bytes/
bytes_mut.rs

1use core::iter::FromIterator;
2use core::mem::{self, ManuallyDrop, MaybeUninit};
3use core::ops::{Deref, DerefMut};
4use core::ptr::{self, NonNull};
5use core::{cmp, fmt, hash, isize, slice, usize};
6
7use alloc::{
8    borrow::{Borrow, BorrowMut},
9    boxed::Box,
10    string::String,
11    vec,
12    vec::Vec,
13};
14
15use crate::buf::{IntoIter, UninitSlice};
16use crate::bytes::Vtable;
17#[allow(unused)]
18use crate::loom::sync::atomic::AtomicMut;
19use crate::loom::sync::atomic::{AtomicPtr, AtomicUsize, Ordering};
20use crate::{offset_from, Buf, BufMut, Bytes, TryGetError};
21
22/// A unique reference to a contiguous slice of memory.
23///
24/// `BytesMut` represents a unique view into a potentially shared memory region.
25/// Given the uniqueness guarantee, owners of `BytesMut` handles are able to
26/// mutate the memory.
27///
28/// `BytesMut` can be thought of as containing a `buf: Arc<Vec<u8>>`, an offset
29/// into `buf`, a slice length, and a guarantee that no other `BytesMut` for the
30/// same `buf` overlaps with its slice. That guarantee means that a write lock
31/// is not required.
32///
33/// # Growth
34///
35/// `BytesMut`'s `BufMut` implementation will implicitly grow its buffer as
36/// necessary. However, explicitly reserving the required space up-front before
37/// a series of inserts will be more efficient.
38///
39/// # Examples
40///
41/// ```
42/// use bytes::{BytesMut, BufMut};
43///
44/// let mut buf = BytesMut::with_capacity(64);
45///
46/// buf.put_u8(b'h');
47/// buf.put_u8(b'e');
48/// buf.put(&b"llo"[..]);
49///
50/// assert_eq!(&buf[..], b"hello");
51///
52/// // Freeze the buffer so that it can be shared
53/// let a = buf.freeze();
54///
55/// // This does not allocate, instead `b` points to the same memory.
56/// let b = a.clone();
57///
58/// assert_eq!(&a[..], b"hello");
59/// assert_eq!(&b[..], b"hello");
60/// ```
61pub struct BytesMut {
62    ptr: NonNull<u8>,
63    len: usize,
64    cap: usize,
65    data: *mut Shared,
66}
67
68// Thread-safe reference-counted container for the shared storage. This mostly
69// the same as `core::sync::Arc` but without the weak counter. The ref counting
70// fns are based on the ones found in `std`.
71//
72// The main reason to use `Shared` instead of `core::sync::Arc` is that it ends
73// up making the overall code simpler and easier to reason about. This is due to
74// some of the logic around setting `Inner::arc` and other ways the `arc` field
75// is used. Using `Arc` ended up requiring a number of funky transmutes and
76// other shenanigans to make it work.
77struct Shared {
78    vec: Vec<u8>,
79    original_capacity_repr: usize,
80    ref_count: AtomicUsize,
81}
82
83// Assert that the alignment of `Shared` is divisible by 2.
84// This is a necessary invariant since we depend on allocating `Shared` a
85// shared object to implicitly carry the `KIND_ARC` flag in its pointer.
86// This flag is set when the LSB is 0.
87const _: [(); 0 - mem::align_of::<Shared>() % 2] = []; // Assert that the alignment of `Shared` is divisible by 2.
88
89// Buffer storage strategy flags.
90const KIND_ARC: usize = 0b0;
91const KIND_VEC: usize = 0b1;
92const KIND_MASK: usize = 0b1;
93
94// The max original capacity value. Any `Bytes` allocated with a greater initial
95// capacity will default to this.
96const MAX_ORIGINAL_CAPACITY_WIDTH: usize = 17;
97// The original capacity algorithm will not take effect unless the originally
98// allocated capacity was at least 1kb in size.
99const MIN_ORIGINAL_CAPACITY_WIDTH: usize = 10;
100// The original capacity is stored in powers of 2 starting at 1kb to a max of
101// 64kb. Representing it as such requires only 3 bits of storage.
102const ORIGINAL_CAPACITY_MASK: usize = 0b11100;
103const ORIGINAL_CAPACITY_OFFSET: usize = 2;
104
105const VEC_POS_OFFSET: usize = 5;
106// When the storage is in the `Vec` representation, the pointer can be advanced
107// at most this value. This is due to the amount of storage available to track
108// the offset is usize - number of KIND bits and number of ORIGINAL_CAPACITY
109// bits.
110const MAX_VEC_POS: usize = usize::MAX >> VEC_POS_OFFSET;
111const NOT_VEC_POS_MASK: usize = 0b11111;
112
113#[cfg(target_pointer_width = "64")]
114const PTR_WIDTH: usize = 64;
115#[cfg(target_pointer_width = "32")]
116const PTR_WIDTH: usize = 32;
117
118/*
119 *
120 * ===== BytesMut =====
121 *
122 */
123
124impl BytesMut {
125    /// Creates a new `BytesMut` with the specified capacity.
126    ///
127    /// The returned `BytesMut` will be able to hold at least `capacity` bytes
128    /// without reallocating.
129    ///
130    /// It is important to note that this function does not specify the length
131    /// of the returned `BytesMut`, but only the capacity.
132    ///
133    /// # Examples
134    ///
135    /// ```
136    /// use bytes::{BytesMut, BufMut};
137    ///
138    /// let mut bytes = BytesMut::with_capacity(64);
139    ///
140    /// // `bytes` contains no data, even though there is capacity
141    /// assert_eq!(bytes.len(), 0);
142    ///
143    /// bytes.put(&b"hello world"[..]);
144    ///
145    /// assert_eq!(&bytes[..], b"hello world");
146    /// ```
147    #[inline]
148    pub fn with_capacity(capacity: usize) -> BytesMut {
149        BytesMut::from_vec(Vec::with_capacity(capacity))
150    }
151
152    /// Creates a new `BytesMut` with default capacity.
153    ///
154    /// Resulting object has length 0 and unspecified capacity.
155    /// This function does not allocate.
156    ///
157    /// # Examples
158    ///
159    /// ```
160    /// use bytes::{BytesMut, BufMut};
161    ///
162    /// let mut bytes = BytesMut::new();
163    ///
164    /// assert_eq!(0, bytes.len());
165    ///
166    /// bytes.reserve(2);
167    /// bytes.put_slice(b"xy");
168    ///
169    /// assert_eq!(&b"xy"[..], &bytes[..]);
170    /// ```
171    #[inline]
172    pub fn new() -> BytesMut {
173        BytesMut::with_capacity(0)
174    }
175
176    /// Returns the number of bytes contained in this `BytesMut`.
177    ///
178    /// # Examples
179    ///
180    /// ```
181    /// use bytes::BytesMut;
182    ///
183    /// let b = BytesMut::from(&b"hello"[..]);
184    /// assert_eq!(b.len(), 5);
185    /// ```
186    #[inline]
187    pub fn len(&self) -> usize {
188        self.len
189    }
190
191    /// Returns true if the `BytesMut` has a length of 0.
192    ///
193    /// # Examples
194    ///
195    /// ```
196    /// use bytes::BytesMut;
197    ///
198    /// let b = BytesMut::with_capacity(64);
199    /// assert!(b.is_empty());
200    /// ```
201    #[inline]
202    pub fn is_empty(&self) -> bool {
203        self.len == 0
204    }
205
206    /// Returns the number of bytes the `BytesMut` can hold without reallocating.
207    ///
208    /// # Examples
209    ///
210    /// ```
211    /// use bytes::BytesMut;
212    ///
213    /// let b = BytesMut::with_capacity(64);
214    /// assert_eq!(b.capacity(), 64);
215    /// ```
216    #[inline]
217    pub fn capacity(&self) -> usize {
218        self.cap
219    }
220
221    /// Converts `self` into an immutable `Bytes`.
222    ///
223    /// The conversion is zero cost and is used to indicate that the slice
224    /// referenced by the handle will no longer be mutated. Once the conversion
225    /// is done, the handle can be cloned and shared across threads.
