zerocopy/wrappers.rs
1// Copyright 2023 The Fuchsia Authors
2//
3// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6// This file may not be copied, modified, or distributed except according to
7// those terms.
8
9use core::{fmt, hash::Hash};
10
11use super::*;
12
13/// A type with no alignment requirement.
14///
15/// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>`
16/// has the same size and bit validity as `T`, but not necessarily the same
17/// alignment [or ABI]. This is useful if a type with an alignment requirement
18/// needs to be read from a chunk of memory which provides no alignment
19/// guarantees.
20///
21/// Since `Unalign` has no alignment requirement, the inner `T` may not be
22/// properly aligned in memory. There are five ways to access the inner `T`:
23/// - by value, using [`get`] or [`into_inner`]
24/// - by reference inside of a callback, using [`update`]
25/// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can
26/// fail if the `Unalign` does not satisfy `T`'s alignment requirement at
27/// runtime
28/// - unsafely by reference, using [`deref_unchecked`] or
29/// [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that
30/// the `Unalign` satisfies `T`'s alignment requirement
31/// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or
32/// [`DerefMut::deref_mut`]
33///
34/// [or ABI]: https://github.com/google/zerocopy/issues/164
35/// [`get`]: Unalign::get
36/// [`into_inner`]: Unalign::into_inner
37/// [`update`]: Unalign::update
38/// [`try_deref`]: Unalign::try_deref
39/// [`try_deref_mut`]: Unalign::try_deref_mut
40/// [`deref_unchecked`]: Unalign::deref_unchecked
41/// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked
42///
43/// # Example
44///
45/// In this example, we need `EthernetFrame` to have no alignment requirement -
46/// and thus implement [`Unaligned`]. `EtherType` is `#[repr(u16)]` and so
47/// cannot implement `Unaligned`. We use `Unalign` to relax `EtherType`'s
48/// alignment requirement so that `EthernetFrame` has no alignment requirement
49/// and can implement `Unaligned`.
50///
51/// ```rust
52/// use zerocopy::*;
53/// # use zerocopy_derive::*;
54/// # #[derive(FromBytes, KnownLayout, Immutable, Unaligned)] #[repr(C)] struct Mac([u8; 6]);
55///
56/// # #[derive(PartialEq, Copy, Clone, Debug)]
57/// #[derive(TryFromBytes, KnownLayout, Immutable)]
58/// #[repr(u16)]
59/// enum EtherType {
60/// Ipv4 = 0x0800u16.to_be(),
61/// Arp = 0x0806u16.to_be(),
62/// Ipv6 = 0x86DDu16.to_be(),
63/// # /*
64/// ...
65/// # */
66/// }
67///
68/// #[derive(TryFromBytes, KnownLayout, Immutable, Unaligned)]
69/// #[repr(C)]
70/// struct EthernetFrame {
71/// src: Mac,
72/// dst: Mac,
73/// ethertype: Unalign<EtherType>,
74/// payload: [u8],
75/// }
76///
77/// let bytes = &[
78/// # 0, 1, 2, 3, 4, 5,
79/// # 6, 7, 8, 9, 10, 11,
80/// # /*
81/// ...
82/// # */
83/// 0x86, 0xDD, // EtherType
84/// 0xDE, 0xAD, 0xBE, 0xEF // Payload
85/// ][..];
86///
87/// // PANICS: Guaranteed not to panic because `bytes` is of the right
88/// // length, has the right contents, and `EthernetFrame` has no
89/// // alignment requirement.
90/// let packet = EthernetFrame::try_ref_from_bytes(&bytes).unwrap();
91///
92/// assert_eq!(packet.ethertype.get(), EtherType::Ipv6);
93/// assert_eq!(packet.payload, [0xDE, 0xAD, 0xBE, 0xEF]);
94/// ```
95///
96/// # Safety
97///
98/// `Unalign<T>` is guaranteed to have the same size and bit validity as `T`,
99/// and to have [`UnsafeCell`]s covering the same byte ranges as `T`.
100/// `Unalign<T>` is guaranteed to have alignment 1.
