zerocopy/
wrappers.rs

1// Copyright 2023 The Fuchsia Authors
2//
3// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6// This file may not be copied, modified, or distributed except according to
7// those terms.
8
9use core::{fmt, hash::Hash};
10
11use super::*;
12
13/// A type with no alignment requirement.
14///
15/// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>`
16/// has the same size and bit validity as `T`, but not necessarily the same
17/// alignment [or ABI]. This is useful if a type with an alignment requirement
18/// needs to be read from a chunk of memory which provides no alignment
19/// guarantees.
20///
21/// Since `Unalign` has no alignment requirement, the inner `T` may not be
22/// properly aligned in memory. There are five ways to access the inner `T`:
23/// - by value, using [`get`] or [`into_inner`]
24/// - by reference inside of a callback, using [`update`]
25/// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can
26///   fail if the `Unalign` does not satisfy `T`'s alignment requirement at
27///   runtime
28/// - unsafely by reference, using [`deref_unchecked`] or
29///   [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that
30///   the `Unalign` satisfies `T`'s alignment requirement
31/// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or
32///   [`DerefMut::deref_mut`]
33///
34/// [or ABI]: https://github.com/google/zerocopy/issues/164
35/// [`get`]: Unalign::get
36/// [`into_inner`]: Unalign::into_inner
37/// [`update`]: Unalign::update
38/// [`try_deref`]: Unalign::try_deref
39/// [`try_deref_mut`]: Unalign::try_deref_mut
40/// [`deref_unchecked`]: Unalign::deref_unchecked
41/// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked
42///
43/// # Example
44///
45/// In this example, we need `EthernetFrame` to have no alignment requirement -
46/// and thus implement [`Unaligned`]. `EtherType` is `#[repr(u16)]` and so
47/// cannot implement `Unaligned`. We use `Unalign` to relax `EtherType`'s
48/// alignment requirement so that `EthernetFrame` has no alignment requirement
49/// and can implement `Unaligned`.
50///
51/// ```rust
52/// use zerocopy::*;
53/// # use zerocopy_derive::*;
54/// # #[derive(FromBytes, KnownLayout, Immutable, Unaligned)] #[repr(C)] struct Mac([u8; 6]);
55///
56/// # #[derive(PartialEq, Copy, Clone, Debug)]
57/// #[derive(TryFromBytes, KnownLayout, Immutable)]
58/// #[repr(u16)]
59/// enum EtherType {
60///     Ipv4 = 0x0800u16.to_be(),
61///     Arp = 0x0806u16.to_be(),
62///     Ipv6 = 0x86DDu16.to_be(),
63///     # /*
64///     ...
65///     # */
66/// }
67///
68/// #[derive(TryFromBytes, KnownLayout, Immutable, Unaligned)]
69/// #[repr(C)]
70/// struct EthernetFrame {
71///     src: Mac,
72///     dst: Mac,
73///     ethertype: Unalign<EtherType>,
74///     payload: [u8],
75/// }
76///
77/// let bytes = &[
78///     # 0, 1, 2, 3, 4, 5,
79///     # 6, 7, 8, 9, 10, 11,
80///     # /*
81///     ...
82///     # */
83///     0x86, 0xDD,            // EtherType
84///     0xDE, 0xAD, 0xBE, 0xEF // Payload
85/// ][..];
86///
87/// // PANICS: Guaranteed not to panic because `bytes` is of the right
88/// // length, has the right contents, and `EthernetFrame` has no
89/// // alignment requirement.
90/// let packet = EthernetFrame::try_ref_from_bytes(&bytes).unwrap();
91///
92/// assert_eq!(packet.ethertype.get(), EtherType::Ipv6);
93/// assert_eq!(packet.payload, [0xDE, 0xAD, 0xBE, 0xEF]);
94/// ```
95///
96/// # Safety
97///
98/// `Unalign<T>` is guaranteed to have the same size and bit validity as `T`,
99/// and to have [`UnsafeCell`]s covering the same byte ranges as `T`.
100/// `Unalign<T>` is guaranteed to have alignment 1.
