virtio_device/
ring.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Minimal type-safe definitions of the virtio data structures.
//!
//! Contains definitions and type-safe accessors and manipulators of the virtio data structures.
//! For the leaf data structures like [descriptors](Desc) these definitions are simply the in
//! memory layout as a Rust `struct`.
//!
//! Unfortunately the virtqueues are a variable sized data structure, whose length is not known till
//! run time as the size is determined by the driver. Representing the virtqueue as 'just' a Rust
//! `struct` is therefore not possible.
//!
//! Two structs are used as for the representation as it allows for separating the
//! [`Device`] owned and [`Driver`] owned portions of the virtqueue into
//! separate portions with their correct mutability.
//!
//! Due to the split into the [`Driver`] and [`Device`] structs there is
//! no specifically named `virtqueue` in this module. The [Queue](crate::queue::Queue) builds on the
//! [`Driver`] and [`Device`] to build useful virtqueue functionality.
//!
//! These abstractions are intended to be type-safe, but not enforce correct implementation of the
//! virtio protocols. As such reading the [virtio specification]
//! (https://docs.oasis-open.org/virtio/virtio/v1.1/csprd01/virtio-v1.1-csprd01.html)
//! is required to correctly use this module. Most likely you do not want to use these directly and
//! want to use the higher level [`queue`](crate::queue), and [`chain`](crate::chain) modules that
//! provide easier to use wrappers.

use crate::mem::DeviceRange;
use std::marker::PhantomData;
use std::mem;
use std::sync::atomic;

/// Descriptor has a next field.
pub const VRING_DESC_F_NEXT: u16 = 1 << 0;
/// Descriptor is device write-only (otherwise device read-only).
pub const VRING_DESC_F_WRITE: u16 = 1 << 1;
/// Descriptor contains a list of buffer descriptors.
pub const VRING_DESC_F_INDIRECT: u16 = 1 << 2;

/// Describes descriptor access direction.
///
/// Any given descriptor is either device read only or device write only.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum DescAccess {
    DeviceRead,
    DeviceWrite,
}

/// Virtio descriptor data structure
///
/// Represents the in memory format of virtio descriptors and provides some accessors.
#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct Desc {
    addr: u64,
    len: u32,
    // This is not bitflags! as it may contain additional bits that we do not define
    // and so would violate the bitflags type safety.
    flags: u16,
    next: u16,
}

impl Desc {
    /// Returns whether the [next](VRING_DESC_F_NEXT) bit is set.
    ///
    /// Typically the [next](#next) method is preferred.
    pub fn has_next(&self) -> bool {
        self.flags & VRING_DESC_F_NEXT != 0
    }

    /// Returns whether the [indirect](VRING_DESC_F_INDIRECT) bit is set.
    pub fn is_indirect(&self) -> bool {
        self.flags & VRING_DESC_F_INDIRECT != 0
    }

    /// Returns whether the [write](VRING_DESC_F_WRITE) bit is set.
    ///
    /// This flag should be ignored when [is_indirect](#is_indirect) is true.
    pub fn write_only(&self) -> bool {
        self.flags & VRING_DESC_F_WRITE != 0
    }

    /// Return the descriptor access type.
    ///
    /// This is a convenience wrapper around [write_only](#write_only) to provide a safer type.
    pub fn access_type(&self) -> DescAccess {
        if self.write_only() {
            DescAccess::DeviceWrite
        } else {
            DescAccess::DeviceRead
        }
    }

    /// Returns the next descriptor if there is one, otherwise a `None`.
    pub fn next(&self) -> Option<u16> {
        if self.has_next() {
            Some(self.next)
        } else {
            None
        }
    }

    /// Returns the guest (address, length) pair representing the contents of this descriptor.
    ///
    /// No validation of the address and length is performed. In particular the range could be
    /// invalid or wrap.
    pub fn data(&self) -> (u64, u32) {
        (self.addr, self.len)
    }
}

/// Represents the layout of a virtio header
///
/// Due to the need to access the header fields through raw pointers this struct is never directly
/// used, however we define it so that we can take the `size_of` it, and to make the translation to
/// our manual offsets more obvious.
#[repr(C)]
struct HeaderLayout {
    _flags: u16,
    _idx: u16,
}

impl HeaderLayout {
    // Define the offset of the two fields in the header layout. These offsets will be used to add
    // to u16 pointers.
    const FLAGS_OFFSET: usize = 0;
    const IDX_OFFSET: usize = 1;
}

