virtio_device/ring.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Minimal type-safe definitions of the virtio data structures.
//!
//! Contains definitions and type-safe accessors and manipulators of the virtio data structures.
//! For the leaf data structures like [descriptors](Desc) these definitions are simply the in
//! memory layout as a Rust `struct`.
//!
//! Unfortunately the virtqueues are a variable sized data structure, whose length is not known till
//! run time as the size is determined by the driver. Representing the virtqueue as 'just' a Rust
//! `struct` is therefore not possible.
//!
//! Two structs are used as for the representation as it allows for separating the
//! [`Device`] owned and [`Driver`] owned portions of the virtqueue into
//! separate portions with their correct mutability.
//!
//! Due to the split into the [`Driver`] and [`Device`] structs there is
//! no specifically named `virtqueue` in this module. The [Queue](crate::queue::Queue) builds on the
//! [`Driver`] and [`Device`] to build useful virtqueue functionality.
//!
//! These abstractions are intended to be type-safe, but not enforce correct implementation of the
//! virtio protocols. As such reading the [virtio specification]
//! (https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html)
//! is required to correctly use this module. Most likely you do not want to use these directly and
//! want to use the higher level [`queue`](crate::queue), and [`chain`](crate::chain) modules that
//! provide easier to use wrappers.
use crate::mem::DeviceRange;
use std::marker::PhantomData;
use std::mem;
use std::sync::atomic;
/// Descriptor has a next field.
pub const VRING_DESC_F_NEXT: u16 = 1 << 0;
/// Descriptor is device write-only (otherwise device read-only).
pub const VRING_DESC_F_WRITE: u16 = 1 << 1;
/// Descriptor contains a list of buffer descriptors.
pub const VRING_DESC_F_INDIRECT: u16 = 1 << 2;
/// Describes descriptor access direction.
///
/// Any given descriptor is either device read only or device write only.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum DescAccess {
DeviceRead,
DeviceWrite,
}
/// Virtio descriptor data structure
///
/// Represents the in memory format of virtio descriptors and provides some accessors.
#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct Desc {
addr: u64,
len: u32,
// This is not bitflags! as it may contain additional bits that we do not define
// and so would violate the bitflags type safety.
flags: u16,
next: u16,
}
impl Desc {
/// Returns whether the [next](VRING_DESC_F_NEXT) bit is set.
///
/// Typically the [next](#next) method is preferred.
pub fn has_next(&self) -> bool {
self.flags & VRING_DESC_F_NEXT != 0
}
/// Returns whether the [indirect](VRING_DESC_F_INDIRECT) bit is set.
pub fn is_indirect(&self) -> bool {
self.flags & VRING_DESC_F_INDIRECT != 0
}
/// Returns whether the [write](VRING_DESC_F_WRITE) bit is set.
///
/// This flag should be ignored when [is_indirect](#is_indirect) is true.
pub fn write_only(&self) -> bool {
self.flags & VRING_DESC_F_WRITE != 0
}
/// Return the descriptor access type.
///
/// This is a convenience wrapper around [write_only](#write_only) to provide a safer type.
pub fn access_type(&self) -> DescAccess {
if self.write_only() {
DescAccess::DeviceWrite
} else {
DescAccess::DeviceRead
}
}
/// Returns the next descriptor if there is one, otherwise a `None`.
pub fn next(&self) -> Option<u16> {
if self.has_next() {
Some(self.next)
} else {
None
}
}
/// Returns the guest (address, length) pair representing the contents of this descriptor.
///
/// No validation of the address and length is performed. In particular the range could be
/// invalid or wrap.
pub fn data(&self) -> (u64, u32) {
(self.addr, self.len)
}
}
/// Represents the layout of a virtio header
///
/// Due to the need to access the header fields through raw pointers this struct is never directly
/// used, however we define it so that we can take the `size_of` it, and to make the translation to
/// our manual offsets more obvious.
#[repr(C)]
struct HeaderLayout {
_flags: u16,
_idx: u16,
}
impl HeaderLayout {
// Define the offset of the two fields in the header layout. These offsets will be used to add
// to u16 pointers.
const FLAGS_OFFSET: usize = 0;
const IDX_OFFSET: usize = 1;
}
/// Wrapper around accessing a virtio header
///
/// For safety the members of the virtio header must be individually read and written using volatile
/// accesses through a raw pointer, and we cannot construct a regular `&HeaderLayout`. Therefore
/// this object wraps a raw pointer and provides safe accesses to the header fields.