101// NOTE: This type is sound to use with types that need to be dropped. The
102// reason is that the compiler-generated drop code automatically moves all
103// values to aligned memory slots before dropping them in-place. This is not
104// well-documented, but it's hinted at in places like [1] and [2]. However, this
105// also means that `T` must be `Sized`; unless something changes, we can never
106// support unsized `T`. [3]
107//
108// [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646
109// [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323
110// [3] https://github.com/google/zerocopy/issues/209
111#[allow(missing_debug_implementations)]
112#[derive(Default, Copy)]
113#[cfg_attr(any(feature = "derive", test), derive(Immutable, FromBytes, IntoBytes, Unaligned))]
114#[repr(C, packed)]
115pub struct Unalign<T>(T);
116
117// We do not use `derive(KnownLayout)` on `Unalign`, because the derive is not
118// smart enough to realize that `Unalign<T>` is always sized and thus emits a
119// `KnownLayout` impl bounded on `T: KnownLayout.` This is overly restrictive.
120impl_known_layout!(T => Unalign<T>);
121
122// SAFETY:
123// - `Unalign<T>` promises to have alignment 1, and so we don't require that `T:
124//   Unaligned`.
125// - `Unalign<T>` has the same bit validity as `T`, and so it is `FromZeros`,
126//   `FromBytes`, or `IntoBytes` exactly when `T` is as well.
127// - `Immutable`: `Unalign<T>` has the same fields as `T`, so it contains
128//   `UnsafeCell`s exactly when `T` does.
129// - `TryFromBytes`: `Unalign<T>` has the same the same bit validity as `T`, so
130//   `T::is_bit_valid` is a sound implementation of `is_bit_valid`.
131#[allow(unused_unsafe)] // Unused when `feature = "derive"`.
132const _: () = unsafe {
133    impl_or_verify!(T => Unaligned for Unalign<T>);
134    impl_or_verify!(T: Immutable => Immutable for Unalign<T>);
135    impl_or_verify!(
136        T: TryFromBytes => TryFromBytes for Unalign<T>;
137        |c| T::is_bit_valid(c.transmute())
138    );
139    impl_or_verify!(T: FromZeros => FromZeros for Unalign<T>);
140    impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>);
141    impl_or_verify!(T: IntoBytes => IntoBytes for Unalign<T>);
142};
143
144// Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be
145// aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound
146// is not sufficient to implement `Clone` for `Unalign`.
147impl<T: Copy> Clone for Unalign<T> {
148    #[inline(always)]
149    fn clone(&self) -> Unalign<T> {
150        *self
151    }
152}
153
154impl<T> Unalign<T> {
155    /// Constructs a new `Unalign`.
156    #[inline(always)]
157    pub const fn new(val: T) -> Unalign<T> {
158        Unalign(val)
159    }
160
161    /// Consumes `self`, returning the inner `T`.
162    #[inline(always)]
163    pub const fn into_inner(self) -> T {
164        // SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same size
165        // and bit validity as `T`.
166        //
167        // We do this instead of just destructuring in order to prevent
168        // `Unalign`'s `Drop::drop` from being run, since dropping is not
169        // supported in `const fn`s.
170        //
171        // TODO(https://github.com/rust-lang/rust/issues/73255): Destructure
172        // instead of using unsafe.
173        unsafe { crate::util::transmute_unchecked(self) }
174    }
175
176    /// Attempts to return a reference to the wrapped `T`, failing if `self` is
177    /// not properly aligned.
178    ///
179    /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
180    /// `Err`.
181    ///
182    /// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers
183    /// may prefer [`Deref::deref`], which is infallible.
184    #[inline(always)]
185    pub fn try_deref(&self) -> Result<&T, AlignmentError<&Self, T>> {
186        let inner = Ptr::from_ref(self).transmute();
187        match inner.try_into_aligned() {
188            Ok(aligned) => Ok(aligned.as_ref()),
189            Err(err) => Err(err.map_src(|src| src.into_unalign().as_ref())),
190        }
191    }
192
193    /// Attempts to return a mutable reference to the wrapped `T`, failing if
194    /// `self` is not properly aligned.
195    ///
196    /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
197    /// `Err`.
198    ///
199    /// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and
200    /// callers may prefer [`DerefMut::deref_mut`], which is infallible.