101// NOTE: This type is sound to use with types that need to be dropped. The
102// reason is that the compiler-generated drop code automatically moves all
103// values to aligned memory slots before dropping them in-place. This is not
104// well-documented, but it's hinted at in places like [1] and [2]. However, this
105// also means that `T` must be `Sized`; unless something changes, we can never
106// support unsized `T`. [3]
107//
108// [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646
109// [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323
110// [3] https://github.com/google/zerocopy/issues/209
111#[allow(missing_debug_implementations)]
112#[derive(Default, Copy)]
113#[cfg_attr(any(feature = "derive", test), derive(Immutable, FromBytes, IntoBytes, Unaligned))]
114#[repr(C, packed)]
115pub struct Unalign<T>(T);
116
117// We do not use `derive(KnownLayout)` on `Unalign`, because the derive is not
118// smart enough to realize that `Unalign<T>` is always sized and thus emits a
119// `KnownLayout` impl bounded on `T: KnownLayout.` This is overly restrictive.
120impl_known_layout!(T => Unalign<T>);
121
122// SAFETY:
123// - `Unalign<T>` promises to have alignment 1, and so we don't require that `T:
124// Unaligned`.
125// - `Unalign<T>` has the same bit validity as `T`, and so it is `FromZeros`,
126// `FromBytes`, or `IntoBytes` exactly when `T` is as well.
127// - `Immutable`: `Unalign<T>` has the same fields as `T`, so it contains
128// `UnsafeCell`s exactly when `T` does.
129// - `TryFromBytes`: `Unalign<T>` has the same the same bit validity as `T`, so
130// `T::is_bit_valid` is a sound implementation of `is_bit_valid`.
131#[allow(unused_unsafe)] // Unused when `feature = "derive"`.
132const _: () = unsafe {
133 impl_or_verify!(T => Unaligned for Unalign<T>);
134 impl_or_verify!(T: Immutable => Immutable for Unalign<T>);
135 impl_or_verify!(
136 T: TryFromBytes => TryFromBytes for Unalign<T>;
137 |c| T::is_bit_valid(c.transmute())
138 );
139 impl_or_verify!(T: FromZeros => FromZeros for Unalign<T>);
140 impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>);
141 impl_or_verify!(T: IntoBytes => IntoBytes for Unalign<T>);
142};
143
144// Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be
145// aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound
146// is not sufficient to implement `Clone` for `Unalign`.
147impl<T: Copy> Clone for Unalign<T> {
148 #[inline(always)]
149 fn clone(&self) -> Unalign<T> {
150 *self
151 }
152}
153
154impl<T> Unalign<T> {
155 /// Constructs a new `Unalign`.
156 #[inline(always)]
157 pub const fn new(val: T) -> Unalign<T> {
158 Unalign(val)
159 }
160
161 /// Consumes `self`, returning the inner `T`.
162 #[inline(always)]
163 pub const fn into_inner(self) -> T {
164 // SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same size
165 // and bit validity as `T`.
166 //
167 // We do this instead of just destructuring in order to prevent
168 // `Unalign`'s `Drop::drop` from being run, since dropping is not
169 // supported in `const fn`s.
170 //
171 // TODO(https://github.com/rust-lang/rust/issues/73255): Destructure
172 // instead of using unsafe.
173 unsafe { crate::util::transmute_unchecked(self) }
174 }
175
176 /// Attempts to return a reference to the wrapped `T`, failing if `self` is
177 /// not properly aligned.
178 ///
179 /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
180 /// `Err`.
181 ///
182 /// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers
183 /// may prefer [`Deref::deref`], which is infallible.
184 #[inline(always)]
185 pub fn try_deref(&self) -> Result<&T, AlignmentError<&Self, T>> {
186 let inner = Ptr::from_ref(self).transmute();
187 match inner.try_into_aligned() {
188 Ok(aligned) => Ok(aligned.as_ref()),
189 Err(err) => Err(err.map_src(|src| src.into_unalign().as_ref())),
190 }
191 }
192
193 /// Attempts to return a mutable reference to the wrapped `T`, failing if
194 /// `self` is not properly aligned.
195 ///
196 /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
197 /// `Err`.
198 ///
199 /// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and
200 /// callers may prefer [`DerefMut::deref_mut`], which is infallible.