//
// # Safety
//
// `base` must always be a non-null pointer that points to an array of two u16 values (i.e. it
// must point to a HeaderLayout), that can be read and written from. This pointer must be known to
// be valid for the lifetime 'a, making it valid for at least the lifetime of this object.
#[derive(Clone)]
struct Header<'a> {
base: *mut u16,
lifetime: PhantomData<&'a ()>,
}
impl<'a> Header<'a> {
/// Construct a [`Header`] wrapping the given [`HeaderLayout`]
///
/// # Safety
///
/// Behavior is undefined if:
/// - `layout` is not valid for reads or writes
/// - `layout` is not correctly aligned
/// - `layout` does not point to an object that lives for at least the lifetime `'a`
unsafe fn from_layout(layout: *mut HeaderLayout) -> Self {
// If layout is a valid pointer to a HeaderLayout, then it is also a valid pointer to an
// array of two u16 values, which is why we can do this cast and perform the offsetting that
// we do in `flags()` and `idx()`
Header { base: layout.cast(), lifetime: PhantomData }
}
// The returned pointer is guaranteed to be correctly aligned and valid for reads and writes.
fn flags(&self) -> *mut u16 {
// From the requirements in from_layout, base is a valid pointer to a HeaderLayout, and so
// offsetting it to the flags field must result in a valid pointer.
unsafe { self.base.add(HeaderLayout::FLAGS_OFFSET) }
}
// The returned pointer is guaranteed to be correctly aligned and valid for reads and writes.
fn idx(&self) -> *mut u16 {
// From the requirements in from_layout, base is a valid pointer to a HeaderLayout, and so
// offsetting it to the idx field must result in a valid pointer.
unsafe { self.base.add(HeaderLayout::IDX_OFFSET) }
}
fn are_notifications_suppressed(&self) -> bool {
// flags() is guaranteed to return a pointer that is aligned and valid for reading
unsafe { self.flags().read_volatile() == 1 }
}
fn load_idx(&self) -> u16 {
// idx() is guaranteed to return a pointer that is aligned and valid for reading
let result = unsafe { self.idx().read_volatile() };
atomic::fence(atomic::Ordering::Acquire);
result
}
fn store_idx(&self, idx: u16) {
atomic::fence(atomic::Ordering::Release);
// idx() is guaranteed to return a pointer that is aligned and valid for writing
unsafe { self.idx().write_volatile(idx) };
}
/// Changes flags to suppress notifications.
///
/// Not permitted if VIRTIO_F_EVENT_IDX feature was negotiated.
/// This is not yet exposed for use.
#[allow(dead_code)]
fn suppress_notifications(&self) {
// flags() is guaranteed to return a pointer that is aligned and valid for writing
unsafe { self.flags().write_volatile(1) };
}
/// Change flags to enable notifications.
fn enable_notifications(&self) {
// flags() is guaranteed to return a pointer that is aligned and valid for writing
unsafe { self.flags().write_volatile(0) };
}
}
/// Representation of driver owned data.
///
/// Provides methods for safely querying, using appropriate memory barriers, items published by the
/// driver.
///
/// Contents of this `struct` are not expected to be being modified in parallel by a driver in a
/// guest, but as there is no way to guarantee guest behavior it is designed under the assumption of
/// parallel modifications by a malicious guest.
//
// # Safety
//
// The pointers `desc` and `avail` are created and validated in [`new`](#new) to point to ranges of
// memory that have at least `queue_size` valid objects in them, and are otherwise correctly aligned
// and are valid to read from. `used_event_index` must be an aligned pointer that can be read from.
//
// All of the objects pointed to by `desc`, `avail` and `used_event_index` must remain valid for the
// lifetime `'a`. It is the job of [`new`](#new) to take a [`DeviceRange`] and construct valid
// pointers, and they, along with `queue_size`, should never be changed.
//
// The pointers are marked mutable so as to allow the `as_driver::Driver` to be implemented,
// although the regular device implementation does not expose any way to perform writes.