201    #[inline(always)]
202    pub fn try_deref_mut(&mut self) -> Result<&mut T, AlignmentError<&mut Self, T>> {
203        let inner = Ptr::from_mut(self).transmute::<_, _, (_, (_, _))>();
204        match inner.try_into_aligned() {
205            Ok(aligned) => Ok(aligned.as_mut()),
206            Err(err) => Err(err.map_src(|src| src.into_unalign().as_mut())),
207        }
208    }
209
210    /// Returns a reference to the wrapped `T` without checking alignment.
211    ///
212    /// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers
213    /// may prefer [`Deref::deref`], which is safe.
214    ///
215    /// # Safety
216    ///
217    /// The caller must guarantee that `self` satisfies `align_of::<T>()`.
218    #[inline(always)]
219    pub const unsafe fn deref_unchecked(&self) -> &T {
220        // SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T`
221        // at the same memory location as `self`. It has no alignment guarantee,
222        // but the caller has promised that `self` is properly aligned, so we
223        // know that it is sound to create a reference to `T` at this memory
224        // location.
225        //
226        // We use `mem::transmute` instead of `&*self.get_ptr()` because
227        // dereferencing pointers is not stable in `const` on our current MSRV
228        // (1.56 as of this writing).
229        unsafe { mem::transmute(self) }
230    }
231
232    /// Returns a mutable reference to the wrapped `T` without checking
233    /// alignment.
234    ///
235    /// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and
236    /// callers may prefer [`DerefMut::deref_mut`], which is safe.
237    ///
238    /// # Safety
239    ///
240    /// The caller must guarantee that `self` satisfies `align_of::<T>()`.
241    #[inline(always)]
242    pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T {
243        // SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at
244        // the same memory location as `self`. It has no alignment guarantee,
245        // but the caller has promised that `self` is properly aligned, so we
246        // know that the pointer itself is aligned, and thus that it is sound to
247        // create a reference to a `T` at this memory location.
248        unsafe { &mut *self.get_mut_ptr() }
249    }
250
251    /// Gets an unaligned raw pointer to the inner `T`.
252    ///
253    /// # Safety
254    ///
255    /// The returned raw pointer is not necessarily aligned to
256    /// `align_of::<T>()`. Most functions which operate on raw pointers require
257    /// those pointers to be aligned, so calling those functions with the result
258    /// of `get_ptr` will result in undefined behavior if alignment is not
259    /// guaranteed using some out-of-band mechanism. In general, the only
260    /// functions which are safe to call with this pointer are those which are
261    /// explicitly documented as being sound to use with an unaligned pointer,
262    /// such as [`read_unaligned`].
263    ///
264    /// Even if the caller is permitted to mutate `self` (e.g. they have
265    /// ownership or a mutable borrow), it is not guaranteed to be sound to
266    /// write through the returned pointer. If writing is required, prefer
267    /// [`get_mut_ptr`] instead.
268    ///
269    /// [`read_unaligned`]: core::ptr::read_unaligned
270    /// [`get_mut_ptr`]: Unalign::get_mut_ptr
271    #[inline(always)]
272    pub const fn get_ptr(&self) -> *const T {
273        ptr::addr_of!(self.0)
274    }
275
276    /// Gets an unaligned mutable raw pointer to the inner `T`.
277    ///
278    /// # Safety
279    ///
280    /// The returned raw pointer is not necessarily aligned to
281    /// `align_of::<T>()`. Most functions which operate on raw pointers require
282    /// those pointers to be aligned, so calling those functions with the result
283    /// of `get_ptr` will result in undefined behavior if alignment is not
284    /// guaranteed using some out-of-band mechanism. In general, the only
285    /// functions which are safe to call with this pointer are those which are
286    /// explicitly documented as being sound to use with an unaligned pointer,
287    /// such as [`read_unaligned`].
288    ///
289    /// [`read_unaligned`]: core::ptr::read_unaligned
290    // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
291    #[inline(always)]
292    pub fn get_mut_ptr(&mut self) -> *mut T {
293        ptr::addr_of_mut!(self.0)
294    }
295
296    /// Sets the inner `T`, dropping the previous value.
297    // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
298    #[inline(always)]
299    pub fn set(&mut self, t: T) {
300        *self = Unalign::new(t);
301    }
302
303    /// Updates the inner `T` by calling a function on it.
304    ///
305    /// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that
306    /// impl should be preferred over this method when performing updates, as it
307    /// will usually be faster and more ergonomic.