201 #[inline(always)]
202 pub fn try_deref_mut(&mut self) -> Result<&mut T, AlignmentError<&mut Self, T>> {
203 let inner = Ptr::from_mut(self).transmute::<_, _, (_, (_, _))>();
204 match inner.try_into_aligned() {
205 Ok(aligned) => Ok(aligned.as_mut()),
206 Err(err) => Err(err.map_src(|src| src.into_unalign().as_mut())),
207 }
208 }
209
210 /// Returns a reference to the wrapped `T` without checking alignment.
211 ///
212 /// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers
213 /// may prefer [`Deref::deref`], which is safe.
214 ///
215 /// # Safety
216 ///
217 /// The caller must guarantee that `self` satisfies `align_of::<T>()`.
218 #[inline(always)]
219 pub const unsafe fn deref_unchecked(&self) -> &T {
220 // SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T`
221 // at the same memory location as `self`. It has no alignment guarantee,
222 // but the caller has promised that `self` is properly aligned, so we
223 // know that it is sound to create a reference to `T` at this memory
224 // location.
225 //
226 // We use `mem::transmute` instead of `&*self.get_ptr()` because
227 // dereferencing pointers is not stable in `const` on our current MSRV
228 // (1.56 as of this writing).
229 unsafe { mem::transmute(self) }
230 }
231
232 /// Returns a mutable reference to the wrapped `T` without checking
233 /// alignment.
234 ///
235 /// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and
236 /// callers may prefer [`DerefMut::deref_mut`], which is safe.
237 ///
238 /// # Safety
239 ///
240 /// The caller must guarantee that `self` satisfies `align_of::<T>()`.
241 #[inline(always)]
242 pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T {
243 // SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at
244 // the same memory location as `self`. It has no alignment guarantee,
245 // but the caller has promised that `self` is properly aligned, so we
246 // know that the pointer itself is aligned, and thus that it is sound to
247 // create a reference to a `T` at this memory location.
248 unsafe { &mut *self.get_mut_ptr() }
249 }
250
251 /// Gets an unaligned raw pointer to the inner `T`.
252 ///
253 /// # Safety
254 ///
255 /// The returned raw pointer is not necessarily aligned to
256 /// `align_of::<T>()`. Most functions which operate on raw pointers require
257 /// those pointers to be aligned, so calling those functions with the result
258 /// of `get_ptr` will result in undefined behavior if alignment is not
259 /// guaranteed using some out-of-band mechanism. In general, the only
260 /// functions which are safe to call with this pointer are those which are
261 /// explicitly documented as being sound to use with an unaligned pointer,
262 /// such as [`read_unaligned`].
263 ///
264 /// Even if the caller is permitted to mutate `self` (e.g. they have
265 /// ownership or a mutable borrow), it is not guaranteed to be sound to
266 /// write through the returned pointer. If writing is required, prefer
267 /// [`get_mut_ptr`] instead.
268 ///
269 /// [`read_unaligned`]: core::ptr::read_unaligned
270 /// [`get_mut_ptr`]: Unalign::get_mut_ptr
271 #[inline(always)]
272 pub const fn get_ptr(&self) -> *const T {
273 ptr::addr_of!(self.0)
274 }
275
276 /// Gets an unaligned mutable raw pointer to the inner `T`.
277 ///
278 /// # Safety
279 ///
280 /// The returned raw pointer is not necessarily aligned to
281 /// `align_of::<T>()`. Most functions which operate on raw pointers require
282 /// those pointers to be aligned, so calling those functions with the result
283 /// of `get_ptr` will result in undefined behavior if alignment is not
284 /// guaranteed using some out-of-band mechanism. In general, the only
285 /// functions which are safe to call with this pointer are those which are
286 /// explicitly documented as being sound to use with an unaligned pointer,
287 /// such as [`read_unaligned`].
288 ///
289 /// [`read_unaligned`]: core::ptr::read_unaligned
290 // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
291 #[inline(always)]
292 pub fn get_mut_ptr(&mut self) -> *mut T {
293 ptr::addr_of_mut!(self.0)
294 }
295
296 /// Sets the inner `T`, dropping the previous value.
297 // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
298 #[inline(always)]
299 pub fn set(&mut self, t: T) {
300 *self = Unalign::new(t);
301 }
302
303 /// Updates the inner `T` by calling a function on it.
304 ///
305 /// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that
306 /// impl should be preferred over this method when performing updates, as it
307 /// will usually be faster and more ergonomic.