226    ///
227    /// # Examples
228    ///
229    /// ```
230    /// use bytes::{BytesMut, BufMut};
231    /// use std::thread;
232    ///
233    /// let mut b = BytesMut::with_capacity(64);
234    /// b.put(&b"hello world"[..]);
235    /// let b1 = b.freeze();
236    /// let b2 = b1.clone();
237    ///
238    /// let th = thread::spawn(move || {
239    ///     assert_eq!(&b1[..], b"hello world");
240    /// });
241    ///
242    /// assert_eq!(&b2[..], b"hello world");
243    /// th.join().unwrap();
244    /// ```
245    #[inline]
246    pub fn freeze(self) -> Bytes {
247        let bytes = ManuallyDrop::new(self);
248        if bytes.kind() == KIND_VEC {
249            // Just re-use `Bytes` internal Vec vtable
250            unsafe {
251                let off = bytes.get_vec_pos();
252                let vec = rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off);
253                let mut b: Bytes = vec.into();
254                b.advance(off);
255                b
256            }
257        } else {
258            debug_assert_eq!(bytes.kind(), KIND_ARC);
259
260            let ptr = bytes.ptr.as_ptr();
261            let len = bytes.len;
262            let data = AtomicPtr::new(bytes.data.cast());
263            unsafe { Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE) }
264        }
265    }
266
267    /// Creates a new `BytesMut` containing `len` zeros.
268    ///
269    /// The resulting object has a length of `len` and a capacity greater
270    /// than or equal to `len`. The entire length of the object will be filled
271    /// with zeros.
272    ///
273    /// On some platforms or allocators this function may be faster than
274    /// a manual implementation.
275    ///
276    /// # Examples
277    ///
278    /// ```
279    /// use bytes::BytesMut;
280    ///
281    /// let zeros = BytesMut::zeroed(42);
282    ///
283    /// assert!(zeros.capacity() >= 42);
284    /// assert_eq!(zeros.len(), 42);
285    /// zeros.into_iter().for_each(|x| assert_eq!(x, 0));
286    /// ```
287    pub fn zeroed(len: usize) -> BytesMut {
288        BytesMut::from_vec(vec![0; len])
289    }
290
291    /// Splits the bytes into two at the given index.
292    ///
293    /// Afterwards `self` contains elements `[0, at)`, and the returned
294    /// `BytesMut` contains elements `[at, capacity)`. It's guaranteed that the
295    /// memory does not move, that is, the address of `self` does not change,
296    /// and the address of the returned slice is `at` bytes after that.
297    ///
298    /// This is an `O(1)` operation that just increases the reference count
299    /// and sets a few indices.
300    ///
301    /// # Examples
302    ///
303    /// ```
304    /// use bytes::BytesMut;
305    ///
306    /// let mut a = BytesMut::from(&b"hello world"[..]);
307    /// let mut b = a.split_off(5);
308    ///
309    /// a[0] = b'j';
310    /// b[0] = b'!';
311    ///
312    /// assert_eq!(&a[..], b"jello");
313    /// assert_eq!(&b[..], b"!world");
314    /// ```
315    ///
316    /// # Panics
317    ///
318    /// Panics if `at > capacity`.
319    #[must_use = "consider BytesMut::truncate if you don't need the other half"]
320    pub fn split_off(&mut self, at: usize) -> BytesMut {
321        assert!(
322            at <= self.capacity(),
323            "split_off out of bounds: {:?} <= {:?}",
324            at,
325            self.capacity(),
326        );
327        unsafe {
328            let mut other = self.shallow_clone();
329            // SAFETY: We've checked that `at` <= `self.capacity()` above.
330            other.advance_unchecked(at);
331            self.cap = at;
332            self.len = cmp::min(self.len, at);
333            other
334        }
335    }
336
337    /// Removes the bytes from the current view, returning them in a new
338    /// `BytesMut` handle.
339    ///
340    /// Afterwards, `self` will be empty, but will retain any additional
341    /// capacity that it had before the operation. This is identical to
342    /// `self.split_to(self.len())`.
343    ///
344    /// This is an `O(1)` operation that just increases the reference count and
345    /// sets a few indices.
346    ///
347    /// # Examples
348    ///
349    /// ```
350    /// use bytes::{BytesMut, BufMut};
351    ///
352    /// let mut buf = BytesMut::with_capacity(1024);
353    /// buf.put(&b"hello world"[..]);
354    ///
355    /// let other = buf.split();
356    ///
357    /// assert!(buf.is_empty());
358    /// assert_eq!(1013, buf.capacity());
359    ///
360    /// assert_eq!(other, b"hello world"[..]);
361    /// ```
362    #[must_use = "consider BytesMut::clear if you don't need the other half"]
363    pub fn split(&mut self) -> BytesMut {
364        let len = self.len();
365        self.split_to(len)
366    }
367
368    /// Splits the buffer into two at the given index.
369    ///
370    /// Afterwards `self` contains elements `[at, len)`, and the returned `BytesMut`
371    /// contains elements `[0, at)`.
372    ///
373    /// This is an `O(1)` operation that just increases the reference count and
374    /// sets a few indices.
375    ///
376    /// # Examples
377    ///
378    /// ```
379    /// use bytes::BytesMut;
380    ///
381    /// let mut a = BytesMut::from(&b"hello world"[..]);
382    /// let mut b = a.split_to(5);
383    ///
384    /// a[0] = b'!';
385    /// b[0] = b'j';
386    ///
387    /// assert_eq!(&a[..], b"!world");
388    /// assert_eq!(&b[..], b"jello");
389    /// ```
390    ///
391    /// # Panics
392    ///
393    /// Panics if `at > len`.
394    #[must_use = "consider BytesMut::advance if you don't need the other half"]
395    pub fn split_to(&mut self, at: usize) -> BytesMut {
396        assert!(
397            at <= self.len(),
398            "split_to out of bounds: {:?} <= {:?}",
399            at,
400            self.len(),
401        );
402
403        unsafe {
404            let mut other = self.shallow_clone();
405            // SAFETY: We've checked that `at` <= `self.len()` and we know that `self.len()` <=
406            // `self.capacity()`.
407            self.advance_unchecked(at);
408            other.cap = at;
409            other.len = at;
410            other
411        }
412    }
413
414    /// Shortens the buffer, keeping the first `len` bytes and dropping the
415    /// rest.
416    ///
417    /// If `len` is greater than the buffer's current length, this has no
418    /// effect.
419    ///
420    /// Existing underlying capacity is preserved.
421    ///
422    /// The [split_off](`Self::split_off()`) method can emulate `truncate`, but this causes the
423    /// excess bytes to be returned instead of dropped.
424    ///
425    /// # Examples
426    ///
427    /// ```
428    /// use bytes::BytesMut;
429    ///
430    /// let mut buf = BytesMut::from(&b"hello world"[..]);
431    /// buf.truncate(5);
432    /// assert_eq!(buf, b"hello"[..]);
433    /// ```
434    pub fn truncate(&mut self, len: usize) {
435        if len <= self.len() {
436            // SAFETY: Shrinking the buffer cannot expose uninitialized bytes.
437            unsafe { self.set_len(len) };
438        }
439    }
440
441    /// Clears the buffer, removing all data. Existing capacity is preserved.
442    ///
443    /// # Examples
444    ///
445    /// ```
446    /// use bytes::BytesMut;
447    ///
448    /// let mut buf = BytesMut::from(&b"hello world"[..]);
449    /// buf.clear();
450    /// assert!(buf.is_empty());
451    /// ```
452    pub fn clear(&mut self) {
453        // SAFETY: Setting the length to zero cannot expose uninitialized bytes.
454        unsafe { self.set_len(0) };
455    }
456
457    /// Resizes the buffer so that `len` is equal to `new_len`.
458    ///
459    /// If `new_len` is greater than `len`, the buffer is extended by the
460    /// difference with each additional byte set to `value`. If `new_len` is
461    /// less than `len`, the buffer is simply truncated.