308    ///
309    /// For large types, this method may be expensive, as it requires copying
310    /// `2 * size_of::<T>()` bytes. \[1\]
311    ///
312    /// \[1\] Since the inner `T` may not be aligned, it would not be sound to
313    /// invoke `f` on it directly. Instead, `update` moves it into a
314    /// properly-aligned location in the local stack frame, calls `f` on it, and
315    /// then moves it back to its original location in `self`.
316    ///
317    /// [`T: Unaligned`]: Unaligned
318    #[inline]
319    pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O {
320        if mem::align_of::<T>() == 1 {
321            // While we advise callers to use `DerefMut` when `T: Unaligned`,
322            // not all callers will be able to guarantee `T: Unaligned` in all
323            // cases. In particular, callers who are themselves providing an API
324            // which is generic over `T` may sometimes be called by *their*
325            // callers with `T` such that `align_of::<T>() == 1`, but cannot
326            // guarantee this in the general case. Thus, this optimization may
327            // sometimes be helpful.
328
329            // SAFETY: Since `T`'s alignment is 1, `self` satisfies its
330            // alignment by definition.
331            let t = unsafe { self.deref_mut_unchecked() };
332            return f(t);
333        }
334
335        // On drop, this moves `copy` out of itself and uses `ptr::write` to
336        // overwrite `slf`.
337        struct WriteBackOnDrop<T> {
338            copy: ManuallyDrop<T>,
339            slf: *mut Unalign<T>,
340        }
341
342        impl<T> Drop for WriteBackOnDrop<T> {
343            fn drop(&mut self) {
344                // SAFETY: We never use `copy` again as required by
345                // `ManuallyDrop::take`.
346                let copy = unsafe { ManuallyDrop::take(&mut self.copy) };
347                // SAFETY: `slf` is the raw pointer value of `self`. We know it
348                // is valid for writes and properly aligned because `self` is a
349                // mutable reference, which guarantees both of these properties.
350                unsafe { ptr::write(self.slf, Unalign::new(copy)) };
351            }
352        }
353
354        // SAFETY: We know that `self` is valid for reads, properly aligned, and
355        // points to an initialized `Unalign<T>` because it is a mutable
356        // reference, which guarantees all of these properties.
357        //
358        // Since `T: !Copy`, it would be unsound in the general case to allow
359        // both the original `Unalign<T>` and the copy to be used by safe code.
360        // We guarantee that the copy is used to overwrite the original in the
361        // `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is
362        // called before any other safe code executes, soundness is upheld.
363        // While this method can terminate in two ways (by returning normally or
364        // by unwinding due to a panic in `f`), in both cases, `write_back` is
365        // dropped - and its `drop` called - before any other safe code can
366        // execute.
367        let copy = unsafe { ptr::read(self) }.into_inner();
368        let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self };
369
370        let ret = f(&mut write_back.copy);
371
372        drop(write_back);
373        ret
374    }
375}
376
377impl<T: Copy> Unalign<T> {
378    /// Gets a copy of the inner `T`.
379    // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
380    #[inline(always)]
381    pub fn get(&self) -> T {
382        let Unalign(val) = *self;
383        val
384    }
385}
386
387impl<T: Unaligned> Deref for Unalign<T> {
388    type Target = T;
389
390    #[inline(always)]
391    fn deref(&self) -> &T {
392        Ptr::from_ref(self).transmute().bikeshed_recall_aligned().as_ref()
393    }
394}
395
396impl<T: Unaligned> DerefMut for Unalign<T> {
397    #[inline(always)]
398    fn deref_mut(&mut self) -> &mut T {
399        Ptr::from_mut(self).transmute::<_, _, (_, (_, _))>().bikeshed_recall_aligned().as_mut()
400    }
401}
402
403impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> {
404    #[inline(always)]
405    fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> {
406        PartialOrd::partial_cmp(self.deref(), other.deref())
407    }
408}
409
410impl<T: Unaligned + Ord> Ord for Unalign<T> {
411    #[inline(always)]
412    fn cmp(&self, other: &Unalign<T>) -> Ordering {
413        Ord::cmp(self.deref(), other.deref())
414    }
415}
416
417impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> {
418    #[inline(always)]
419    fn eq(&self, other: &Unalign<T>) -> bool {
420        PartialEq::eq(self.deref(), other.deref())
421    }
422}
423
424impl<T: Unaligned + Eq> Eq for Unalign<T> {}
425
426impl<T: Unaligned + Hash> Hash for Unalign<T> {
427    #[inline(always)]
428    fn hash<H>(&self, state: &mut H)
429    where
430        H: Hasher,
431    {
432        self.deref().hash(state);
433    }
434}
435
436impl<T: Unaligned + Debug> Debug for Unalign<T> {
437    #[inline(always)]
438    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
439        Debug::fmt(self.deref(), f)
440    }
441}
442
443impl<T: Unaligned + Display> Display for Unalign<T> {
444    #[inline(always)]
445    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
446        Display::fmt(self.deref(), f)
447    }
448}
449
450/// A wrapper type to construct uninitialized instances of `T`.