308 ///
309 /// For large types, this method may be expensive, as it requires copying
310 /// `2 * size_of::<T>()` bytes. \[1\]
311 ///
312 /// \[1\] Since the inner `T` may not be aligned, it would not be sound to
313 /// invoke `f` on it directly. Instead, `update` moves it into a
314 /// properly-aligned location in the local stack frame, calls `f` on it, and
315 /// then moves it back to its original location in `self`.
316 ///
317 /// [`T: Unaligned`]: Unaligned
318 #[inline]
319 pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O {
320 if mem::align_of::<T>() == 1 {
321 // While we advise callers to use `DerefMut` when `T: Unaligned`,
322 // not all callers will be able to guarantee `T: Unaligned` in all
323 // cases. In particular, callers who are themselves providing an API
324 // which is generic over `T` may sometimes be called by *their*
325 // callers with `T` such that `align_of::<T>() == 1`, but cannot
326 // guarantee this in the general case. Thus, this optimization may
327 // sometimes be helpful.
328
329 // SAFETY: Since `T`'s alignment is 1, `self` satisfies its
330 // alignment by definition.
331 let t = unsafe { self.deref_mut_unchecked() };
332 return f(t);
333 }
334
335 // On drop, this moves `copy` out of itself and uses `ptr::write` to
336 // overwrite `slf`.
337 struct WriteBackOnDrop<T> {
338 copy: ManuallyDrop<T>,
339 slf: *mut Unalign<T>,
340 }
341
342 impl<T> Drop for WriteBackOnDrop<T> {
343 fn drop(&mut self) {
344 // SAFETY: We never use `copy` again as required by
345 // `ManuallyDrop::take`.
346 let copy = unsafe { ManuallyDrop::take(&mut self.copy) };
347 // SAFETY: `slf` is the raw pointer value of `self`. We know it
348 // is valid for writes and properly aligned because `self` is a
349 // mutable reference, which guarantees both of these properties.
350 unsafe { ptr::write(self.slf, Unalign::new(copy)) };
351 }
352 }
353
354 // SAFETY: We know that `self` is valid for reads, properly aligned, and
355 // points to an initialized `Unalign<T>` because it is a mutable
356 // reference, which guarantees all of these properties.
357 //
358 // Since `T: !Copy`, it would be unsound in the general case to allow
359 // both the original `Unalign<T>` and the copy to be used by safe code.
360 // We guarantee that the copy is used to overwrite the original in the
361 // `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is
362 // called before any other safe code executes, soundness is upheld.
363 // While this method can terminate in two ways (by returning normally or
364 // by unwinding due to a panic in `f`), in both cases, `write_back` is
365 // dropped - and its `drop` called - before any other safe code can
366 // execute.
367 let copy = unsafe { ptr::read(self) }.into_inner();
368 let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self };
369
370 let ret = f(&mut write_back.copy);
371
372 drop(write_back);
373 ret
374 }
375}
376
377impl<T: Copy> Unalign<T> {
378 /// Gets a copy of the inner `T`.
379 // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
380 #[inline(always)]
381 pub fn get(&self) -> T {
382 let Unalign(val) = *self;
383 val
384 }
385}
386
387impl<T: Unaligned> Deref for Unalign<T> {
388 type Target = T;
389
390 #[inline(always)]
391 fn deref(&self) -> &T {
392 Ptr::from_ref(self).transmute().bikeshed_recall_aligned().as_ref()
393 }
394}
395
396impl<T: Unaligned> DerefMut for Unalign<T> {
397 #[inline(always)]
398 fn deref_mut(&mut self) -> &mut T {
399 Ptr::from_mut(self).transmute::<_, _, (_, (_, _))>().bikeshed_recall_aligned().as_mut()
400 }
401}
402
403impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> {
404 #[inline(always)]
405 fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> {
406 PartialOrd::partial_cmp(self.deref(), other.deref())
407 }
408}
409
410impl<T: Unaligned + Ord> Ord for Unalign<T> {
411 #[inline(always)]
412 fn cmp(&self, other: &Unalign<T>) -> Ordering {
413 Ord::cmp(self.deref(), other.deref())
414 }
415}
416
417impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> {
418 #[inline(always)]
419 fn eq(&self, other: &Unalign<T>) -> bool {
420 PartialEq::eq(self.deref(), other.deref())
421 }
422}
423
424impl<T: Unaligned + Eq> Eq for Unalign<T> {}
425
426impl<T: Unaligned + Hash> Hash for Unalign<T> {
427 #[inline(always)]
428 fn hash<H>(&self, state: &mut H)
429 where
430 H: Hasher,
431 {
432 self.deref().hash(state);
433 }
434}
435
436impl<T: Unaligned + Debug> Debug for Unalign<T> {
437 #[inline(always)]
438 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
439 Debug::fmt(self.deref(), f)
440 }
441}
442
443impl<T: Unaligned + Display> Display for Unalign<T> {
444 #[inline(always)]
445 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
446 Display::fmt(self.deref(), f)
447 }
448}
449
450/// A wrapper type to construct uninitialized instances of `T`.