462    ///
463    /// # Examples
464    ///
465    /// ```
466    /// use bytes::BytesMut;
467    ///
468    /// let mut buf = BytesMut::new();
469    ///
470    /// buf.resize(3, 0x1);
471    /// assert_eq!(&buf[..], &[0x1, 0x1, 0x1]);
472    ///
473    /// buf.resize(2, 0x2);
474    /// assert_eq!(&buf[..], &[0x1, 0x1]);
475    ///
476    /// buf.resize(4, 0x3);
477    /// assert_eq!(&buf[..], &[0x1, 0x1, 0x3, 0x3]);
478    /// ```
479    pub fn resize(&mut self, new_len: usize, value: u8) {
480        let additional = if let Some(additional) = new_len.checked_sub(self.len()) {
481            additional
482        } else {
483            self.truncate(new_len);
484            return;
485        };
486
487        if additional == 0 {
488            return;
489        }
490
491        self.reserve(additional);
492        let dst = self.spare_capacity_mut().as_mut_ptr();
493        // SAFETY: `spare_capacity_mut` returns a valid, properly aligned pointer and we've
494        // reserved enough space to write `additional` bytes.
495        unsafe { ptr::write_bytes(dst, value, additional) };
496
497        // SAFETY: There are at least `new_len` initialized bytes in the buffer so no
498        // uninitialized bytes are being exposed.
499        unsafe { self.set_len(new_len) };
500    }
501
502    /// Sets the length of the buffer.
503    ///
504    /// This will explicitly set the size of the buffer without actually
505    /// modifying the data, so it is up to the caller to ensure that the data
506    /// has been initialized.
507    ///
508    /// # Examples
509    ///
510    /// ```
511    /// use bytes::BytesMut;
512    ///
513    /// let mut b = BytesMut::from(&b"hello world"[..]);
514    ///
515    /// unsafe {
516    ///     b.set_len(5);
517    /// }
518    ///
519    /// assert_eq!(&b[..], b"hello");
520    ///
521    /// unsafe {
522    ///     b.set_len(11);
523    /// }
524    ///
525    /// assert_eq!(&b[..], b"hello world");
526    /// ```
527    #[inline]
528    pub unsafe fn set_len(&mut self, len: usize) {
529        debug_assert!(len <= self.cap, "set_len out of bounds");
530        self.len = len;
531    }
532
533    /// Reserves capacity for at least `additional` more bytes to be inserted
534    /// into the given `BytesMut`.
535    ///
536    /// More than `additional` bytes may be reserved in order to avoid frequent
537    /// reallocations. A call to `reserve` may result in an allocation.
538    ///
539    /// Before allocating new buffer space, the function will attempt to reclaim
540    /// space in the existing buffer. If the current handle references a view
541    /// into a larger original buffer, and all other handles referencing part
542    /// of the same original buffer have been dropped, then the current view
543    /// can be copied/shifted to the front of the buffer and the handle can take
544    /// ownership of the full buffer, provided that the full buffer is large
545    /// enough to fit the requested additional capacity.
546    ///
547    /// This optimization will only happen if shifting the data from the current
548    /// view to the front of the buffer is not too expensive in terms of the
549    /// (amortized) time required. The precise condition is subject to change;
550    /// as of now, the length of the data being shifted needs to be at least as
551    /// large as the distance that it's shifted by. If the current view is empty
552    /// and the original buffer is large enough to fit the requested additional
553    /// capacity, then reallocations will never happen.
554    ///
555    /// # Examples
556    ///
557    /// In the following example, a new buffer is allocated.
558    ///
559    /// ```
560    /// use bytes::BytesMut;
561    ///
562    /// let mut buf = BytesMut::from(&b"hello"[..]);
563    /// buf.reserve(64);
564    /// assert!(buf.capacity() >= 69);
565    /// ```
566    ///
567    /// In the following example, the existing buffer is reclaimed.
568    ///
569    /// ```
570    /// use bytes::{BytesMut, BufMut};
571    ///
572    /// let mut buf = BytesMut::with_capacity(128);
573    /// buf.put(&[0; 64][..]);
574    ///
575    /// let ptr = buf.as_ptr();
576    /// let other = buf.split();
577    ///
578    /// assert!(buf.is_empty());
579    /// assert_eq!(buf.capacity(), 64);
580    ///
581    /// drop(other);
582    /// buf.reserve(128);
583    ///
584    /// assert_eq!(buf.capacity(), 128);
585    /// assert_eq!(buf.as_ptr(), ptr);
586    /// ```
587    ///
588    /// # Panics
589    ///
590    /// Panics if the new capacity overflows `usize`.
591    #[inline]
592    pub fn reserve(&mut self, additional: usize) {
593        let len = self.len();
594        let rem = self.capacity() - len;
595
596        if additional <= rem {
597            // The handle can already store at least `additional` more bytes, so
598            // there is no further work needed to be done.
599            return;
600        }
601
602        // will always succeed
603        let _ = self.reserve_inner(additional, true);
604    }
605
606    // In separate function to allow the short-circuits in `reserve` and `try_reclaim` to
607    // be inline-able. Significantly helps performance. Returns false if it did not succeed.
608    fn reserve_inner(&mut self, additional: usize, allocate: bool) -> bool {
609        let len = self.len();
610        let kind = self.kind();
611
612        if kind == KIND_VEC {
613            // If there's enough free space before the start of the buffer, then
614            // just copy the data backwards and reuse the already-allocated
615            // space.
616            //
617            // Otherwise, since backed by a vector, use `Vec::reserve`
618            //
619            // We need to make sure that this optimization does not kill the
620            // amortized runtimes of BytesMut's operations.
621            unsafe {
622                let off = self.get_vec_pos();
623
624                // Only reuse space if we can satisfy the requested additional space.
625                //
626                // Also check if the value of `off` suggests that enough bytes
627                // have been read to account for the overhead of shifting all
628                // the data (in an amortized analysis).
629                // Hence the condition `off >= self.len()`.
630                //
631                // This condition also already implies that the buffer is going
632                // to be (at least) half-empty in the end; so we do not break
633                // the (amortized) runtime with future resizes of the underlying
634                // `Vec`.
635                //
636                // [For more details check issue #524, and PR #525.]
637                if self.capacity() - self.len() + off >= additional && off >= self.len() {
638                    // There's enough space, and it's not too much overhead:
639                    // reuse the space!
640                    //
641                    // Just move the pointer back to the start after copying
642                    // data back.
643                    let base_ptr = self.ptr.as_ptr().sub(off);
644                    // Since `off >= self.len()`, the two regions don't overlap.
645                    ptr::copy_nonoverlapping(self.ptr.as_ptr(), base_ptr, self.len);
646                    self.ptr = vptr(base_ptr);
647                    self.set_vec_pos(0);
648
649                    // Length stays constant, but since we moved backwards we
650                    // can gain capacity back.
651                    self.cap += off;
652                } else {
653                    if !allocate {
654                        return false;
655                    }
656                    // Not enough space, or reusing might be too much overhead:
657                    // allocate more space!
658                    let mut v =
659                        ManuallyDrop::new(rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off));
660                    v.reserve(additional);
661
662                    // Update the info
663                    self.ptr = vptr(v.as_mut_ptr().add(off));
664                    self.cap = v.capacity() - off;
665                    debug_assert_eq!(self.len, v.len() - off);
666                }
667
668                return true;
669            }
670        }
671
672        debug_assert_eq!(kind, KIND_ARC);
673        let shared: *mut Shared = self.data;
674
675        // Reserving involves abandoning the currently shared buffer and
676        // allocating a new vector with the requested capacity.
677        //
678        // Compute the new capacity
679        let mut new_cap = match len.checked_add(additional) {
680            Some(new_cap) => new_cap,
681            None if !allocate => return false,
682            None => panic!("overflow"),
683        };
684
685        unsafe {
686            // First, try to reclaim the buffer. This is possible if the current
687            // handle is the only outstanding handle pointing to the buffer.
688            if (*shared).is_unique() {
689                // This is the only handle to the buffer. It can be reclaimed.
690                // However, before doing the work of copying data, check to make
691                // sure that the vector has enough capacity.
692                let v = &mut (*shared).vec;
693
694                let v_capacity = v.capacity();
695                let ptr = v.as_mut_ptr();
696
697                let offset = offset_from(self.ptr.as_ptr(), ptr);
698
699                // Compare the condition in the `kind == KIND_VEC` case above
700                // for more details.
701                if v_capacity >= new_cap + offset {
702                    self.cap = new_cap;
703                    // no copy is necessary
704                } else if v_capacity >= new_cap && offset >= len {
705                    // The capacity is sufficient, and copying is not too much
706                    // overhead: reclaim the buffer!