/// Wrapper around accessing a virtio header
///
/// For safety the members of the virtio header must be individually read and written using volatile
/// accesses through a raw pointer, and we cannot construct a regular `&HeaderLayout`. Therefore
/// this object wraps a raw pointer and provides safe accesses to the header fields.
//
// # Safety
//
// `base` must always be a non-null pointer that points to an array of two u16 values (i.e. it
// must point to a HeaderLayout), that can be read and written from. This pointer must be known to
// be valid for the lifetime 'a, making it valid for at least the lifetime of this object.
#[derive(Clone)]
struct Header<'a> {
    base: *mut u16,
    lifetime: PhantomData<&'a ()>,
}

impl<'a> Header<'a> {
    /// Construct a [`Header`] wrapping the given [`HeaderLayout`]
    ///
    /// # Safety
    ///
    /// Behavior is undefined if:
    /// - `layout` is not valid for reads or writes
    /// - `layout` is not correctly aligned
    /// - `layout` does not point to an object that lives for at least the lifetime `'a`
    unsafe fn from_layout(layout: *mut HeaderLayout) -> Self {
        // If layout is a valid pointer to a HeaderLayout, then it is also a valid pointer to an
        // array of two u16 values, which is why we can do this cast and perform the offsetting that
        // we do in `flags()` and `idx()`
        Header { base: layout.cast(), lifetime: PhantomData }
    }

    // The returned pointer is guaranteed to be correctly aligned and valid for reads and writes.
    fn flags(&self) -> *mut u16 {
        // From the requirements in from_layout, base is a valid pointer to a HeaderLayout, and so
        // offsetting it to the flags field must result in a valid pointer.
        unsafe { self.base.add(HeaderLayout::FLAGS_OFFSET) }
    }

    // The returned pointer is guaranteed to be correctly aligned and valid for reads and writes.
    fn idx(&self) -> *mut u16 {
        // From the requirements in from_layout, base is a valid pointer to a HeaderLayout, and so
        // offsetting it to the idx field must result in a valid pointer.
        unsafe { self.base.add(HeaderLayout::IDX_OFFSET) }
    }

    fn are_notifications_suppressed(&self) -> bool {
        // flags() is guaranteed to return a pointer that is aligned and valid for reading
        unsafe { self.flags().read_volatile() == 1 }
    }

    fn load_idx(&self) -> u16 {
        // idx() is guaranteed to return a pointer that is aligned and valid for reading
        let result = unsafe { self.idx().read_volatile() };
        atomic::fence(atomic::Ordering::Acquire);
        result
    }

    fn store_idx(&self, idx: u16) {
        atomic::fence(atomic::Ordering::Release);
        // idx() is guaranteed to return a pointer that is aligned and valid for writing
        unsafe { self.idx().write_volatile(idx) };
    }

    /// Changes flags to suppress notifications.
    ///
    /// Not permitted if VIRTIO_F_EVENT_IDX feature was negotiated.
    /// This is not yet exposed for use.
    #[allow(dead_code)]
    fn suppress_notifications(&self) {
        // flags() is guaranteed to return a pointer that is aligned and valid for writing
        unsafe { self.flags().write_volatile(1) };
    }

    /// Change flags to enable notifications.
    fn enable_notifications(&self) {
        // flags() is guaranteed to return a pointer that is aligned and valid for writing
        unsafe { self.flags().write_volatile(0) };
    }
}

/// Representation of driver owned data.
///
/// Provides methods for safely querying, using appropriate memory barriers, items published by the
/// driver.
///
/// Contents of this `struct` are not expected to be being modified in parallel by a driver in a
/// guest, but as there is no way to guarantee guest behavior it is designed under the assumption of
/// parallel modifications by a malicious guest.
//
// # Safety
//
// The pointers `desc` and `avail` are created and validated in [`new`](#new) to point to ranges of
// memory that have at least `queue_size` valid objects in them, and are otherwise correctly aligned
// and are valid to read from. `used_event_index` must be an aligned pointer that can be read from.
//
// All of the objects pointed to by `desc`, `avail` and `used_event_index` must remain valid for the
// lifetime `'a`. It is the job of [`new`](#new) to take a [`DeviceRange`] and construct valid
// pointers, and they, along with `queue_size`, should never be changed.
//
// The pointers are marked mutable so as to allow the `as_driver::Driver` to be implemented,
// although the regular device implementation does not expose any way to perform writes.
// `as_driver::Driver` has its own safety discussion.
pub struct Driver<'a> {
    desc: *mut Desc,
    queue_size: u16,
    avail_header: Header<'a>,
    avail: *mut u16,
    used_event_index: *mut u16,
}

impl<'a> Driver<'a> {
    /// How many bytes the avail ring should be for the given `queue_size`.
    ///
    /// Provides an easy way to calculate the correct size of the range for passing to [`new`](#new)
    pub const fn avail_len_for_queue_size(queue_size: u16) -> usize {
        mem::size_of::<HeaderLayout>() + mem::size_of::<u16>() * (queue_size as usize + 1)
    }