451///
452/// `MaybeUninit` is identical to the [standard library
453/// `MaybeUninit`][core-maybe-uninit] type except that it supports unsized
454/// types.
455///
456/// # Layout
457///
458/// The same layout guarantees and caveats apply to `MaybeUninit<T>` as apply to
459/// the [standard library `MaybeUninit`][core-maybe-uninit] with one exception:
460/// for `T: !Sized`, there is no single value for `T`'s size. Instead, for such
461/// types, the following are guaranteed:
462/// - Every [valid size][valid-size] for `T` is a valid size for
463/// `MaybeUninit<T>` and vice versa
464/// - Given `t: *const T` and `m: *const MaybeUninit<T>` with identical fat
465/// pointer metadata, `t` and `m` address the same number of bytes (and
466/// likewise for `*mut`)
467///
468/// [core-maybe-uninit]: core::mem::MaybeUninit
469/// [valid-size]: crate::KnownLayout#what-is-a-valid-size
470#[repr(transparent)]
471#[doc(hidden)]
472pub struct MaybeUninit<T: ?Sized + KnownLayout>(
473 // SAFETY: `MaybeUninit<T>` has the same size as `T`, because (by invariant
474 // on `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
475 // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
476 // accurately reflects the layout of `T`. By invariant on `T::MaybeUninit`,
477 // it admits uninitialized bytes in all positions. Because `MabyeUninit` is
478 // marked `repr(transparent)`, these properties additionally hold true for
479 // `Self`.
480 T::MaybeUninit,
481);
482
483#[doc(hidden)]
484impl<T: ?Sized + KnownLayout> MaybeUninit<T> {
485 /// Constructs a `MaybeUninit<T>` initialized with the given value.
486 #[inline(always)]
487 pub fn new(val: T) -> Self
488 where
489 T: Sized,
490 Self: Sized,
491 {
492 // SAFETY: It is valid to transmute `val` to `MaybeUninit<T>` because it
493 // is both valid to transmute `val` to `T::MaybeUninit`, and it is valid
494 // to transmute from `T::MaybeUninit` to `MaybeUninit<T>`.
495 //
496 // First, it is valid to transmute `val` to `T::MaybeUninit` because, by
497 // invariant on `T::MaybeUninit`:
498 // - For `T: Sized`, `T` and `T::MaybeUninit` have the same size.
499 // - All byte sequences of the correct size are valid values of
500 // `T::MaybeUninit`.
501 //
502 // Second, it is additionally valid to transmute from `T::MaybeUninit`
503 // to `MaybeUninit<T>`, because `MaybeUninit<T>` is a
504 // `repr(transparent)` wrapper around `T::MaybeUninit`.
505 //
506 // These two transmutes are collapsed into one so we don't need to add a
507 // `T::MaybeUninit: Sized` bound to this function's `where` clause.
508 unsafe { crate::util::transmute_unchecked(val) }
509 }
510
511 /// Constructs an uninitialized `MaybeUninit<T>`.
512 #[must_use]
513 #[inline(always)]
514 pub fn uninit() -> Self
515 where
516 T: Sized,
517 Self: Sized,
518 {
519 let uninit = CoreMaybeUninit::<T>::uninit();
520 // SAFETY: It is valid to transmute from `CoreMaybeUninit<T>` to
521 // `MaybeUninit<T>` since they both admit uninitialized bytes in all
522 // positions, and they have the same size (i.e., that of `T`).
523 //
524 // `MaybeUninit<T>` has the same size as `T`, because (by invariant on
525 // `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
526 // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
527 // accurately reflects the layout of `T`.