707
708                    // `offset >= len` means: no overlap
709                    ptr::copy_nonoverlapping(self.ptr.as_ptr(), ptr, len);
710
711                    self.ptr = vptr(ptr);
712                    self.cap = v.capacity();
713                } else {
714                    if !allocate {
715                        return false;
716                    }
717                    // calculate offset
718                    let off = (self.ptr.as_ptr() as usize) - (v.as_ptr() as usize);
719
720                    // new_cap is calculated in terms of `BytesMut`, not the underlying
721                    // `Vec`, so it does not take the offset into account.
722                    //
723                    // Thus we have to manually add it here.
724                    new_cap = new_cap.checked_add(off).expect("overflow");
725
726                    // The vector capacity is not sufficient. The reserve request is
727                    // asking for more than the initial buffer capacity. Allocate more
728                    // than requested if `new_cap` is not much bigger than the current
729                    // capacity.
730                    //
731                    // There are some situations, using `reserve_exact` that the
732                    // buffer capacity could be below `original_capacity`, so do a
733                    // check.
734                    let double = v.capacity().checked_shl(1).unwrap_or(new_cap);
735
736                    new_cap = cmp::max(double, new_cap);
737
738                    // No space - allocate more
739                    //
740                    // The length field of `Shared::vec` is not used by the `BytesMut`;
741                    // instead we use the `len` field in the `BytesMut` itself. However,
742                    // when calling `reserve`, it doesn't guarantee that data stored in
743                    // the unused capacity of the vector is copied over to the new
744                    // allocation, so we need to ensure that we don't have any data we
745                    // care about in the unused capacity before calling `reserve`.
746                    debug_assert!(off + len <= v.capacity());
747                    v.set_len(off + len);
748                    v.reserve(new_cap - v.len());
749
750                    // Update the info
751                    self.ptr = vptr(v.as_mut_ptr().add(off));
752                    self.cap = v.capacity() - off;
753                }
754
755                return true;
756            }
757        }
758        if !allocate {
759            return false;
760        }
761
762        let original_capacity_repr = unsafe { (*shared).original_capacity_repr };
763        let original_capacity = original_capacity_from_repr(original_capacity_repr);
764
765        new_cap = cmp::max(new_cap, original_capacity);
766
767        // Create a new vector to store the data
768        let mut v = ManuallyDrop::new(Vec::with_capacity(new_cap));
769
770        // Copy the bytes
771        v.extend_from_slice(self.as_ref());
772
773        // Release the shared handle. This must be done *after* the bytes are
774        // copied.
775        unsafe { release_shared(shared) };
776
777        // Update self
778        let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
779        self.data = invalid_ptr(data);
780        self.ptr = vptr(v.as_mut_ptr());
781        self.cap = v.capacity();
782        debug_assert_eq!(self.len, v.len());
783        return true;
784    }
785
786    /// Attempts to cheaply reclaim already allocated capacity for at least `additional` more
787    /// bytes to be inserted into the given `BytesMut` and returns `true` if it succeeded.
788    ///
789    /// `try_reclaim` behaves exactly like `reserve`, except that it never allocates new storage
790    /// and returns a `bool` indicating whether it was successful in doing so:
791    ///
792    /// `try_reclaim` returns false under these conditions:
793    ///  - The spare capacity left is less than `additional` bytes AND
794    ///  - The existing allocation cannot be reclaimed cheaply or it was less than
795    ///    `additional` bytes in size
796    ///
797    /// Reclaiming the allocation cheaply is possible if the `BytesMut` has no outstanding
798    /// references through other `BytesMut`s or `Bytes` which point to the same underlying
799    /// storage.
800    ///
801    /// # Examples
802    ///
803    /// ```
804    /// use bytes::BytesMut;
805    ///
806    /// let mut buf = BytesMut::with_capacity(64);
807    /// assert_eq!(true, buf.try_reclaim(64));
808    /// assert_eq!(64, buf.capacity());
809    ///
810    /// buf.extend_from_slice(b"abcd");
811    /// let mut split = buf.split();
812    /// assert_eq!(60, buf.capacity());
813    /// assert_eq!(4, split.capacity());
814    /// assert_eq!(false, split.try_reclaim(64));
815    /// assert_eq!(false, buf.try_reclaim(64));
816    /// // The split buffer is filled with "abcd"
817    /// assert_eq!(false, split.try_reclaim(4));
818    /// // buf is empty and has capacity for 60 bytes
819    /// assert_eq!(true, buf.try_reclaim(60));
820    ///
821    /// drop(buf);
822    /// assert_eq!(false, split.try_reclaim(64));
823    ///
824    /// split.clear();
825    /// assert_eq!(4, split.capacity());
826    /// assert_eq!(true, split.try_reclaim(64));
827    /// assert_eq!(64, split.capacity());
828    /// ```
829    // I tried splitting out try_reclaim_inner after the short circuits, but it was inlined
830    // regardless with Rust 1.78.0 so probably not worth it
831    #[inline]
832    #[must_use = "consider BytesMut::reserve if you need an infallible reservation"]
833    pub fn try_reclaim(&mut self, additional: usize) -> bool {
834        let len = self.len();
835        let rem = self.capacity() - len;
836
837        if additional <= rem {
838            // The handle can already store at least `additional` more bytes, so
839            // there is no further work needed to be done.
840            return true;
841        }
842
843        self.reserve_inner(additional, false)
844    }
845
846    /// Appends given bytes to this `BytesMut`.
847    ///
848    /// If this `BytesMut` object does not have enough capacity, it is resized
849    /// first.
850    ///
851    /// # Examples
852    ///
853    /// ```
854    /// use bytes::BytesMut;
855    ///
856    /// let mut buf = BytesMut::with_capacity(0);
857    /// buf.extend_from_slice(b"aaabbb");
858    /// buf.extend_from_slice(b"cccddd");
859    ///
860    /// assert_eq!(b"aaabbbcccddd", &buf[..]);
861    /// ```
862    #[inline]
863    pub fn extend_from_slice(&mut self, extend: &[u8]) {
864        let cnt = extend.len();
865        self.reserve(cnt);
866
867        unsafe {
868            let dst = self.spare_capacity_mut();
869            // Reserved above
870            debug_assert!(dst.len() >= cnt);
871
872            ptr::copy_nonoverlapping(extend.as_ptr(), dst.as_mut_ptr().cast(), cnt);
873        }
874
875        unsafe {
876            self.advance_mut(cnt);
877        }
878    }
879
880    /// Absorbs a `BytesMut` that was previously split off.
881    ///
882    /// If the two `BytesMut` objects were previously contiguous and not mutated
883    /// in a way that causes re-allocation i.e., if `other` was created by
884    /// calling `split_off` on this `BytesMut`, then this is an `O(1)` operation
885    /// that just decreases a reference count and sets a few indices.
886    /// Otherwise this method degenerates to
887    /// `self.extend_from_slice(other.as_ref())`.
888    ///
889    /// # Examples
890    ///
891    /// ```
892    /// use bytes::BytesMut;
893    ///
894    /// let mut buf = BytesMut::with_capacity(64);
895    /// buf.extend_from_slice(b"aaabbbcccddd");
896    ///
897    /// let split = buf.split_off(6);
898    /// assert_eq!(b"aaabbb", &buf[..]);
899    /// assert_eq!(b"cccddd", &split[..]);
900    ///
901    /// buf.unsplit(split);
902    /// assert_eq!(b"aaabbbcccddd", &buf[..]);
903    /// ```
904    pub fn unsplit(&mut self, other: BytesMut) {
905        if self.is_empty() {
906            *self = other;
907            return;
908        }
909
910        if let Err(other) = self.try_unsplit(other) {
911            self.extend_from_slice(other.as_ref());
912        }
913    }
914
915    // private
916
917    // For now, use a `Vec` to manage the memory for us, but we may want to
918    // change that in the future to some alternate allocator strategy.
919    //
920    // Thus, we don't expose an easy way to construct from a `Vec` since an
921    // internal change could make a simple pattern (`BytesMut::from(vec)`)
922    // suddenly a lot more expensive.