    /// Construct a [`Driver`] using the provided memory for descriptor and available rings.
    ///
    /// Provided ranges must be correctly sized and aligned to represent the same power of two
    /// queue size, otherwise a `None` is returned.
    pub fn new<'b: 'a, 'c: 'a>(desc: DeviceRange<'b>, avail: DeviceRange<'c>) -> Option<Self> {
        let queue_size = desc.len() / std::mem::size_of::<Desc>();
        if !queue_size.is_power_of_two() {
            return None;
        }
        let queue_size16: u16 = queue_size.try_into().ok()?;
        // Here we calculated queue_size based on the length of desc, so we know that desc points to
        // at least queue_size valid objects.
        let desc = desc.try_mut_ptr()?;

        let (avail_header, rest) = avail.split_at(mem::size_of::<HeaderLayout>())?;
        // from_layout requires that the pointer we give it is correctly aligned, sized and lives
        // long enough. try_mut_ptr will only return a Some() if avail_header is aligned and at
        // least large enough for there to be a HeaderLayout. We also know that avail_header is
        // valid for at least our lifetime of `'a`.
        let avail_header = unsafe { Header::from_layout(avail_header.try_mut_ptr()?) };

        // Reinterpret the rest as a [u16], with the last one being the used_event_index
        if rest.len() != mem::size_of::<u16>() * (queue_size + 1) {
            return None;
        }

        let avail: *mut u16 = rest.try_mut_ptr()?;
        // We know that avail is an aligned pointer, as otherwise rest.try_mut_ptr() would have
        // returned a none and the size of avail was just validated above to hold queue_size+1 items
        let used_event_index = unsafe { avail.add(queue_size) };
        // Building the final struct we know that our pointers; desc, avail and used_event_index,
        // all point to sufficiently large objects for our queue_size16 that are aligned. As they
        // were derived from DeviceRanges that have a lifetime of at least `'a`, we have fulfilled
        // all the invariants defined on the struct.
        Some(Self { desc, queue_size: queue_size16, avail_header, avail, used_event_index })
    }

    /// Query if a descriptor chain has been published with the given index.
    ///
    /// If a chain has been published by the driver then returns the index of the first descriptor
    /// in the chain. Otherwise returns a `None`.
    pub fn get_avail(&self, next_index: u16) -> Option<u16> {
        if next_index != self.avail_header.load_idx() {
            // The struct level invariant on `avail` and `queue_size` guarantee that this offset
            // produces a readable value.
            Some(unsafe { self.avail.add((next_index % self.queue_size).into()).read_volatile() })
        } else {
            None
        }
    }

    /// Request a descriptor by index.
    ///
    /// Returns a none if the requested index is not within the range of the ring. Beyond this check
    /// this method has no way to validate if the requested descriptor is valid and it is the
    /// responsibility of the caller to know this.
    pub fn get_desc(&self, index: u16) -> Option<Desc> {
        if index < self.queue_size {
            // The struct level invariant on `desc` and `queue_size` guarantee that this offset
            // produces a readable value.
            Some(unsafe { self.desc.add(index.into()).read_volatile() })
        } else {
            None
        }
    }

    /// Determines if the driver has requested a notification for the given descriptor submission.
    ///
    /// Queries the information published by the driver to determine whether or not it would like a
    /// notification for the given `submitted` descriptor by the [`Device`]. As the [`Driver`] holds
    /// no host state whether the `VIRTIO_F_EVENT_IDX` feature was negotiated must be passed in.
    pub fn needs_notification(&self, feature_event_idx: bool, submitted: u16) -> bool {
        if feature_event_idx {
            // The struct level invariant on `used_event_index` guarantee this this is readable.
            submitted == unsafe { self.used_event_index.read_volatile() }
        } else {
            !self.avail_header.are_notifications_suppressed()
        }
    }