451///
452/// `MaybeUninit` is identical to the [standard library
453/// `MaybeUninit`][core-maybe-uninit] type except that it supports unsized
454/// types.
455///
456/// # Layout
457///
458/// The same layout guarantees and caveats apply to `MaybeUninit<T>` as apply to
459/// the [standard library `MaybeUninit`][core-maybe-uninit] with one exception:
460/// for `T: !Sized`, there is no single value for `T`'s size. Instead, for such
461/// types, the following are guaranteed:
462/// - Every [valid size][valid-size] for `T` is a valid size for
463///   `MaybeUninit<T>` and vice versa
464/// - Given `t: *const T` and `m: *const MaybeUninit<T>` with identical fat
465///   pointer metadata, `t` and `m` address the same number of bytes (and
466///   likewise for `*mut`)
467///
468/// [core-maybe-uninit]: core::mem::MaybeUninit
469/// [valid-size]: crate::KnownLayout#what-is-a-valid-size
470#[repr(transparent)]
471#[doc(hidden)]
472pub struct MaybeUninit<T: ?Sized + KnownLayout>(
473    // SAFETY: `MaybeUninit<T>` has the same size as `T`, because (by invariant
474    // on `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
475    // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
476    // accurately reflects the layout of `T`. By invariant on `T::MaybeUninit`,
477    // it admits uninitialized bytes in all positions. Because `MabyeUninit` is
478    // marked `repr(transparent)`, these properties additionally hold true for
479    // `Self`.
480    T::MaybeUninit,
481);
482
483#[doc(hidden)]
484impl<T: ?Sized + KnownLayout> MaybeUninit<T> {
485    /// Constructs a `MaybeUninit<T>` initialized with the given value.
486    #[inline(always)]
487    pub fn new(val: T) -> Self
488    where
489        T: Sized,
490        Self: Sized,
491    {
492        // SAFETY: It is valid to transmute `val` to `MaybeUninit<T>` because it
493        // is both valid to transmute `val` to `T::MaybeUninit`, and it is valid
494        // to transmute from `T::MaybeUninit` to `MaybeUninit<T>`.
495        //
496        // First, it is valid to transmute `val` to `T::MaybeUninit` because, by
497        // invariant on `T::MaybeUninit`:
498        // - For `T: Sized`, `T` and `T::MaybeUninit` have the same size.
499        // - All byte sequences of the correct size are valid values of
500        //   `T::MaybeUninit`.
501        //
502        // Second, it is additionally valid to transmute from `T::MaybeUninit`
503        // to `MaybeUninit<T>`, because `MaybeUninit<T>` is a
504        // `repr(transparent)` wrapper around `T::MaybeUninit`.
505        //
506        // These two transmutes are collapsed into one so we don't need to add a
507        // `T::MaybeUninit: Sized` bound to this function's `where` clause.
508        unsafe { crate::util::transmute_unchecked(val) }
509    }
510
511    /// Constructs an uninitialized `MaybeUninit<T>`.
512    #[must_use]
513    #[inline(always)]
514    pub fn uninit() -> Self
515    where
516        T: Sized,
517        Self: Sized,
518    {
519        let uninit = CoreMaybeUninit::<T>::uninit();
520        // SAFETY: It is valid to transmute from `CoreMaybeUninit<T>` to
521        // `MaybeUninit<T>` since they both admit uninitialized bytes in all
522        // positions, and they have the same size (i.e., that of `T`).
523        //
524        // `MaybeUninit<T>` has the same size as `T`, because (by invariant on
525        // `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
526        // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
527        // accurately reflects the layout of `T`.