// `as_driver::Driver` has its own safety discussion.
pub struct Driver<'a> {
desc: *mut Desc,
queue_size: u16,
avail_header: Header<'a>,
avail: *mut u16,
used_event_index: *mut u16,
}
impl<'a> Driver<'a> {
/// How many bytes the avail ring should be for the given `queue_size`.
///
/// Provides an easy way to calculate the correct size of the range for passing to [`new`](#new)
pub const fn avail_len_for_queue_size(queue_size: u16) -> usize {
mem::size_of::<HeaderLayout>() + mem::size_of::<u16>() * (queue_size as usize + 1)
}
/// Construct a [`Driver`] using the provided memory for descriptor and available rings.
///
/// Provided ranges must be correctly sized and aligned to represent the same power of two
/// queue size, otherwise a `None` is returned.
pub fn new<'b: 'a, 'c: 'a>(desc: DeviceRange<'b>, avail: DeviceRange<'c>) -> Option<Self> {
let queue_size = desc.len() / std::mem::size_of::<Desc>();
if !queue_size.is_power_of_two() {
return None;
}
let queue_size16: u16 = queue_size.try_into().ok()?;
// Here we calculated queue_size based on the length of desc, so we know that desc points to
// at least queue_size valid objects.
let desc = desc.try_mut_ptr()?;
let (avail_header, rest) = avail.split_at(mem::size_of::<HeaderLayout>())?;
// from_layout requires that the pointer we give it is correctly aligned, sized and lives
// long enough. try_mut_ptr will only return a Some() if avail_header is aligned and at
// least large enough for there to be a HeaderLayout. We also know that avail_header is
// valid for at least our lifetime of `'a`.
let avail_header = unsafe { Header::from_layout(avail_header.try_mut_ptr()?) };
// Reinterpret the rest as a [u16], with the last one being the used_event_index
if rest.len() != mem::size_of::<u16>() * (queue_size + 1) {
return None;
}
let avail: *mut u16 = rest.try_mut_ptr()?;
// We know that avail is an aligned pointer, as otherwise rest.try_mut_ptr() would have
// returned a none and the size of avail was just validated above to hold queue_size+1 items
let used_event_index = unsafe { avail.add(queue_size) };
// Building the final struct we know that our pointers; desc, avail and used_event_index,
// all point to sufficiently large objects for our queue_size16 that are aligned. As they
// were derived from DeviceRanges that have a lifetime of at least `'a`, we have fulfilled
// all the invariants defined on the struct.
Some(Self { desc, queue_size: queue_size16, avail_header, avail, used_event_index })
}
/// Query if a descriptor chain has been published with the given index.
///
/// If a chain has been published by the driver then returns the index of the first descriptor
/// in the chain. Otherwise returns a `None`.
pub fn get_avail(&self, next_index: u16) -> Option<u16> {
if next_index != self.avail_header.load_idx() {
// The struct level invariant on `avail` and `queue_size` guarantee that this offset
// produces a readable value.
Some(unsafe { self.avail.add((next_index % self.queue_size).into()).read_volatile() })
} else {
None
}
}
/// Request a descriptor by index.
///
/// Returns a none if the requested index is not within the range of the ring. Beyond this check
/// this method has no way to validate if the requested descriptor is valid and it is the
/// responsibility of the caller to know this.
pub fn get_desc(&self, index: u16) -> Option<Desc> {
if index < self.queue_size {
// The struct level invariant on `desc` and `queue_size` guarantee that this offset
// produces a readable value.
Some(unsafe { self.desc.add(index.into()).read_volatile() })
} else {
None
}
}
/// Determines if the driver has requested a notification for the given descriptor submission.
///
/// Queries the information published by the driver to determine whether or not it would like a
/// notification for the given `submitted` descriptor by the [`Device`]. As the [`Driver`] holds
/// no host state whether the `VIRTIO_F_EVENT_IDX` feature was negotiated must be passed in.
pub fn needs_notification(&self, feature_event_idx: bool, submitted: u16) -> bool {
if feature_event_idx {
// The struct level invariant on `used_event_index` guarantee this this is readable.
submitted == unsafe { self.used_event_index.read_volatile() }
} else {
!self.avail_header.are_notifications_suppressed()
}
}
/// Returns the size of the descriptor and available rings.