    /// Returns the size of the descriptor and available rings.
    ///
    /// The descriptor and available rings are, by definition, the same size. This is just returning
    /// the size that was calculated during [`new`](#new)
    pub fn queue_size(&self) -> u16 {
        self.queue_size
    }
}

/// Representation of an entry in the used ring.
///
/// The only purpose [`Used`] has is to be passed to [insert_used](Device::insert_used) to be
/// copied into the used ring. As a result the only provided method is [new](Used::new) and there
/// are no accessors, as the driver is the one who will be accessing it.
#[repr(C)]
#[derive(Debug, Clone, Copy)]
pub struct Used {
    /// Index of start of used descriptor chain.
    ///
    /// For padding reasons the spec makes `id` in this structure is 32-bits, although it will never
    /// exceed an actual 16-bit descriptor index.
    id: u32,

    /// Total length of the descriptor chain which was used (written to), in bytes.
    len: u32,
}

impl Used {
    /// Constructs a new used entry.
    ///
    /// `id` is the index of the first descriptor in the chain being returned and `len` is the
    /// total number of bytes written to any writable descriptors in the chain.
    pub fn new(id: u16, len: u32) -> Used {
        Used { id: id.into(), len }
    }
}

/// Represents the device owned data.
///
/// Contents of this struct are expected to be modified by the device and so are mutable. Provided
/// methods allow for safely publishing data to the driver using appropriate memory barriers.
///
/// Although only the device is supposed to be modifying this data it is designed to account for a
/// malicious guest performing modifications in parallel.
//
// # Safety
//
// The pointer `used` is created and validated in [`new`](#new) to point to ranges of memory that
// have at least `queue_size` valid objects in them, and are otherwise correctly aligned and are
// valid to write to. `avail_event_index` must be an aligned pointer that can be written.
//
// All of the objects pointed to by `used`, and `avail_event_index` must remain valid for the
// lifetime `'a`. It is the job of [`new`](#new) to take a [`DeviceRange`] and construct valid
// pointers, and they, along with `queue_size`, should never be changed.
pub struct Device<'a> {
    queue_size: u16,
    used_header: Header<'a>,
    used: *mut Used,

    // Notification suppression is not yet exposed for use.
    #[allow(dead_code)]
    avail_event_index: *mut u16,
}

impl<'a> Device<'a> {
    /// How many bytes the avail ring should be for the given `queue_size`.
    ///
    /// Provides an easy way to calculate the correct size of the slice for passing to [`new`](#new)
    pub const fn used_len_for_queue_size(queue_size: u16) -> usize {
        mem::size_of::<HeaderLayout>()
            + mem::size_of::<Used>() * queue_size as usize
            + mem::size_of::<u16>()
    }

    /// Construct a [`Device`] using the provided memory for the used ring.
    ///
    /// Provided range must be correctly sized and aligned to represent a power of two queue size,
    /// otherwise a `None` is returned.
    pub fn new<'b: 'a>(used: DeviceRange<'b>) -> Option<Self> {
        let (used_header, rest) = used.split_at(mem::size_of::<HeaderLayout>())?;
        // from_layout requires that the pointer we give it is correctly aligned, sized and lives
        // long enough. try_mut_ptr will only return a Some() if avail_header is aligned and at
        // least large enough for there to be a HeaderLayout. We also know that avail_header is
        // valid for at least our lifetime of `'a`.
        let used_header = unsafe { Header::from_layout(used_header.try_mut_ptr()?) };

        // Take the last u16 from what is remaining as avail_event_index
        if rest.len() < mem::size_of::<u16>() {
            return None;
        }

        let queue_size = (rest.len() - mem::size_of::<u16>()) / mem::size_of::<Used>();
        if !queue_size.is_power_of_two() {
            return None;
        }
        let queue_size16: u16 = queue_size.try_into().ok()?;

        let used: *mut Used = rest.try_mut_ptr()?;

        // We know that used is an aligned pointer, as otherwise rest.try_mut_ptr() would have
        // returned a none and the size of used was just validated above to hold queue_size+1 items
        let avail_event_index = unsafe { used.add(queue_size).cast() };

        // Start with notifications from the driver enabled by default.
        used_header.enable_notifications();

        // Building the final struct we know that our pointers; used and avail_event_index, all
        // point to sufficiently large objects for our queue_size16 that are aligned. As they
        // were derived from DeviceRanges that have a lifetime of at least `'a`, we have fulfilled
        // all the invariants defined on the struct.
        Some(Self { queue_size: queue_size16, used_header, used, avail_event_index })
    }