528 //
529 // `CoreMaybeUninit<T>` has the same size as `T` [1] and admits
530 // uninitialized bytes in all positions.
531 //
532 // [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1:
533 //
534 // `MaybeUninit<T>` is guaranteed to have the same size, alignment,
535 // and ABI as `T`
536 unsafe { crate::util::transmute_unchecked(uninit) }
537 }
538
539 /// Creates a `Box<MaybeUninit<T>>`.
540 ///
541 /// This function is useful for allocating large, uninit values on the heap
542 /// without ever creating a temporary instance of `Self` on the stack.
543 ///
544 /// # Errors
545 ///
546 /// Returns an error on allocation failure. Allocation failure is guaranteed
547 /// never to cause a panic or an abort.
548 #[cfg(feature = "alloc")]
549 #[inline]
550 pub fn new_boxed_uninit(meta: T::PointerMetadata) -> Result<Box<Self>, AllocError> {
551 // SAFETY: `alloc::alloc::alloc_zeroed` is a valid argument of
552 // `new_box`. The referent of the pointer returned by `alloc` (and,
553 // consequently, the `Box` derived from it) is a valid instance of
554 // `Self`, because `Self` is `MaybeUninit` and thus admits arbitrary
555 // (un)initialized bytes.
556 unsafe { crate::util::new_box(meta, alloc::alloc::alloc) }
557 }
558
559 /// Extracts the value from the `MaybeUninit<T>` container.
560 ///
561 /// # Safety
562 ///
563 /// The caller must ensure that `self` is in an bit-valid state. Depending
564 /// on subsequent use, it may also need to be in a library-valid state.
565 #[inline(always)]
566 pub unsafe fn assume_init(self) -> T
567 where
568 T: Sized,
569 Self: Sized,
570 {
571 // SAFETY: The caller guarantees that `self` is in an bit-valid state.
572 unsafe { crate::util::transmute_unchecked(self) }
573 }
574}
575
576impl<T: ?Sized + KnownLayout> fmt::Debug for MaybeUninit<T> {
577 #[inline]
578 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
579 f.pad(core::any::type_name::<Self>())
580 }
581}
582
583#[cfg(test)]
584mod tests {
585 use core::panic::AssertUnwindSafe;
586
587 use super::*;
588 use crate::util::testutil::*;
589
590 #[test]
591 fn test_unalign() {
592 // Test methods that don't depend on alignment.
593 let mut u = Unalign::new(AU64(123));
594 assert_eq!(u.get(), AU64(123));
595 assert_eq!(u.into_inner(), AU64(123));
596 assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u));
597 assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u));
598 u.set(AU64(321));
599 assert_eq!(u.get(), AU64(321));
600
601 // Test methods that depend on alignment (when alignment is satisfied).
602 let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
603 assert_eq!(u.t.try_deref().unwrap(), &AU64(123));
604 assert_eq!(u.t.try_deref_mut().unwrap(), &mut AU64(123));
605 // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
606 assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123));
607 // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
608 assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123));
609 *u.t.try_deref_mut().unwrap() = AU64(321);
610 assert_eq!(u.t.get(), AU64(321));
611
612 // Test methods that depend on alignment (when alignment is not
613 // satisfied).
614 let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123)));
615 assert!(matches!(u.t.try_deref(), Err(AlignmentError { .. })));
616 assert!(matches!(u.t.try_deref_mut(), Err(AlignmentError { .. })));
617
618 // Test methods that depend on `T: Unaligned`.
619 let mut u = Unalign::new(123u8);
620 assert_eq!(u.try_deref(), Ok(&123));
621 assert_eq!(u.try_deref_mut(), Ok(&mut 123));
622 assert_eq!(u.deref(), &123);
623 assert_eq!(u.deref_mut(), &mut 123);
624 *u = 21;
625 assert_eq!(u.get(), 21);
626
627 // Test that some `Unalign` functions and methods are `const`.
628 const _UNALIGN: Unalign<u64> = Unalign::new(0);
629 const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr();
630 const _U64: u64 = _UNALIGN.into_inner();
631 // Make sure all code is considered "used".
632 //
633 // TODO(https://github.com/rust-lang/rust/issues/104084): Remove this
634 // attribute.