923    #[inline]
924    pub(crate) fn from_vec(vec: Vec<u8>) -> BytesMut {
925        let mut vec = ManuallyDrop::new(vec);
926        let ptr = vptr(vec.as_mut_ptr());
927        let len = vec.len();
928        let cap = vec.capacity();
929
930        let original_capacity_repr = original_capacity_to_repr(cap);
931        let data = (original_capacity_repr << ORIGINAL_CAPACITY_OFFSET) | KIND_VEC;
932
933        BytesMut {
934            ptr,
935            len,
936            cap,
937            data: invalid_ptr(data),
938        }
939    }
940
941    #[inline]
942    fn as_slice(&self) -> &[u8] {
943        unsafe { slice::from_raw_parts(self.ptr.as_ptr(), self.len) }
944    }
945
946    #[inline]
947    fn as_slice_mut(&mut self) -> &mut [u8] {
948        unsafe { slice::from_raw_parts_mut(self.ptr.as_ptr(), self.len) }
949    }
950
951    /// Advance the buffer without bounds checking.
952    ///
953    /// # SAFETY
954    ///
955    /// The caller must ensure that `count` <= `self.cap`.
956    pub(crate) unsafe fn advance_unchecked(&mut self, count: usize) {
957        // Setting the start to 0 is a no-op, so return early if this is the
958        // case.
959        if count == 0 {
960            return;
961        }
962
963        debug_assert!(count <= self.cap, "internal: set_start out of bounds");
964
965        let kind = self.kind();
966
967        if kind == KIND_VEC {
968            // Setting the start when in vec representation is a little more
969            // complicated. First, we have to track how far ahead the
970            // "start" of the byte buffer from the beginning of the vec. We
971            // also have to ensure that we don't exceed the maximum shift.
972            let pos = self.get_vec_pos() + count;
973
974            if pos <= MAX_VEC_POS {
975                self.set_vec_pos(pos);
976            } else {
977                // The repr must be upgraded to ARC. This will never happen
978                // on 64 bit systems and will only happen on 32 bit systems
979                // when shifting past 134,217,727 bytes. As such, we don't
980                // worry too much about performance here.
981                self.promote_to_shared(/*ref_count = */ 1);
982            }
983        }
984
985        // Updating the start of the view is setting `ptr` to point to the
986        // new start and updating the `len` field to reflect the new length
987        // of the view.
988        self.ptr = vptr(self.ptr.as_ptr().add(count));
989        self.len = self.len.checked_sub(count).unwrap_or(0);
990        self.cap -= count;
991    }
992
993    fn try_unsplit(&mut self, other: BytesMut) -> Result<(), BytesMut> {
994        if other.capacity() == 0 {
995            return Ok(());
996        }
997
998        let ptr = unsafe { self.ptr.as_ptr().add(self.len) };
999        if ptr == other.ptr.as_ptr()
1000            && self.kind() == KIND_ARC
1001            && other.kind() == KIND_ARC
1002            && self.data == other.data
1003        {
1004            // Contiguous blocks, just combine directly
1005            self.len += other.len;
1006            self.cap += other.cap;
1007            Ok(())
1008        } else {
1009            Err(other)
1010        }
1011    }
1012
1013    #[inline]
1014    fn kind(&self) -> usize {
1015        self.data as usize & KIND_MASK
1016    }
1017
1018    unsafe fn promote_to_shared(&mut self, ref_cnt: usize) {
1019        debug_assert_eq!(self.kind(), KIND_VEC);
1020        debug_assert!(ref_cnt == 1 || ref_cnt == 2);
1021
1022        let original_capacity_repr =
1023            (self.data as usize & ORIGINAL_CAPACITY_MASK) >> ORIGINAL_CAPACITY_OFFSET;
1024
1025        // The vec offset cannot be concurrently mutated, so there
1026        // should be no danger reading it.
1027        let off = (self.data as usize) >> VEC_POS_OFFSET;
1028
1029        // First, allocate a new `Shared` instance containing the
1030        // `Vec` fields. It's important to note that `ptr`, `len`,
1031        // and `cap` cannot be mutated without having `&mut self`.
1032        // This means that these fields will not be concurrently
1033        // updated and since the buffer hasn't been promoted to an
1034        // `Arc`, those three fields still are the components of the
1035        // vector.
1036        let shared = Box::new(Shared {
1037            vec: rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off),
1038            original_capacity_repr,
1039            ref_count: AtomicUsize::new(ref_cnt),
1040        });
1041
1042        let shared = Box::into_raw(shared);
1043
1044        // The pointer should be aligned, so this assert should
1045        // always succeed.
1046        debug_assert_eq!(shared as usize & KIND_MASK, KIND_ARC);
1047
1048        self.data = shared;
1049    }
1050
1051    /// Makes an exact shallow clone of `self`.
1052    ///
1053    /// The kind of `self` doesn't matter, but this is unsafe
1054    /// because the clone will have the same offsets. You must
1055    /// be sure the returned value to the user doesn't allow
1056    /// two views into the same range.
1057    #[inline]
1058    unsafe fn shallow_clone(&mut self) -> BytesMut {
1059        if self.kind() == KIND_ARC {
1060            increment_shared(self.data);
1061            ptr::read(self)
1062        } else {
1063            self.promote_to_shared(/*ref_count = */ 2);
1064            ptr::read(self)
1065        }
1066    }
1067
1068    #[inline]
1069    unsafe fn get_vec_pos(&self) -> usize {
1070        debug_assert_eq!(self.kind(), KIND_VEC);
1071
1072        self.data as usize >> VEC_POS_OFFSET
1073    }
1074
1075    #[inline]
1076    unsafe fn set_vec_pos(&mut self, pos: usize) {
1077        debug_assert_eq!(self.kind(), KIND_VEC);
1078        debug_assert!(pos <= MAX_VEC_POS);
1079
1080        self.data = invalid_ptr((pos << VEC_POS_OFFSET) | (self.data as usize & NOT_VEC_POS_MASK));
1081    }
1082
1083    /// Returns the remaining spare capacity of the buffer as a slice of `MaybeUninit<u8>`.
1084    ///
1085    /// The returned slice can be used to fill the buffer with data (e.g. by
1086    /// reading from a file) before marking the data as initialized using the
1087    /// [`set_len`] method.
1088    ///
1089    /// [`set_len`]: BytesMut::set_len
1090    ///
1091    /// # Examples
1092    ///
1093    /// ```
1094    /// use bytes::BytesMut;
1095    ///
1096    /// // Allocate buffer big enough for 10 bytes.
1097    /// let mut buf = BytesMut::with_capacity(10);
1098    ///
1099    /// // Fill in the first 3 elements.
1100    /// let uninit = buf.spare_capacity_mut();
1101    /// uninit[0].write(0);
1102    /// uninit[1].write(1);
1103    /// uninit[2].write(2);
1104    ///
1105    /// // Mark the first 3 bytes of the buffer as being initialized.
1106    /// unsafe {
1107    ///     buf.set_len(3);
1108    /// }
1109    ///
1110    /// assert_eq!(&buf[..], &[0, 1, 2]);
1111    /// ```
1112    #[inline]
1113    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<u8>] {
1114        unsafe {
1115            let ptr = self.ptr.as_ptr().add(self.len);
1116            let len = self.cap - self.len;
1117
1118            slice::from_raw_parts_mut(ptr.cast(), len)
1119        }
1120    }
1121}
1122
1123impl Drop for BytesMut {
1124    fn drop(&mut self) {
1125        let kind = self.kind();
1126
1127        if kind == KIND_VEC {
1128            unsafe {
1129                let off = self.get_vec_pos();
1130
1131                // Vector storage, free the vector
1132                let _ = rebuild_vec(self.ptr.as_ptr(), self.len, self.cap, off);
1133            }
1134        } else if kind == KIND_ARC {
1135            unsafe { release_shared(self.data) };
1136        }
1137    }
1138}
1139
1140impl Buf for BytesMut {
1141    #[inline]
1142    fn remaining(&self) -> usize {
1143        self.len()
1144    }
1145
1146    #[inline]
1147    fn chunk(&self) -> &[u8] {
1148        self.as_slice()
1149    }
1150
1151    #[inline]
1152    fn advance(&mut self, cnt: usize) {
1153        assert!(
1154            cnt <= self.remaining(),
1155            "cannot advance past `remaining`: {:?} <= {:?}",
1156            cnt,
1157            self.remaining(),
1158        );
1159        unsafe {
1160            // SAFETY: We've checked that `cnt` <= `self.remaining()` and we know that
1161            // `self.remaining()` <= `self.cap`.