    /// Returns the size of the used ring.
    pub fn queue_size(&self) -> u16 {
        self.queue_size
    }

    /// Add a descriptor chain to the used ring.
    ///
    /// After calling this the descriptor is not yet visible to the driver. To make it visible
    /// [`publish_used`](#publish_used) must be called. Chains are not implicitly published to allow
    /// for batching the return of chains.
    ///
    /// To allow for passing the same `index` between this and [`publish_used`](#publish_used),
    /// `index` here will automatically be wrapped to the queue length.
    pub fn insert_used(&mut self, used: Used, index: u16) {
        // The struct level invariant on `used` and `queue_size` guarantee that this offset
        // produces a writable value.
        unsafe { self.used.add((index % self.queue_size).into()).write_volatile(used) };
    }

    /// Publish the avail ring up to the provided `index` to the driver.
    ///
    /// This updates the driver visible index and performs appropriate memory barriers for the
    /// driver to see any returned descriptors. It does not perform any kind of asynchronous
    /// notification, such as an interrupt injection, to the guest or driver as that is a virtio
    /// transport specific detail and is the responsibility of the caller to know how to do.
    ///
    /// Note that indices should not be wrapped by the caller to the queue length as they are
    /// supposed to be free running and only wrap at the `u16` limit.
    pub fn publish_used(&mut self, index: u16) {
        self.used_header.store_idx(index);
    }
}

/// Driver side access to rings for writing tests
///
/// This module provides helpers to access rings from the side of the driver, and not the device,
/// which inverts the expectations on reading and writing. Provided here to reuse the [`Driver`]
/// and [`Device`] definitions, and is only intended for consumption by the [`fake_queue`]
/// (crate::fake_queue).
///
/// The helpers provided here are extremely minimal and low-level, and aim to the be the bare
/// minimum to simulate the driver side of ring interactions for the purpose of writing unit-tests.
pub(crate) mod as_driver {
    use std::sync::atomic;

    pub struct Device<'a>(super::Device<'a>);

    impl<'a> Device<'a> {
        pub fn new<'b: 'a>(device: &super::Device<'b>) -> Self {
            // In constructing a new super::Device we have not broken any invariants on the original
            // as we do not change any of the pointers or sizes, and ensure the original has at
            // least as long a lifetime.
            Self(super::Device {
                queue_size: device.queue_size,
                used_header: device.used_header.clone(),
                used: device.used,
                avail_event_index: device.avail_event_index,
            })
        }
        pub fn read_idx(&self) -> u16 {
            // Header::idx() is defined to always produce a pointer that may be read.
            let result = unsafe { self.0.used_header.idx().read_volatile() };
            atomic::fence(atomic::Ordering::Acquire);
            result
        }
        pub fn read_used(&self, index: u16) -> super::Used {
            // The struct invariant on super::Device guarantee this offset is valid and readable.
            unsafe { self.0.used.add((index % self.0.queue_size).into()).read_volatile() }
        }
    }

    pub struct Driver<'a>(super::Driver<'a>);

    impl<'a> Driver<'a> {
        pub fn new<'b: 'a>(driver: &super::Driver<'b>) -> Self {
            // In constructing a new super::Driver we have not broken any invariants on the original
            // as we do not change any of the pointers or sizes, and ensure the original has at
            // least as long a lifetime.
            Self(super::Driver {
                desc: driver.desc,
                queue_size: driver.queue_size,
                avail_header: driver.avail_header.clone(),
                avail: driver.avail,
                used_event_index: driver.used_event_index,
            })
        }
        pub fn write_desc(&mut self, index: u16, desc: super::Desc) {
            // The struct invariant on super::Driver guarantee this offset is valid and writable.
            unsafe { self.0.desc.add((index % self.0.queue_size).into()).write_volatile(desc) };
        }
        pub fn write_avail(&mut self, index: u16, val: u16) {
            // The struct invariant on super::Driver guarantee this offset is valid and writable.
            unsafe { self.0.avail.add((index % self.0.queue_size).into()).write_volatile(val) };
        }
        #[allow(unused)]
        pub fn write_flags(&mut self, flags: u16) {
            atomic::fence(atomic::Ordering::Release);
            // Header::flags() is defined to always produce a pointer that may be written.
            unsafe { self.0.avail_header.flags().write_volatile(flags) };
        }
        pub fn write_idx(&mut self, idx: u16) {
            atomic::fence(atomic::Ordering::Release);
            // Header::idx() is defined to always produce a pointer that may be written.
            unsafe { self.0.avail_header.idx().write_volatile(idx) };
        }
        #[allow(unused)]
        pub fn write_used_event_index(&mut self, index: u16) {
            atomic::fence(atomic::Ordering::Release);
            // The struct invariant on super::Driver guarantee this pointer is valid and writable.
            unsafe { self.0.used_event_index.write_volatile(index) };
        }
    }