635 #[allow(dead_code)]
636 const _: () = {
637 let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
638 // Make sure that `deref_unchecked` is `const`.
639 //
640 // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
641 let au64 = unsafe { x.t.deref_unchecked() };
642 match au64 {
643 AU64(123) => {}
644 _ => const_unreachable!(),
645 }
646 };
647 }
648
649 #[test]
650 fn test_unalign_update() {
651 let mut u = Unalign::new(AU64(123));
652 u.update(|a| a.0 += 1);
653 assert_eq!(u.get(), AU64(124));
654
655 // Test that, even if the callback panics, the original is still
656 // correctly overwritten. Use a `Box` so that Miri is more likely to
657 // catch any unsoundness (which would likely result in two `Box`es for
658 // the same heap object, which is the sort of thing that Miri would
659 // probably catch).
660 let mut u = Unalign::new(Box::new(AU64(123)));
661 let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
662 u.update(|a| {
663 a.0 += 1;
664 panic!();
665 })
666 }));
667 assert!(res.is_err());
668 assert_eq!(u.into_inner(), Box::new(AU64(124)));
669
670 // Test the align_of::<T>() == 1 optimization.
671 let mut u = Unalign::new([0u8, 1]);
672 u.update(|a| a[0] += 1);
673 assert_eq!(u.get(), [1u8, 1]);
674 }
675
676 #[test]
677 fn test_unalign_copy_clone() {
678 // Test that `Copy` and `Clone` do not cause soundness issues. This test
679 // is mainly meant to exercise UB that would be caught by Miri.
680
681 // `u.t` is definitely not validly-aligned for `AU64`'s alignment of 8.
682 let u = ForceUnalign::<_, AU64>::new(Unalign::new(AU64(123)));
683 #[allow(clippy::clone_on_copy)]
684 let v = u.t.clone();
685 let w = u.t;
686 assert_eq!(u.t.get(), v.get());
687 assert_eq!(u.t.get(), w.get());
688 assert_eq!(v.get(), w.get());
689 }
690
691 #[test]
692 fn test_unalign_trait_impls() {
693 let zero = Unalign::new(0u8);
694 let one = Unalign::new(1u8);
695
696 assert!(zero < one);
697 assert_eq!(PartialOrd::partial_cmp(&zero, &one), Some(Ordering::Less));
698 assert_eq!(Ord::cmp(&zero, &one), Ordering::Less);
699
700 assert_ne!(zero, one);
701 assert_eq!(zero, zero);
702 assert!(!PartialEq::eq(&zero, &one));
703 assert!(PartialEq::eq(&zero, &zero));
704
705 fn hash<T: Hash>(t: &T) -> u64 {
706 let mut h = std::collections::hash_map::DefaultHasher::new();
707 t.hash(&mut h);
708 h.finish()
709 }
710
711 assert_eq!(hash(&zero), hash(&0u8));
712 assert_eq!(hash(&one), hash(&1u8));
713
714 assert_eq!(format!("{:?}", zero), format!("{:?}", 0u8));
715 assert_eq!(format!("{:?}", one), format!("{:?}", 1u8));
716 assert_eq!(format!("{}", zero), format!("{}", 0u8));
717 assert_eq!(format!("{}", one), format!("{}", 1u8));
718 }
719
720 #[test]
721 #[allow(clippy::as_conversions)]
722 fn test_maybe_uninit() {
723 // int
724 {
725 let input = 42;
726 let uninit = MaybeUninit::new(input);
727 // SAFETY: `uninit` is in an initialized state
728 let output = unsafe { uninit.assume_init() };
729 assert_eq!(input, output);
730 }
731
732 // thin ref
733 {
734 let input = 42;
735 let uninit = MaybeUninit::new(&input);
736 // SAFETY: `uninit` is in an initialized state
737 let output = unsafe { uninit.assume_init() };
738 assert_eq!(&input as *const _, output as *const _);
739 assert_eq!(input, *output);
740 }
741
742 // wide ref
743 {
744 let input = [1, 2, 3, 4];
745 let uninit = MaybeUninit::new(&input[..]);
746 // SAFETY: `uninit` is in an initialized state
747 let output = unsafe { uninit.assume_init() };
748 assert_eq!(&input[..] as *const _, output as *const _);
749 assert_eq!(input, *output);
750 }
751 }
752}