528        //
529        // `CoreMaybeUninit<T>` has the same size as `T` [1] and admits
530        // uninitialized bytes in all positions.
531        //
532        // [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1:
533        //
534        //   `MaybeUninit<T>` is guaranteed to have the same size, alignment,
535        //   and ABI as `T`
536        unsafe { crate::util::transmute_unchecked(uninit) }
537    }
538
539    /// Creates a `Box<MaybeUninit<T>>`.
540    ///
541    /// This function is useful for allocating large, uninit values on the heap
542    /// without ever creating a temporary instance of `Self` on the stack.
543    ///
544    /// # Errors
545    ///
546    /// Returns an error on allocation failure. Allocation failure is guaranteed
547    /// never to cause a panic or an abort.
548    #[cfg(feature = "alloc")]
549    #[inline]
550    pub fn new_boxed_uninit(meta: T::PointerMetadata) -> Result<Box<Self>, AllocError> {
551        // SAFETY: `alloc::alloc::alloc_zeroed` is a valid argument of
552        // `new_box`. The referent of the pointer returned by `alloc` (and,
553        // consequently, the `Box` derived from it) is a valid instance of
554        // `Self`, because `Self` is `MaybeUninit` and thus admits arbitrary
555        // (un)initialized bytes.
556        unsafe { crate::util::new_box(meta, alloc::alloc::alloc) }
557    }
558
559    /// Extracts the value from the `MaybeUninit<T>` container.
560    ///
561    /// # Safety
562    ///
563    /// The caller must ensure that `self` is in an bit-valid state. Depending
564    /// on subsequent use, it may also need to be in a library-valid state.
565    #[inline(always)]
566    pub unsafe fn assume_init(self) -> T
567    where
568        T: Sized,
569        Self: Sized,
570    {
571        // SAFETY: The caller guarantees that `self` is in an bit-valid state.
572        unsafe { crate::util::transmute_unchecked(self) }
573    }
574}
575
576impl<T: ?Sized + KnownLayout> fmt::Debug for MaybeUninit<T> {
577    #[inline]
578    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
579        f.pad(core::any::type_name::<Self>())
580    }
581}
582
583#[cfg(test)]
584mod tests {
585    use core::panic::AssertUnwindSafe;
586
587    use super::*;
588    use crate::util::testutil::*;
589
590    #[test]
591    fn test_unalign() {
592        // Test methods that don't depend on alignment.
593        let mut u = Unalign::new(AU64(123));
594        assert_eq!(u.get(), AU64(123));
595        assert_eq!(u.into_inner(), AU64(123));
596        assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u));
597        assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u));
598        u.set(AU64(321));
599        assert_eq!(u.get(), AU64(321));
600
601        // Test methods that depend on alignment (when alignment is satisfied).
602        let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
603        assert_eq!(u.t.try_deref().unwrap(), &AU64(123));
604        assert_eq!(u.t.try_deref_mut().unwrap(), &mut AU64(123));
605        // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
606        assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123));
607        // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
608        assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123));
609        *u.t.try_deref_mut().unwrap() = AU64(321);
610        assert_eq!(u.t.get(), AU64(321));
611
612        // Test methods that depend on alignment (when alignment is not
613        // satisfied).
614        let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123)));
615        assert!(matches!(u.t.try_deref(), Err(AlignmentError { .. })));
616        assert!(matches!(u.t.try_deref_mut(), Err(AlignmentError { .. })));
617
618        // Test methods that depend on `T: Unaligned`.
619        let mut u = Unalign::new(123u8);
620        assert_eq!(u.try_deref(), Ok(&123));
621        assert_eq!(u.try_deref_mut(), Ok(&mut 123));
622        assert_eq!(u.deref(), &123);
623        assert_eq!(u.deref_mut(), &mut 123);
624        *u = 21;
625        assert_eq!(u.get(), 21);
626
627        // Test that some `Unalign` functions and methods are `const`.
628        const _UNALIGN: Unalign<u64> = Unalign::new(0);
629        const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr();
630        const _U64: u64 = _UNALIGN.into_inner();
631        // Make sure all code is considered "used".
632        //
633        // TODO(https://github.com/rust-lang/rust/issues/104084): Remove this
634        // attribute.