///
/// The descriptor and available rings are, by definition, the same size. This is just returning
/// the size that was calculated during [`new`](#new)
pub fn queue_size(&self) -> u16 {
self.queue_size
}
}
/// Representation of an entry in the used ring.
///
/// The only purpose [`Used`] has is to be passed to [insert_used](Device::insert_used) to be
/// copied into the used ring. As a result the only provided method is [new](Used::new) and there
/// are no accessors, as the driver is the one who will be accessing it.
#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct Used {
/// Index of start of used descriptor chain.
///
/// For padding reasons the spec makes `id` in this structure is 32-bits, although it will never
/// exceed an actual 16-bit descriptor index.
id: u32,
/// Total length of the descriptor chain which was used (written to), in bytes.
len: u32,
}
impl Used {
/// Constructs a new used entry.
///
/// `id` is the index of the first descriptor in the chain being returned and `len` is the
/// total number of bytes written to any writable descriptors in the chain.
pub fn new(id: u16, len: u32) -> Used {
Used { id: id.into(), len }
}
}
/// Represents the device owned data.
///
/// Contents of this struct are expected to be modified by the device and so are mutable. Provided
/// methods allow for safely publishing data to the driver using appropriate memory barriers.
///
/// Although only the device is supposed to be modifying this data it is designed to account for a
/// malicious guest performing modifications in parallel.
//
// # Safety
//
// The pointer `used` is created and validated in [`new`](#new) to point to ranges of memory that
// have at least `queue_size` valid objects in them, and are otherwise correctly aligned and are
// valid to write to. `avail_event_index` must be an aligned pointer that can be written.
//
// All of the objects pointed to by `used`, and `avail_event_index` must remain valid for the
// lifetime `'a`. It is the job of [`new`](#new) to take a [`DeviceRange`] and construct valid
// pointers, and they, along with `queue_size`, should never be changed.
pub struct Device<'a> {
queue_size: u16,
used_header: Header<'a>,
used: *mut Used,
// Notification suppression is not yet exposed for use.
#[allow(dead_code)]
avail_event_index: *mut u16,
}
impl<'a> Device<'a> {
/// How many bytes the avail ring should be for the given `queue_size`.
///
/// Provides an easy way to calculate the correct size of the slice for passing to [`new`](#new)
pub const fn used_len_for_queue_size(queue_size: u16) -> usize {
mem::size_of::<HeaderLayout>()
+ mem::size_of::<Used>() * queue_size as usize
+ mem::size_of::<u16>()
}
/// Construct a [`Device`] using the provided memory for the used ring.
///
/// Provided range must be correctly sized and aligned to represent a power of two queue size,
/// otherwise a `None` is returned.
pub fn new<'b: 'a>(used: DeviceRange<'b>) -> Option<Self> {
let (used_header, rest) = used.split_at(mem::size_of::<HeaderLayout>())?;
// from_layout requires that the pointer we give it is correctly aligned, sized and lives
// long enough. try_mut_ptr will only return a Some() if avail_header is aligned and at
// least large enough for there to be a HeaderLayout. We also know that avail_header is
// valid for at least our lifetime of `'a`.
let used_header = unsafe { Header::from_layout(used_header.try_mut_ptr()?) };
// Take the last u16 from what is remaining as avail_event_index
if rest.len() < mem::size_of::<u16>() {
return None;
}
let queue_size = (rest.len() - mem::size_of::<u16>()) / mem::size_of::<Used>();
if !queue_size.is_power_of_two() {
return None;
}
let queue_size16: u16 = queue_size.try_into().ok()?;
let used: *mut Used = rest.try_mut_ptr()?;
// We know that used is an aligned pointer, as otherwise rest.try_mut_ptr() would have
// returned a none and the size of used was just validated above to hold queue_size+1 items
let avail_event_index = unsafe { used.add(queue_size).cast() };
// Start with notifications from the driver enabled by default.
used_header.enable_notifications();
// Building the final struct we know that our pointers; used and avail_event_index, all
// point to sufficiently large objects for our queue_size16 that are aligned. As they
// were derived from DeviceRanges that have a lifetime of at least `'a`, we have fulfilled
// all the invariants defined on the struct.
