chrono/naive/time/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
// This is a part of Chrono.
// See README.md and LICENSE.txt for details.
//! ISO 8601 time without timezone.
#[cfg(feature = "alloc")]
use core::borrow::Borrow;
use core::ops::{Add, AddAssign, Sub, SubAssign};
use core::time::Duration;
use core::{fmt, str};
#[cfg(any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"))]
use rkyv::{Archive, Deserialize, Serialize};
#[cfg(feature = "alloc")]
use crate::format::DelayedFormat;
use crate::format::{
parse, parse_and_remainder, write_hundreds, Fixed, Item, Numeric, Pad, ParseError, ParseResult,
Parsed, StrftimeItems,
};
use crate::{expect, try_opt};
use crate::{FixedOffset, TimeDelta, Timelike};
#[cfg(feature = "rustc-serialize")]
mod rustc_serialize;
#[cfg(feature = "serde")]
mod serde;
#[cfg(test)]
mod tests;
/// ISO 8601 time without timezone.
/// Allows for the nanosecond precision and optional leap second representation.
///
/// # Leap Second Handling
///
/// Since 1960s, the manmade atomic clock has been so accurate that
/// it is much more accurate than Earth's own motion.
/// It became desirable to define the civil time in terms of the atomic clock,
/// but that risks the desynchronization of the civil time from Earth.
/// To account for this, the designers of the Coordinated Universal Time (UTC)
/// made that the UTC should be kept within 0.9 seconds of the observed Earth-bound time.
/// When the mean solar day is longer than the ideal (86,400 seconds),
/// the error slowly accumulates and it is necessary to add a **leap second**
/// to slow the UTC down a bit.
/// (We may also remove a second to speed the UTC up a bit, but it never happened.)
/// The leap second, if any, follows 23:59:59 of June 30 or December 31 in the UTC.
///
/// Fast forward to the 21st century,
/// we have seen 26 leap seconds from January 1972 to December 2015.
/// Yes, 26 seconds. Probably you can read this paragraph within 26 seconds.
/// But those 26 seconds, and possibly more in the future, are never predictable,
/// and whether to add a leap second or not is known only before 6 months.
/// Internet-based clocks (via NTP) do account for known leap seconds,
/// but the system API normally doesn't (and often can't, with no network connection)
/// and there is no reliable way to retrieve leap second information.
///
/// Chrono does not try to accurately implement leap seconds; it is impossible.
/// Rather, **it allows for leap seconds but behaves as if there are *no other* leap seconds.**
/// Various operations will ignore any possible leap second(s)
/// except when any of the operands were actually leap seconds.
///
/// If you cannot tolerate this behavior,
/// you must use a separate `TimeZone` for the International Atomic Time (TAI).
/// TAI is like UTC but has no leap seconds, and thus slightly differs from UTC.
/// Chrono does not yet provide such implementation, but it is planned.
///
/// ## Representing Leap Seconds
///
/// The leap second is indicated via fractional seconds more than 1 second.
/// This makes possible to treat a leap second as the prior non-leap second
/// if you don't care about sub-second accuracy.
/// You should use the proper formatting to get the raw leap second.
///
/// All methods accepting fractional seconds will accept such values.
///
/// ```
/// use chrono::{NaiveDate, NaiveTime, Utc};
///
/// let t = NaiveTime::from_hms_milli_opt(8, 59, 59, 1_000).unwrap();
///
/// let dt1 = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_micro_opt(8, 59, 59, 1_000_000).unwrap();
///
/// let dt2 = NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_nano_opt(23, 59, 59, 1_000_000_000).unwrap().and_local_timezone(Utc).unwrap();
/// # let _ = (t, dt1, dt2);
/// ```
///
/// Note that the leap second can happen anytime given an appropriate time zone;
/// 2015-07-01 01:23:60 would be a proper leap second if UTC+01:24 had existed.
/// Practically speaking, though, by the time of the first leap second on 1972-06-30,
/// every time zone offset around the world has standardized to the 5-minute alignment.
///
/// ## Date And Time Arithmetics
///
/// As a concrete example, let's assume that `03:00:60` and `04:00:60` are leap seconds.
/// In reality, of course, leap seconds are separated by at least 6 months.
/// We will also use some intuitive concise notations for the explanation.
///
/// `Time + TimeDelta`
/// (short for [`NaiveTime::overflowing_add_signed`](#method.overflowing_add_signed)):
///
/// - `03:00:00 + 1s = 03:00:01`.