635        #[allow(dead_code)]
636        const _: () = {
637            let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
638            // Make sure that `deref_unchecked` is `const`.
639            //
640            // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
641            let au64 = unsafe { x.t.deref_unchecked() };
642            match au64 {
643                AU64(123) => {}
644                _ => const_unreachable!(),
645            }
646        };
647    }
648
649    #[test]
650    fn test_unalign_update() {
651        let mut u = Unalign::new(AU64(123));
652        u.update(|a| a.0 += 1);
653        assert_eq!(u.get(), AU64(124));
654
655        // Test that, even if the callback panics, the original is still
656        // correctly overwritten. Use a `Box` so that Miri is more likely to
657        // catch any unsoundness (which would likely result in two `Box`es for
658        // the same heap object, which is the sort of thing that Miri would
659        // probably catch).
660        let mut u = Unalign::new(Box::new(AU64(123)));
661        let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
662            u.update(|a| {
663                a.0 += 1;
664                panic!();
665            })
666        }));
667        assert!(res.is_err());
668        assert_eq!(u.into_inner(), Box::new(AU64(124)));
669
670        // Test the align_of::<T>() == 1 optimization.
671        let mut u = Unalign::new([0u8, 1]);
672        u.update(|a| a[0] += 1);
673        assert_eq!(u.get(), [1u8, 1]);
674    }
675
676    #[test]
677    fn test_unalign_copy_clone() {
678        // Test that `Copy` and `Clone` do not cause soundness issues. This test
679        // is mainly meant to exercise UB that would be caught by Miri.
680
681        // `u.t` is definitely not validly-aligned for `AU64`'s alignment of 8.
682        let u = ForceUnalign::<_, AU64>::new(Unalign::new(AU64(123)));
683        #[allow(clippy::clone_on_copy)]
684        let v = u.t.clone();
685        let w = u.t;
686        assert_eq!(u.t.get(), v.get());
687        assert_eq!(u.t.get(), w.get());
688        assert_eq!(v.get(), w.get());
689    }
690
691    #[test]
692    fn test_unalign_trait_impls() {
693        let zero = Unalign::new(0u8);
694        let one = Unalign::new(1u8);
695
696        assert!(zero < one);
697        assert_eq!(PartialOrd::partial_cmp(&zero, &one), Some(Ordering::Less));
698        assert_eq!(Ord::cmp(&zero, &one), Ordering::Less);
699
700        assert_ne!(zero, one);
701        assert_eq!(zero, zero);
702        assert!(!PartialEq::eq(&zero, &one));
703        assert!(PartialEq::eq(&zero, &zero));
704
705        fn hash<T: Hash>(t: &T) -> u64 {
706            let mut h = std::collections::hash_map::DefaultHasher::new();
707            t.hash(&mut h);
708            h.finish()
709        }
710
711        assert_eq!(hash(&zero), hash(&0u8));
712        assert_eq!(hash(&one), hash(&1u8));
713
714        assert_eq!(format!("{:?}", zero), format!("{:?}", 0u8));
715        assert_eq!(format!("{:?}", one), format!("{:?}", 1u8));
716        assert_eq!(format!("{}", zero), format!("{}", 0u8));
717        assert_eq!(format!("{}", one), format!("{}", 1u8));
718    }
719
720    #[test]
721    #[allow(clippy::as_conversions)]
722    fn test_maybe_uninit() {
723        // int
724        {
725            let input = 42;
726            let uninit = MaybeUninit::new(input);
727            // SAFETY: `uninit` is in an initialized state
728            let output = unsafe { uninit.assume_init() };
729            assert_eq!(input, output);
730        }
731
732        // thin ref
733        {
734            let input = 42;
735            let uninit = MaybeUninit::new(&input);
736            // SAFETY: `uninit` is in an initialized state
737            let output = unsafe { uninit.assume_init() };
738            assert_eq!(&input as *const _, output as *const _);
739            assert_eq!(input, *output);
740        }
741
742        // wide ref
743        {
744            let input = [1, 2, 3, 4];
745            let uninit = MaybeUninit::new(&input[..]);
746            // SAFETY: `uninit` is in an initialized state
747            let output = unsafe { uninit.assume_init() };
748            assert_eq!(&input[..] as *const _, output as *const _);
749            assert_eq!(input, *output);
750        }
751    }
752}