Some(Self { queue_size: queue_size16, used_header, used, avail_event_index })
}
/// Returns the size of the used ring.
pub fn queue_size(&self) -> u16 {
self.queue_size
}
/// Add a descriptor chain to the used ring.
///
/// After calling this the descriptor is not yet visible to the driver. To make it visible
/// [`publish_used`](#publish_used) must be called. Chains are not implicitly published to allow
/// for batching the return of chains.
///
/// To allow for passing the same `index` between this and [`publish_used`](#publish_used),
/// `index` here will automatically be wrapped to the queue length.
pub fn insert_used(&mut self, used: Used, index: u16) {
// The struct level invariant on `used` and `queue_size` guarantee that this offset
// produces a writable value.
unsafe { self.used.add((index % self.queue_size).into()).write_volatile(used) };
}
/// Publish the avail ring up to the provided `index` to the driver.
///
/// This updates the driver visible index and performs appropriate memory barriers for the
/// driver to see any returned descriptors. It does not perform any kind of asynchronous
/// notification, such as an interrupt injection, to the guest or driver as that is a virtio
/// transport specific detail and is the responsibility of the caller to know how to do.
///
/// Note that indices should not be wrapped by the caller to the queue length as they are
/// supposed to be free running and only wrap at the `u16` limit.
pub fn publish_used(&mut self, index: u16) {
self.used_header.store_idx(index);
}
}
/// Driver side access to rings for writing tests
///
/// This module provides helpers to access rings from the side of the driver, and not the device,
/// which inverts the expectations on reading and writing. Provided here to reuse the [`Driver`]
/// and [`Device`] definitions, and is only intended for consumption by the [`fake_queue`]
/// (crate::fake_queue).
///
/// The helpers provided here are extremely minimal and low-level, and aim to the be the bare
/// minimum to simulate the driver side of ring interactions for the purpose of writing unit-tests.
pub(crate) mod as_driver {
use std::sync::atomic;
pub struct Device<'a>(super::Device<'a>);
impl<'a> Device<'a> {
pub fn new<'b: 'a>(device: &super::Device<'b>) -> Self {
// In constructing a new super::Device we have not broken any invariants on the original
// as we do not change any of the pointers or sizes, and ensure the original has at
// least as long a lifetime.
Self(super::Device {
queue_size: device.queue_size,
used_header: device.used_header.clone(),
used: device.used,
avail_event_index: device.avail_event_index,
})
}
pub fn read_idx(&self) -> u16 {
// Header::idx() is defined to always produce a pointer that may be read.
let result = unsafe { self.0.used_header.idx().read_volatile() };
atomic::fence(atomic::Ordering::Acquire);
result
}
pub fn read_used(&self, index: u16) -> super::Used {
// The struct invariant on super::Device guarantee this offset is valid and readable.
unsafe { self.0.used.add((index % self.0.queue_size).into()).read_volatile() }
}
}
pub struct Driver<'a>(super::Driver<'a>);
impl<'a> Driver<'a> {
pub fn new<'b: 'a>(driver: &super::Driver<'b>) -> Self {
// In constructing a new super::Driver we have not broken any invariants on the original
// as we do not change any of the pointers or sizes, and ensure the original has at
// least as long a lifetime.
Self(super::Driver {
desc: driver.desc,
queue_size: driver.queue_size,
avail_header: driver.avail_header.clone(),
avail: driver.avail,
used_event_index: driver.used_event_index,
})
}
pub fn write_desc(&mut self, index: u16, desc: super::Desc) {
// The struct invariant on super::Driver guarantee this offset is valid and writable.
unsafe { self.0.desc.add((index % self.0.queue_size).into()).write_volatile(desc) };
}
pub fn write_avail(&mut self, index: u16, val: u16) {
// The struct invariant on super::Driver guarantee this offset is valid and writable.
unsafe { self.0.avail.add((index % self.0.queue_size).into()).write_volatile(val) };
}
#[allow(unused)]
pub fn write_flags(&mut self, flags: u16) {
atomic::fence(atomic::Ordering::Release);
// Header::flags() is defined to always produce a pointer that may be written.
unsafe { self.0.avail_header.flags().write_volatile(flags) };
}
pub fn write_idx(&mut self, idx: u16) {
atomic::fence(atomic::Ordering::Release);
// Header::idx() is defined to always produce a pointer that may be written.
