {
        b = &b[..b.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)];
    }

    match cmp_slice(a, b) {
        Ordering::Greater => {
            let mut a = a.to_vec();
            sub2(&mut a, b);
            (Plus, biguint_from_vec(a))
        }
        Ordering::Less => {
            let mut b = b.to_vec();
            sub2(&mut b, a);
            (Minus, biguint_from_vec(b))
        }
        Ordering::Equal => (NoSign, Zero::zero()),
    }
}

macro_rules! impl_mul {
    ($(impl<$($a:lifetime),*> Mul<$Other:ty> for $Self:ty;)*) => {$(
        impl<$($a),*> Mul<$Other> for $Self {
            type Output = BigUint;

            #[inline]
            fn mul(self, other: $Other) -> BigUint {
                match (&*self.data, &*other.data) {
                    // multiply by zero
                    (&[], _) | (_, &[]) => BigUint::zero(),
                    // multiply by a scalar
                    (_, &[digit]) => self * digit,
                    (&[digit], _) => other * digit,
                    // full multiplication
                    (x, y) => mul3(x, y),
                }
            }
        }
    )*}
}
impl_mul! {
    impl<> Mul<BigUint> for BigUint;
    impl<'b> Mul<&'b BigUint> for BigUint;
    impl<'a> Mul<BigUint> for &'a BigUint;
    impl<'a, 'b> Mul<&'b BigUint> for &'a BigUint;
}

macro_rules! impl_mul_assign {
    ($(impl<$($a:lifetime),*> MulAssign<$Other:ty> for BigUint;)*) => {$(
        impl<$($a),*> MulAssign<$Other> for BigUint {
            #[inline]
            fn mul_assign(&mut self, other: $Other) {
                match (&*self.data, &*other.data) {
                    // multiply by zero
                    (&[], _) => {},
                    (_, &[]) => self.set_zero(),
                    // multiply by a scalar
                    (_, &[digit]) => *self *= digit,
                    (&[digit], _) => *self = other * digit,
                    // full multiplication
                    (x, y) => *self = mul3(x, y),
                }
            }
        }
    )*}
}
impl_mul_assign! {
    impl<> MulAssign<BigUint> for BigUint;
    impl<'a> MulAssign<&'a BigUint> for BigUint;
}

promote_unsigned_scalars!(impl Mul for BigUint, mul);
promote_unsigned_scalars_assign!(impl MulAssign for BigUint, mul_assign);
forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u32> for BigUint, mul);
forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u64> for BigUint, mul);
forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u128> for BigUint, mul);

impl Mul<u32> for BigUint {
    type Output = BigUint;

    #[inline]
    fn mul(mut self, other: u32) -> BigUint {
        self *= other;
        self
    }
}
impl MulAssign<u32> for BigUint {
    #[inline]
    fn mul_assign(&mut self, other: u32) {
        scalar_mul(self, other as BigDigit);
    }
}

impl Mul<u64> for BigUint {
    type Output = BigUint;

    #[inline]
    fn mul(mut self, other: u64) -> BigUint {
        self *= other;
        self
    }
}
impl MulAssign<u64> for BigUint {
    #[cfg(not(u64_digit))]
    #[inline]
    fn mul_assign(&mut self, other: u64) {
        if let Some(other) = BigDigit::from_u64(other) {
            scalar_mul(self, other);
        } else {
            let (hi, lo) = big_digit::from_doublebigdigit(other);
            *self = mul3(&self.data, &[lo, hi]);
        }
    }

    #[cfg(u64_digit)]
    #[inline]
    fn mul_assign(&mut self, other: u64) {
        scalar_mul(self, other);
    }
}

impl Mul<u128> for BigUint {
    type Output = BigUint;

    #[inline]
    fn mul(mut self, other: u128) -> BigUint {
        self *= other;
        self
    }
}

impl MulAssign<u128> for BigUint {
    #[cfg(not(u64_digit))]
    #[inline]
    fn mul_assign(&mut self, other: u128) {
        if let Some(other) = BigDigit::from_u128(other) {
            scalar_mul(self, other);
        } else {
            *self = match u32_from_u128(other) {
                (0, 0, c, d) => mul3(&self.data, &[d, c]),
                (0, b, c, d) => mul3(&self.data, &[d, c, b]),
                (a, b, c, d) => mul3(&self.data, &[d, c, b, a]),
            };
        }
    }

    #[cfg(u64_digit)]
    #[inline]
    fn mul_assign(&mut self, other: u128) {
        if let Some(other) = BigDigit::from_u128(other) {
            scalar_mul(self, other);
        } else {
            let (hi, lo) = big_digit::from_doublebigdigit(other);
            *self = mul3(&self.data, &[lo, hi]);
        }
    }
}

impl CheckedMul for BigUint {
    #[inline]
    fn checked_mul(&self, v: &BigUint) -> Option<BigUint> {
        Some(self.mul(v))
    }
}

impl_product_iter_type!(BigUint);

#[test]
fn test_sub_sign() {
    use crate::BigInt;
    use num_traits::Num;

    fn sub_sign_i(a: &[BigDigit], b: &[BigDigit]) -> BigInt {
        let (sign, val) = sub_sign(a, b);
        BigInt::from_biguint(sign, val)
    }

    let a = BigUint::from_str_radix("265252859812191058636308480000000", 10).unwrap();
    let b = BigUint::from_str_radix("26525285981219105863630848000000", 10).unwrap();
    let a_i = BigInt::from(a.clone());
    let b_i = BigInt::from(b.clone());

    assert_eq!(sub_sign_i(&a.data, &b.data), &a_i - &b_i);
    assert_eq!(sub_sign_i(&b.data, &a.data), &b_i - &a_i);
}