1162            self.advance_unchecked(cnt);
1163        }
1164    }
1165
1166    fn copy_to_bytes(&mut self, len: usize) -> Bytes {
1167        self.split_to(len).freeze()
1168    }
1169}
1170
1171unsafe impl BufMut for BytesMut {
1172    #[inline]
1173    fn remaining_mut(&self) -> usize {
1174        usize::MAX - self.len()
1175    }
1176
1177    #[inline]
1178    unsafe fn advance_mut(&mut self, cnt: usize) {
1179        let remaining = self.cap - self.len();
1180        if cnt > remaining {
1181            super::panic_advance(&TryGetError {
1182                requested: cnt,
1183                available: remaining,
1184            });
1185        }
1186        // Addition won't overflow since it is at most `self.cap`.
1187        self.len = self.len() + cnt;
1188    }
1189
1190    #[inline]
1191    fn chunk_mut(&mut self) -> &mut UninitSlice {
1192        if self.capacity() == self.len() {
1193            self.reserve(64);
1194        }
1195        self.spare_capacity_mut().into()
1196    }
1197
1198    // Specialize these methods so they can skip checking `remaining_mut`
1199    // and `advance_mut`.
1200
1201    fn put<T: Buf>(&mut self, mut src: T)
1202    where
1203        Self: Sized,
1204    {
1205        while src.has_remaining() {
1206            let s = src.chunk();
1207            let l = s.len();
1208            self.extend_from_slice(s);
1209            src.advance(l);
1210        }
1211    }
1212
1213    fn put_slice(&mut self, src: &[u8]) {
1214        self.extend_from_slice(src);
1215    }
1216
1217    fn put_bytes(&mut self, val: u8, cnt: usize) {
1218        self.reserve(cnt);
1219        unsafe {
1220            let dst = self.spare_capacity_mut();
1221            // Reserved above
1222            debug_assert!(dst.len() >= cnt);
1223
1224            ptr::write_bytes(dst.as_mut_ptr(), val, cnt);
1225
1226            self.advance_mut(cnt);
1227        }
1228    }
1229}
1230
1231impl AsRef<[u8]> for BytesMut {
1232    #[inline]
1233    fn as_ref(&self) -> &[u8] {
1234        self.as_slice()
1235    }
1236}
1237
1238impl Deref for BytesMut {
1239    type Target = [u8];
1240
1241    #[inline]
1242    fn deref(&self) -> &[u8] {
1243        self.as_ref()
1244    }
1245}
1246
1247impl AsMut<[u8]> for BytesMut {
1248    #[inline]
1249    fn as_mut(&mut self) -> &mut [u8] {
1250        self.as_slice_mut()
1251    }
1252}
1253
1254impl DerefMut for BytesMut {
1255    #[inline]
1256    fn deref_mut(&mut self) -> &mut [u8] {
1257        self.as_mut()
1258    }
1259}
1260
1261impl<'a> From<&'a [u8]> for BytesMut {
1262    fn from(src: &'a [u8]) -> BytesMut {
1263        BytesMut::from_vec(src.to_vec())
1264    }
1265}
1266
1267impl<'a> From<&'a str> for BytesMut {
1268    fn from(src: &'a str) -> BytesMut {
1269        BytesMut::from(src.as_bytes())
1270    }
1271}
1272
1273impl From<BytesMut> for Bytes {
1274    fn from(src: BytesMut) -> Bytes {
1275        src.freeze()
1276    }
1277}
1278
1279impl PartialEq for BytesMut {
1280    fn eq(&self, other: &BytesMut) -> bool {
1281        self.as_slice() == other.as_slice()
1282    }
1283}
1284
1285impl PartialOrd for BytesMut {
1286    fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1287        self.as_slice().partial_cmp(other.as_slice())
1288    }
1289}
1290
1291impl Ord for BytesMut {
1292    fn cmp(&self, other: &BytesMut) -> cmp::Ordering {
1293        self.as_slice().cmp(other.as_slice())
1294    }
1295}
1296
1297impl Eq for BytesMut {}
1298
1299impl Default for BytesMut {
1300    #[inline]
1301    fn default() -> BytesMut {
1302        BytesMut::new()
1303    }
1304}
1305
1306impl hash::Hash for BytesMut {
1307    fn hash<H>(&self, state: &mut H)
1308    where
1309        H: hash::Hasher,
1310    {
1311        let s: &[u8] = self.as_ref();
1312        s.hash(state);
1313    }
1314}
1315
1316impl Borrow<[u8]> for BytesMut {
1317    fn borrow(&self) -> &[u8] {
1318        self.as_ref()
1319    }
1320}
1321
1322impl BorrowMut<[u8]> for BytesMut {
1323    fn borrow_mut(&mut self) -> &mut [u8] {
1324        self.as_mut()
1325    }
1326}
1327
1328impl fmt::Write for BytesMut {
1329    #[inline]
1330    fn write_str(&mut self, s: &str) -> fmt::Result {
1331        if self.remaining_mut() >= s.len() {
1332            self.put_slice(s.as_bytes());
1333            Ok(())
1334        } else {
1335            Err(fmt::Error)
1336        }
1337    }
1338
1339    #[inline]
1340    fn write_fmt(&mut self, args: fmt::Arguments<'_>) -> fmt::Result {
1341        fmt::write(self, args)
1342    }
1343}
1344
1345impl Clone for BytesMut {
1346    fn clone(&self) -> BytesMut {
1347        BytesMut::from(&self[..])
1348    }
1349}
1350
1351impl IntoIterator for BytesMut {
1352    type Item = u8;
1353    type IntoIter = IntoIter<BytesMut>;
1354
1355    fn into_iter(self) -> Self::IntoIter {
1356        IntoIter::new(self)
1357    }
1358}
1359
1360impl<'a> IntoIterator for &'a BytesMut {
1361    type Item = &'a u8;
1362    type IntoIter = core::slice::Iter<'a, u8>;
1363
1364    fn into_iter(self) -> Self::IntoIter {
1365        self.as_ref().iter()
1366    }
1367}
1368
1369impl Extend<u8> for BytesMut {
1370    fn extend<T>(&mut self, iter: T)
1371    where
1372        T: IntoIterator<Item = u8>,
1373    {
1374        let iter = iter.into_iter();
1375
1376        let (lower, _) = iter.size_hint();
1377        self.reserve(lower);
1378
1379        // TODO: optimize
1380        // 1. If self.kind() == KIND_VEC, use Vec::extend
1381        for b in iter {
1382            self.put_u8(b);
1383        }
1384    }
1385}
1386
1387impl<'a> Extend<&'a u8> for BytesMut {
1388    fn extend<T>(&mut self, iter: T)
1389    where
1390        T: IntoIterator<Item = &'a u8>,
1391    {
1392        self.extend(iter.into_iter().copied())
1393    }
1394}
1395
1396impl Extend<Bytes> for BytesMut {
1397    fn extend<T>(&mut self, iter: T)
1398    where
1399        T: IntoIterator<Item = Bytes>,
1400    {
1401        for bytes in iter {
1402            self.extend_from_slice(&bytes)
1403        }
1404    }
1405}
1406
1407impl FromIterator<u8> for BytesMut {
1408    fn from_iter<T: IntoIterator<Item = u8>>(into_iter: T) -> Self {
1409        BytesMut::from_vec(Vec::from_iter(into_iter))
1410    }
1411}
1412
1413impl<'a> FromIterator<&'a u8> for BytesMut {
1414    fn from_iter<T: IntoIterator<Item = &'a u8>>(into_iter: T) -> Self {
1415        BytesMut::from_iter(into_iter.into_iter().copied())
1416    }
1417}
1418
1419/*
1420 *
1421 * ===== Inner =====
1422 *
1423 */
1424
1425unsafe fn increment_shared(ptr: *mut Shared) {
1426    let old_size = (*ptr).ref_count.fetch_add(1, Ordering::Relaxed);
1427
1428    if old_size > isize::MAX as usize {
1429        crate::abort();
1430    }
1431}
1432
1433unsafe fn release_shared(ptr: *mut Shared) {
1434    // `Shared` storage... follow the drop steps from Arc.
1435    if (*ptr).ref_count.fetch_sub(1, Ordering::Release) != 1 {
1436        return;
1437    }
1438
1439    // This fence is needed to prevent reordering of use of the data and
1440    // deletion of the data.  Because it is marked `Release`, the decreasing
1441    // of the reference count synchronizes with this `Acquire` fence. This
1442    // means that use of the data happens before decreasing the reference
1443    // count, which happens before this fence, which happens before the
1444    // deletion of the data.