unsafe { self.0.avail_header.idx().write_volatile(idx) };
}
#[allow(unused)]
pub fn write_used_event_index(&mut self, index: u16) {
atomic::fence(atomic::Ordering::Release);
// The struct invariant on super::Driver guarantee this pointer is valid and writable.
unsafe { self.0.used_event_index.write_volatile(index) };
}
}
pub fn make_desc(addr: u64, len: u32, flags: u16, next: u16) -> super::Desc {
super::Desc { addr, len, flags, next }
}
pub fn deconstruct_used(used: super::Used) -> (u32, u32) {
(used.id, used.len)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::fake_queue::{Chain, FakeQueue, IdentityDriverMem};
#[test]
fn test_size() {
let driver_mem = IdentityDriverMem::new();
// Declare memory for queue size of 3, which is not a power of two.
let mem = driver_mem.alloc_queue_memory(3).unwrap();
assert!(Driver::new(mem.desc, mem.avail).is_none());
assert!(Device::new(mem.used).is_none());
// Differing, but otherwise valid, sizes for the two rings.
let mem = driver_mem.alloc_queue_memory(4).unwrap();
let mem2 = driver_mem.alloc_queue_memory(8).unwrap();
assert!(Driver::new(mem.desc, mem2.avail).is_none());
// Declare memory for queues with a queue size of 8, which is good.
let mem = driver_mem.alloc_queue_memory(8).unwrap();
assert!(Driver::new(mem.desc, mem.avail).is_some());
assert!(Device::new(mem.used).is_some());
}
#[test]
fn test_descriptor() {
let driver_mem = IdentityDriverMem::new();
let mem = driver_mem.alloc_queue_memory(128).unwrap();
let driver = Driver::new(mem.desc, mem.avail).unwrap();
let mut device = Device::new(mem.used).unwrap();
let mut fake_queue = FakeQueue::new(&driver, &device).unwrap();
// Check initial state.
assert!(driver.get_avail(0).is_none());
// Ask the fake driver to publish a couple of descriptor chains. We know where in the
// available list they must be placed, but not what descriptor index they will get.
let (avail0, first_desc0) =
fake_queue.publish(Chain::with_lengths(&[64, 64], &[], &driver_mem)).unwrap();
assert_eq!(avail0, 0);
assert_eq!(driver.get_avail(0), Some(first_desc0));
let (avail1, first_desc1) =
fake_queue.publish(Chain::with_lengths(&[32], &[48], &driver_mem)).unwrap();
assert_eq!(avail1, 1);
assert_eq!(driver.get_avail(0), Some(first_desc0));
assert_eq!(driver.get_avail(1), Some(first_desc1));
// Validate the two chains are what we expect them to be.
let desc = driver.get_desc(first_desc0).unwrap();
assert!(desc.has_next());
assert!(!desc.write_only());
assert_eq!(desc.data().1, 64);
let desc = driver.get_desc(desc.next().unwrap()).unwrap();
assert!(!desc.has_next());
assert!(!desc.write_only());
assert_eq!(desc.data().1, 64);
let desc = driver.get_desc(first_desc1).unwrap();
assert!(desc.has_next());
assert!(!desc.write_only());
assert_eq!(desc.data().1, 32);
let desc = driver.get_desc(desc.next().unwrap()).unwrap();
assert!(!desc.has_next());
assert!(desc.write_only());
assert_eq!(desc.data().1, 48);
// Return the chains in reverse order. Claim we wrote 16 bytes to the writable portion.
device.insert_used(Used::new(first_desc1, 16), 0);
device.insert_used(Used::new(first_desc0, 0), 1);
assert!(fake_queue.next_used().is_none());
// Publish at once.
device.publish_used(2);
// Should now be able to receive the descriptors back.
let chain = fake_queue.next_used().unwrap();
assert_eq!(chain.written(), 16);
let mut iter = chain.data_iter();
assert_eq!(iter.next().map(|(_, len)| len), Some(16));
assert!(iter.next().is_none());
let chain = fake_queue.next_used().unwrap();
assert_eq!(chain.written(), 0);
assert!(chain.data_iter().next().is_none());
// Should be nothing left.
assert!(fake_queue.next_used().is_none());
}
}