1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use crate::util::FsVerityHasher;
use std::io;

/// A `MerkleTree` contains levels of hashes that can be used to verify the integrity of data.
///
/// While a single hash could be used to integrity check some data, if the data (or hash) is
/// corrupt, a single hash can not determine what part of the data is corrupt. A `MerkleTree`,
/// however, contains a hash for every block of data, allowing it to identify which blocks of
/// data are corrupt. A `MerkleTree` also allows individual blocks of data to be verified without
/// having to verify the rest of the data.
///
/// Furthermore, a `MerkleTree` contains multiple levels of hashes, where each level
/// contains hashes of blocks of hashes of the lower level. The top level always contains a
/// single hash, the merkle root. This tree of hashes allows a `MerkleTree` to determine which of
/// its own hashes are corrupt, if any.
///
/// # Structure Details
///
/// A merkle tree contains levels. A level is a row of the tree, starting at 0 and counting upward.
/// Level 0 represents the leaves of the tree which contain hashes of chunks of the input stream.
/// Each level consists of a hash for each block of hashes from the previous level (or, for
/// level 0, each block of data).
///
///
/// While building a `MerkleTree`, callers pass in an `FsverityHasher` which hashes based on a
/// particular algorithm and contains the necessary parameters to compute the merkle tree. The
/// `block size` is determined by the filesystem and the `salt` by the FsverityMetadata struct
/// stored in fxfs. When computing a hash, if `salt`.len() > 0, the block of data (or hashes) is
/// prepended by the `salt`.
///
/// For level 0, the length of the block is `block size`, except for the last block, which may be
/// less than `block size`. All other levels use a block length of `block size`.
#[derive(Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)]
pub struct MerkleTree {
    levels: Vec<Vec<Vec<u8>>>,
}

impl MerkleTree {
    /// Creates a `MerkleTree` from a well-formed tree of hashes.
    ///
    /// A tree of hashes is well-formed iff:
    /// - The length of the last level is 1.
    /// - The length of every hash level is the length of the prior hash level divided by
    ///   hashes_per_block (`block size` \ digest length`), rounded up to the nearest
    ///   integer.
    pub fn from_levels(levels: Vec<Vec<Vec<u8>>>) -> MerkleTree {
        MerkleTree { levels }
    }

    /// The root hash of the merkle tree.
    pub fn root(&self) -> &[u8] {
        &self.levels[self.levels.len() - 1][0]
    }

    /// Creates a `MerkleTree` from all of the bytes of a `Read`er.
    ///
    /// # Examples
    /// ```
    /// # use fsverity_merkle::MerkleTree;
    /// fsverity_merkle::{MerkleTree, FsVerityHasher, FsVerityHasherOptions},
    /// let data_to_hash = [0xffu8; 8192];
    /// let hasher = FsVerityHasher::Sha256(FsVerityHasherOptions::new(vec![0xFF; 8], 4096));
    /// let tree = MerkleTree::from_reader(&data_to_hash[..], hasher).unwrap();
    /// assert_eq!(
    ///     tree.root().bytes(),
    ///     FromHex::from_hex("e9c09b505561b9509f93b5c7990ed41427f708480c56306453d505e94076d600")
    ///         .unwrap();
    /// );
    /// ```
    pub fn from_reader(
        mut reader: impl std::io::Read,
        hasher: FsVerityHasher,
    ) -> Result<MerkleTree, io::Error> {
        let block_size = hasher.block_size() as usize;
        let mut builder = crate::builder::MerkleTreeBuilder::new(hasher);
        let mut buf = vec![0u8; block_size];
        loop {
            let size = reader.read(&mut buf)?;
            if size == 0 {
                break;
            }
            builder.write(&buf[0..size]);
        }
        Ok(builder.finish())
    }
}

impl AsRef<[Vec<Vec<u8>>]> for MerkleTree {
    fn as_ref(&self) -> &[Vec<Vec<u8>>] {
        &self.levels[..]
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::FsVerityHasherOptions;
    use hex::FromHex;

    impl MerkleTree {
        /// Given the index of a block of data, lookup its hash.
        fn leaf_hash(&self, block: usize) -> &[u8] {
            &self.levels[0][block]
        }
    }

    #[test]
    fn test_single_full_hash_block_sha256() {
        let hasher = FsVerityHasher::Sha256(FsVerityHasherOptions::new(vec![0xFF; 8], 4096));
        let hashes_per_block = hasher.block_size() / hasher.hash_size();
        let mut leafs = Vec::new();
        let mut expected_leafs = Vec::new();
        {
            let block = vec![0xFF; hasher.block_size()];
            for _i in 0..hashes_per_block {
                leafs.push(hasher.hash_block(&block));
                expected_leafs.push(hasher.hash_block(&block));
            }
        }
        let root = hasher.hash_hashes(&leafs);
        let tree: MerkleTree = MerkleTree::from_levels(vec![leafs, vec![root.clone()]]);
        assert_eq!(tree.root(), root);
        for (i, leaf) in expected_leafs.iter().enumerate().take(hashes_per_block) {
            assert_eq!(tree.leaf_hash(i), leaf);
        }
    }