1445    //
1446    // As explained in the [Boost documentation][1],
1447    //
1448    // > It is important to enforce any possible access to the object in one
1449    // > thread (through an existing reference) to *happen before* deleting
1450    // > the object in a different thread. This is achieved by a "release"
1451    // > operation after dropping a reference (any access to the object
1452    // > through this reference must obviously happened before), and an
1453    // > "acquire" operation before deleting the object.
1454    //
1455    // [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
1456    //
1457    // Thread sanitizer does not support atomic fences. Use an atomic load
1458    // instead.
1459    (*ptr).ref_count.load(Ordering::Acquire);
1460
1461    // Drop the data
1462    drop(Box::from_raw(ptr));
1463}
1464
1465impl Shared {
1466    fn is_unique(&self) -> bool {
1467        // The goal is to check if the current handle is the only handle
1468        // that currently has access to the buffer. This is done by
1469        // checking if the `ref_count` is currently 1.
1470        //
1471        // The `Acquire` ordering synchronizes with the `Release` as
1472        // part of the `fetch_sub` in `release_shared`. The `fetch_sub`
1473        // operation guarantees that any mutations done in other threads
1474        // are ordered before the `ref_count` is decremented. As such,
1475        // this `Acquire` will guarantee that those mutations are
1476        // visible to the current thread.
1477        self.ref_count.load(Ordering::Acquire) == 1
1478    }
1479}
1480
1481#[inline]
1482fn original_capacity_to_repr(cap: usize) -> usize {
1483    let width = PTR_WIDTH - ((cap >> MIN_ORIGINAL_CAPACITY_WIDTH).leading_zeros() as usize);
1484    cmp::min(
1485        width,
1486        MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH,
1487    )
1488}
1489
1490fn original_capacity_from_repr(repr: usize) -> usize {
1491    if repr == 0 {
1492        return 0;
1493    }
1494
1495    1 << (repr + (MIN_ORIGINAL_CAPACITY_WIDTH - 1))
1496}
1497
1498#[cfg(test)]
1499mod tests {
1500    use super::*;
1501
1502    #[test]
1503    fn test_original_capacity_to_repr() {
1504        assert_eq!(original_capacity_to_repr(0), 0);
1505
1506        let max_width = 32;
1507
1508        for width in 1..(max_width + 1) {
1509            let cap = 1 << width - 1;
1510
1511            let expected = if width < MIN_ORIGINAL_CAPACITY_WIDTH {
1512                0
1513            } else if width < MAX_ORIGINAL_CAPACITY_WIDTH {
1514                width - MIN_ORIGINAL_CAPACITY_WIDTH
1515            } else {
1516                MAX_ORIGINAL_CAPACITY_WIDTH - MIN_ORIGINAL_CAPACITY_WIDTH
1517            };
1518
1519            assert_eq!(original_capacity_to_repr(cap), expected);
1520
1521            if width > 1 {
1522                assert_eq!(original_capacity_to_repr(cap + 1), expected);
1523            }
1524
1525            //  MIN_ORIGINAL_CAPACITY_WIDTH must be bigger than 7 to pass tests below
1526            if width == MIN_ORIGINAL_CAPACITY_WIDTH + 1 {
1527                assert_eq!(original_capacity_to_repr(cap - 24), expected - 1);
1528                assert_eq!(original_capacity_to_repr(cap + 76), expected);
1529            } else if width == MIN_ORIGINAL_CAPACITY_WIDTH + 2 {
1530                assert_eq!(original_capacity_to_repr(cap - 1), expected - 1);
1531                assert_eq!(original_capacity_to_repr(cap - 48), expected - 1);
1532            }
1533        }
1534    }
1535
1536    #[test]
1537    fn test_original_capacity_from_repr() {
1538        assert_eq!(0, original_capacity_from_repr(0));
1539
1540        let min_cap = 1 << MIN_ORIGINAL_CAPACITY_WIDTH;
1541
1542        assert_eq!(min_cap, original_capacity_from_repr(1));
1543        assert_eq!(min_cap * 2, original_capacity_from_repr(2));
1544        assert_eq!(min_cap * 4, original_capacity_from_repr(3));
1545        assert_eq!(min_cap * 8, original_capacity_from_repr(4));
1546        assert_eq!(min_cap * 16, original_capacity_from_repr(5));
1547        assert_eq!(min_cap * 32, original_capacity_from_repr(6));
1548        assert_eq!(min_cap * 64, original_capacity_from_repr(7));
1549    }
1550}
1551
1552unsafe impl Send for BytesMut {}
1553unsafe impl Sync for BytesMut {}
1554
1555/*
1556 *
1557 * ===== PartialEq / PartialOrd =====
1558 *
1559 */
1560
1561impl PartialEq<[u8]> for BytesMut {
1562    fn eq(&self, other: &[u8]) -> bool {
1563        &**self == other
1564    }
1565}
1566
1567impl PartialOrd<[u8]> for BytesMut {
1568    fn partial_cmp(&self, other: &[u8]) -> Option<cmp::Ordering> {
1569        (**self).partial_cmp(other)
1570    }
1571}
1572
1573impl PartialEq<BytesMut> for [u8] {
1574    fn eq(&self, other: &BytesMut) -> bool {
1575        *other == *self
1576    }
1577}
1578
1579impl PartialOrd<BytesMut> for [u8] {
1580    fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1581        <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
1582    }
1583}
1584
1585impl PartialEq<str> for BytesMut {
1586    fn eq(&self, other: &str) -> bool {
1587        &**self == other.as_bytes()
1588    }
1589}
1590
1591impl PartialOrd<str> for BytesMut {
1592    fn partial_cmp(&self, other: &str) -> Option<cmp::Ordering> {
1593        (**self).partial_cmp(other.as_bytes())
1594    }
1595}
1596
1597impl PartialEq<BytesMut> for str {
1598    fn eq(&self, other: &BytesMut) -> bool {
1599        *other == *self
1600    }
1601}
1602
1603impl PartialOrd<BytesMut> for str {
1604    fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1605        <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
1606    }
1607}
1608
1609impl PartialEq<Vec<u8>> for BytesMut {
1610    fn eq(&self, other: &Vec<u8>) -> bool {
1611        *self == other[..]
1612    }
1613}
1614
1615impl PartialOrd<Vec<u8>> for BytesMut {
1616    fn partial_cmp(&self, other: &Vec<u8>) -> Option<cmp::Ordering> {
1617        (**self).partial_cmp(&other[..])
1618    }
1619}
1620
1621impl PartialEq<BytesMut> for Vec<u8> {
1622    fn eq(&self, other: &BytesMut) -> bool {
1623        *other == *self
1624    }
1625}
1626
1627impl PartialOrd<BytesMut> for Vec<u8> {
1628    fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1629        other.partial_cmp(self)
1630    }
1631}
1632
1633impl PartialEq<String> for BytesMut {
1634    fn eq(&self, other: &String) -> bool {
1635        *self == other[..]
1636    }
1637}
1638
1639impl PartialOrd<String> for BytesMut {
1640    fn partial_cmp(&self, other: &String) -> Option<cmp::Ordering> {
1641        (**self).partial_cmp(other.as_bytes())
1642    }
1643}
1644
1645impl PartialEq<BytesMut> for String {
1646    fn eq(&self, other: &BytesMut) -> bool {
1647        *other == *self
1648    }
1649}
1650
1651impl PartialOrd<BytesMut> for String {
1652    fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1653        <[u8] as PartialOrd<[u8]>>::partial_cmp(self.as_bytes(), other)
1654    }
1655}
1656
1657impl<'a, T: ?Sized> PartialEq<&'a T> for BytesMut
1658where
1659    BytesMut: PartialEq<T>,
1660{
1661    fn eq(&self, other: &&'a T) -> bool {
1662        *self == **other
1663    }
1664}
1665
1666impl<'a, T: ?Sized> PartialOrd<&'a T> for BytesMut
1667where
1668    BytesMut: PartialOrd<T>,
1669{
1670    fn partial_cmp(&self, other: &&'a T) -> Option<cmp::Ordering> {
1671        self.partial_cmp(*other)
1672    }
1673}
1674
1675impl PartialEq<BytesMut> for &[u8] {
1676    fn eq(&self, other: &BytesMut) -> bool {
1677        *other == *self
1678    }
1679}
1680
1681impl PartialOrd<BytesMut> for &[u8] {
1682    fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1683        <[u8] as PartialOrd<[u8]>>::partial_cmp(self, other)
1684    }
1685}
1686
1687impl PartialEq<BytesMut> for &str {
1688    fn eq(&self, other: &BytesMut) -> bool {
1689        *other == *self
1690    }
1691}
1692
1693impl PartialOrd<BytesMut> for &str {
1694    fn partial_cmp(&self, other: &BytesMut) -> Option<cmp::Ordering> {
1695        other.partial_cmp(self)
1696    }
1697}
1698
1699impl PartialEq<BytesMut> for Bytes {
1700    fn eq(&self, other: &BytesMut) -> bool {
1701        other[..] == self[..]