    pub fn make_desc(addr: u64, len: u32, flags: u16, next: u16) -> super::Desc {
        super::Desc { addr, len, flags, next }
    }
    pub fn deconstruct_used(used: super::Used) -> (u32, u32) {
        (used.id, used.len)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::fake_queue::{Chain, FakeQueue, IdentityDriverMem};

    #[test]
    fn test_size() {
        let driver_mem = IdentityDriverMem::new();
        // Declare memory for queue size of 3, which is not a power of two.
        let mem = driver_mem.alloc_queue_memory(3).unwrap();
        assert!(Driver::new(mem.desc, mem.avail).is_none());
        assert!(Device::new(mem.used).is_none());
        // Differing, but otherwise valid, sizes for the two rings.
        let mem = driver_mem.alloc_queue_memory(4).unwrap();
        let mem2 = driver_mem.alloc_queue_memory(8).unwrap();
        assert!(Driver::new(mem.desc, mem2.avail).is_none());
        // Declare memory for queues with a queue size of 8, which is good.
        let mem = driver_mem.alloc_queue_memory(8).unwrap();
        assert!(Driver::new(mem.desc, mem.avail).is_some());
        assert!(Device::new(mem.used).is_some());
    }

    #[test]
    fn test_descriptor() {
        let driver_mem = IdentityDriverMem::new();
        let mem = driver_mem.alloc_queue_memory(128).unwrap();
        let driver = Driver::new(mem.desc, mem.avail).unwrap();
        let mut device = Device::new(mem.used).unwrap();
        let mut fake_queue = FakeQueue::new(&driver, &device).unwrap();
        // Check initial state.
        assert!(driver.get_avail(0).is_none());
        // Ask the fake driver to publish a couple of descriptor chains. We know where in the
        // available list they must be placed, but not what descriptor index they will get.
        let (avail0, first_desc0) =
            fake_queue.publish(Chain::with_lengths(&[64, 64], &[], &driver_mem)).unwrap();
        assert_eq!(avail0, 0);
        assert_eq!(driver.get_avail(0), Some(first_desc0));
        let (avail1, first_desc1) =
            fake_queue.publish(Chain::with_lengths(&[32], &[48], &driver_mem)).unwrap();
        assert_eq!(avail1, 1);
        assert_eq!(driver.get_avail(0), Some(first_desc0));
        assert_eq!(driver.get_avail(1), Some(first_desc1));
        // Validate the two chains are what we expect them to be.
        let desc = driver.get_desc(first_desc0).unwrap();
        assert!(desc.has_next());
        assert!(!desc.write_only());
        assert_eq!(desc.data().1, 64);
        let desc = driver.get_desc(desc.next().unwrap()).unwrap();
        assert!(!desc.has_next());
        assert!(!desc.write_only());
        assert_eq!(desc.data().1, 64);

        let desc = driver.get_desc(first_desc1).unwrap();
        assert!(desc.has_next());
        assert!(!desc.write_only());
        assert_eq!(desc.data().1, 32);
        let desc = driver.get_desc(desc.next().unwrap()).unwrap();
        assert!(!desc.has_next());
        assert!(desc.write_only());
        assert_eq!(desc.data().1, 48);
        // Return the chains in reverse order. Claim we wrote 16 bytes to the writable portion.
        device.insert_used(Used::new(first_desc1, 16), 0);
        device.insert_used(Used::new(first_desc0, 0), 1);
        assert!(fake_queue.next_used().is_none());

        // Publish at once.
        device.publish_used(2);

        // Should now be able to receive the descriptors back.
        let chain = fake_queue.next_used().unwrap();
        assert_eq!(chain.written(), 16);
        let mut iter = chain.data_iter();
        assert_eq!(iter.next().map(|(_, len)| len), Some(16));
        assert!(iter.next().is_none());
        let chain = fake_queue.next_used().unwrap();
        assert_eq!(chain.written(), 0);
        assert!(chain.data_iter().next().is_none());

        // Should be nothing left.
        assert!(fake_queue.next_used().is_none());
    }
}