    #[test]
    fn test_single_full_hash_block_sha512() {
        let hasher = FsVerityHasher::Sha512(FsVerityHasherOptions::new(vec![0xFF; 8], 4096));
        let hashes_per_block = hasher.block_size() / hasher.hash_size();
        let mut leafs = Vec::new();
        let mut expected_leafs = Vec::new();
        {
            let block = vec![0xFF; hasher.block_size()];
            for _i in 0..hashes_per_block {
                leafs.push(hasher.hash_block(&block));
                expected_leafs.push(hasher.hash_block(&block));
            }
        }
        let root = hasher.hash_hashes(&leafs);
        let tree: MerkleTree = MerkleTree::from_levels(vec![leafs, vec![root.clone()]]);
        assert_eq!(tree.root(), root);
        for (i, leaf) in expected_leafs.iter().enumerate().take(hashes_per_block) {
            assert_eq!(tree.leaf_hash(i), leaf);
        }
    }

    #[test]
    fn test_from_reader_empty_sha256() {
        let data_to_hash = [0x00u8; 0];
        let tree = MerkleTree::from_reader(
            &data_to_hash[..],
            FsVerityHasher::Sha256(FsVerityHasherOptions::new(vec![0xFF; 8], 4096)),
        )
        .unwrap();
        let expected: [u8; 32] =
            FromHex::from_hex("0000000000000000000000000000000000000000000000000000000000000000")
                .unwrap();
        assert_eq!(tree.root(), expected);
    }

    #[test]
    fn test_from_reader_empty_sha512() {
        let data_to_hash = [0x00u8; 0];
        let tree = MerkleTree::from_reader(
            &data_to_hash[..],
            FsVerityHasher::Sha512(FsVerityHasherOptions::new(vec![0xFF; 8], 4096)),
        )
        .unwrap();
        let expected: [u8; 64] = FromHex::from_hex("00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000").unwrap();
        assert_eq!(tree.root(), expected);
    }

    #[test]
    fn test_from_reader_oneblock_sha256() {
        let data_to_hash = [0xffu8; 8192];
        let tree = MerkleTree::from_reader(
            &data_to_hash[..],
            FsVerityHasher::Sha256(FsVerityHasherOptions::new(vec![0xFF; 8], 4096)),
        )
        .unwrap();
        let expected: [u8; 32] =
            FromHex::from_hex("e9c09b505561b9509f93b5c7990ed41427f708480c56306453d505e94076d600")
                .unwrap();
        assert_eq!(tree.root(), expected);
    }

    #[test]
    fn test_from_reader_oneblock_sha512() {
        let data_to_hash = [0xffu8; 8192];
        let tree = MerkleTree::from_reader(
            &data_to_hash[..],
            FsVerityHasher::Sha512(FsVerityHasherOptions::new(vec![0xFF; 8], 4096)),
        )
        .unwrap();
        let expected: [u8; 64] = FromHex::from_hex("22750472f522bf68a1fe2a66ee1ac57759b322c634d931097b3751e3cd9fe9dd2d8f551631922bf8f675e4b5e3a38e6db11c7df0e5053e80ffbac2c2d7a0105b").unwrap();
        assert_eq!(tree.root(), expected);
    }

    #[test]
    fn test_from_reader_unaligned_sha256() {
        let size = 2_109_440usize;
        let mut the_bytes = Vec::with_capacity(size);
        the_bytes.extend(std::iter::repeat(0xff).take(size));
        let tree = MerkleTree::from_reader(
            &the_bytes[..],
            FsVerityHasher::Sha256(FsVerityHasherOptions::new(vec![0xFF; 8], 8192)),
        )
        .unwrap();
        let expected: [u8; 32] =
            FromHex::from_hex("fc21b1fbf53a4175470a7328085b5a03b2c87771cda6f1a4dbd1d1d5ce8babd5")
                .unwrap();
        assert_eq!(tree.root(), expected);
    }

    #[test]
    fn test_from_reader_unaligned_sha512() {
        let size = 2_109_440usize;
        let mut the_bytes = Vec::with_capacity(size);
        the_bytes.extend(std::iter::repeat(0xff).take(size));
        let tree = MerkleTree::from_reader(
            &the_bytes[..],
            FsVerityHasher::Sha512(FsVerityHasherOptions::new(vec![0xFF; 8], 8192)),
        )
        .unwrap();
        let expected: [u8; 64] = FromHex::from_hex("e0b048b63e814157443f42ccef9093482cee056f6afea5b9e26b772effa5077a8bac34ee8f7a877bf219e0f45a999154b0600a319c4bd7d0c9b59f8d17ce0f75").unwrap();
        assert_eq!(tree.root(), expected);
    }
}