1702    }
1703}
1704
1705impl PartialEq<Bytes> for BytesMut {
1706    fn eq(&self, other: &Bytes) -> bool {
1707        other[..] == self[..]
1708    }
1709}
1710
1711impl From<BytesMut> for Vec<u8> {
1712    fn from(bytes: BytesMut) -> Self {
1713        let kind = bytes.kind();
1714        let bytes = ManuallyDrop::new(bytes);
1715
1716        let mut vec = if kind == KIND_VEC {
1717            unsafe {
1718                let off = bytes.get_vec_pos();
1719                rebuild_vec(bytes.ptr.as_ptr(), bytes.len, bytes.cap, off)
1720            }
1721        } else {
1722            let shared = bytes.data as *mut Shared;
1723
1724            if unsafe { (*shared).is_unique() } {
1725                let vec = mem::replace(unsafe { &mut (*shared).vec }, Vec::new());
1726
1727                unsafe { release_shared(shared) };
1728
1729                vec
1730            } else {
1731                return ManuallyDrop::into_inner(bytes).deref().to_vec();
1732            }
1733        };
1734
1735        let len = bytes.len;
1736
1737        unsafe {
1738            ptr::copy(bytes.ptr.as_ptr(), vec.as_mut_ptr(), len);
1739            vec.set_len(len);
1740        }
1741
1742        vec
1743    }
1744}
1745
1746#[inline]
1747fn vptr(ptr: *mut u8) -> NonNull<u8> {
1748    if cfg!(debug_assertions) {
1749        NonNull::new(ptr).expect("Vec pointer should be non-null")
1750    } else {
1751        unsafe { NonNull::new_unchecked(ptr) }
1752    }
1753}
1754
1755/// Returns a dangling pointer with the given address. This is used to store
1756/// integer data in pointer fields.
1757///
1758/// It is equivalent to `addr as *mut T`, but this fails on miri when strict
1759/// provenance checking is enabled.
1760#[inline]
1761fn invalid_ptr<T>(addr: usize) -> *mut T {
1762    let ptr = core::ptr::null_mut::<u8>().wrapping_add(addr);
1763    debug_assert_eq!(ptr as usize, addr);
1764    ptr.cast::<T>()
1765}
1766
1767unsafe fn rebuild_vec(ptr: *mut u8, mut len: usize, mut cap: usize, off: usize) -> Vec<u8> {
1768    let ptr = ptr.sub(off);
1769    len += off;
1770    cap += off;
1771
1772    Vec::from_raw_parts(ptr, len, cap)
1773}
1774
1775// ===== impl SharedVtable =====
1776
1777static SHARED_VTABLE: Vtable = Vtable {
1778    clone: shared_v_clone,
1779    to_vec: shared_v_to_vec,
1780    to_mut: shared_v_to_mut,
1781    is_unique: shared_v_is_unique,
1782    drop: shared_v_drop,
1783};
1784
1785unsafe fn shared_v_clone(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Bytes {
1786    let shared = data.load(Ordering::Relaxed) as *mut Shared;
1787    increment_shared(shared);
1788
1789    let data = AtomicPtr::new(shared as *mut ());
1790    Bytes::with_vtable(ptr, len, data, &SHARED_VTABLE)
1791}
1792
1793unsafe fn shared_v_to_vec(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> Vec<u8> {
1794    let shared: *mut Shared = data.load(Ordering::Relaxed).cast();
1795
1796    if (*shared).is_unique() {
1797        let shared = &mut *shared;
1798
1799        // Drop shared
1800        let mut vec = mem::replace(&mut shared.vec, Vec::new());
1801        release_shared(shared);
1802
1803        // Copy back buffer
1804        ptr::copy(ptr, vec.as_mut_ptr(), len);
1805        vec.set_len(len);
1806
1807        vec
1808    } else {
1809        let v = slice::from_raw_parts(ptr, len).to_vec();
1810        release_shared(shared);
1811        v
1812    }
1813}
1814
1815unsafe fn shared_v_to_mut(data: &AtomicPtr<()>, ptr: *const u8, len: usize) -> BytesMut {
1816    let shared: *mut Shared = data.load(Ordering::Relaxed).cast();
1817
1818    if (*shared).is_unique() {
1819        let shared = &mut *shared;
1820
1821        // The capacity is always the original capacity of the buffer
1822        // minus the offset from the start of the buffer
1823        let v = &mut shared.vec;
1824        let v_capacity = v.capacity();
1825        let v_ptr = v.as_mut_ptr();
1826        let offset = offset_from(ptr as *mut u8, v_ptr);
1827        let cap = v_capacity - offset;
1828
1829        let ptr = vptr(ptr as *mut u8);
1830
1831        BytesMut {
1832            ptr,
1833            len,
1834            cap,
1835            data: shared,
1836        }
1837    } else {
1838        let v = slice::from_raw_parts(ptr, len).to_vec();
1839        release_shared(shared);
1840        BytesMut::from_vec(v)
1841    }
1842}
1843
1844unsafe fn shared_v_is_unique(data: &AtomicPtr<()>) -> bool {
1845    let shared = data.load(Ordering::Acquire);
1846    let ref_count = (*shared.cast::<Shared>()).ref_count.load(Ordering::Relaxed);
1847    ref_count == 1
1848}
1849
1850unsafe fn shared_v_drop(data: &mut AtomicPtr<()>, _ptr: *const u8, _len: usize) {
1851    data.with_mut(|shared| {
1852        release_shared(*shared as *mut Shared);
1853    });
1854}
1855
1856// compile-fails
1857
1858/// ```compile_fail
1859/// use bytes::BytesMut;
1860/// #[deny(unused_must_use)]
1861/// {
1862///     let mut b1 = BytesMut::from("hello world");
1863///     b1.split_to(6);
1864/// }
1865/// ```
1866fn _split_to_must_use() {}
1867
1868/// ```compile_fail
1869/// use bytes::BytesMut;
1870/// #[deny(unused_must_use)]
1871/// {
1872///     let mut b1 = BytesMut::from("hello world");
1873///     b1.split_off(6);
1874/// }
1875/// ```
1876fn _split_off_must_use() {}
1877
1878/// ```compile_fail
1879/// use bytes::BytesMut;
1880/// #[deny(unused_must_use)]
1881/// {
1882///     let mut b1 = BytesMut::from("hello world");
1883///     b1.split();
1884/// }
1885/// ```
1886fn _split_must_use() {}
1887
1888// fuzz tests
1889#[cfg(all(test, loom))]
1890mod fuzz {
1891    use loom::sync::Arc;
1892    use loom::thread;
1893
1894    use super::BytesMut;
1895    use crate::Bytes;
1896
1897    #[test]
1898    fn bytes_mut_cloning_frozen() {
1899        loom::model(|| {
1900            let a = BytesMut::from(&b"abcdefgh"[..]).split().freeze();
1901            let addr = a.as_ptr() as usize;
1902
1903            // test the Bytes::clone is Sync by putting it in an Arc
1904            let a1 = Arc::new(a);
1905            let a2 = a1.clone();
1906
1907            let t1 = thread::spawn(move || {
1908                let b: Bytes = (*a1).clone();
1909                assert_eq!(b.as_ptr() as usize, addr);
1910            });
1911
1912            let t2 = thread::spawn(move || {
1913                let b: Bytes = (*a2).clone();
1914                assert_eq!(b.as_ptr() as usize, addr);
1915            });
1916
1917            t1.join().unwrap();
1918            t2.join().unwrap();
1919        });
1920    }
1921}