/// - `03:00:59 + 60s = 03:01:59`.
/// - `03:00:59 + 61s = 03:02:00`.
/// - `03:00:59 + 1s = 03:01:00`.
/// - `03:00:60 + 1s = 03:01:00`.
/// Note that the sum is identical to the previous.
/// - `03:00:60 + 60s = 03:01:59`.
/// - `03:00:60 + 61s = 03:02:00`.
/// - `03:00:60.1 + 0.8s = 03:00:60.9`.
///
/// `Time - TimeDelta`
/// (short for [`NaiveTime::overflowing_sub_signed`](#method.overflowing_sub_signed)):
///
/// - `03:00:00 - 1s = 02:59:59`.
/// - `03:01:00 - 1s = 03:00:59`.
/// - `03:01:00 - 60s = 03:00:00`.
/// - `03:00:60 - 60s = 03:00:00`.
/// Note that the result is identical to the previous.
/// - `03:00:60.7 - 0.4s = 03:00:60.3`.
/// - `03:00:60.7 - 0.9s = 03:00:59.8`.
///
/// `Time - Time`
/// (short for [`NaiveTime::signed_duration_since`](#method.signed_duration_since)):
///
/// - `04:00:00 - 03:00:00 = 3600s`.
/// - `03:01:00 - 03:00:00 = 60s`.
/// - `03:00:60 - 03:00:00 = 60s`.
/// Note that the difference is identical to the previous.
/// - `03:00:60.6 - 03:00:59.4 = 1.2s`.
/// - `03:01:00 - 03:00:59.8 = 0.2s`.
/// - `03:01:00 - 03:00:60.5 = 0.5s`.
/// Note that the difference is larger than the previous,
/// even though the leap second clearly follows the previous whole second.
/// - `04:00:60.9 - 03:00:60.1 =
/// (04:00:60.9 - 04:00:00) + (04:00:00 - 03:01:00) + (03:01:00 - 03:00:60.1) =
/// 60.9s + 3540s + 0.9s = 3601.8s`.
///
/// In general,
///
/// - `Time + TimeDelta` unconditionally equals to `TimeDelta + Time`.
///
/// - `Time - TimeDelta` unconditionally equals to `Time + (-TimeDelta)`.
///
/// - `Time1 - Time2` unconditionally equals to `-(Time2 - Time1)`.
///
/// - Associativity does not generally hold, because
/// `(Time + TimeDelta1) - TimeDelta2` no longer equals to `Time + (TimeDelta1 - TimeDelta2)`
/// for two positive durations.
///
/// - As a special case, `(Time + TimeDelta) - TimeDelta` also does not equal to `Time`.
///
/// - If you can assume that all durations have the same sign, however,
/// then the associativity holds:
/// `(Time + TimeDelta1) + TimeDelta2` equals to `Time + (TimeDelta1 + TimeDelta2)`
/// for two positive durations.
///
/// ## Reading And Writing Leap Seconds
///
/// The "typical" leap seconds on the minute boundary are
/// correctly handled both in the formatting and parsing.
/// The leap second in the human-readable representation
/// will be represented as the second part being 60, as required by ISO 8601.
///
/// ```
/// use chrono::{Utc, NaiveDate};
///
/// let dt = NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_000).unwrap().and_local_timezone(Utc).unwrap();
/// assert_eq!(format!("{:?}", dt), "2015-06-30T23:59:60Z");
/// ```
///
/// There are hypothetical leap seconds not on the minute boundary nevertheless supported by Chrono.
/// They are allowed for the sake of completeness and consistency; there were several "exotic" time
/// zone offsets with fractional minutes prior to UTC after all.
/// For such cases the human-readable representation is ambiguous and would be read back to the next
/// non-leap second.
///
/// A `NaiveTime` with a leap second that is not on a minute boundary can only be created from a
/// [`DateTime`](crate::DateTime) with fractional minutes as offset, or using
/// [`Timelike::with_nanosecond()`].
///
/// ```
/// use chrono::{FixedOffset, NaiveDate, TimeZone};
///
/// let paramaribo_pre1945 = FixedOffset::east_opt(-13236).unwrap(); // -03:40:36
/// let leap_sec_2015 =
/// NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_000).unwrap();
/// let dt1 = paramaribo_pre1945.from_utc_datetime(&leap_sec_2015);
/// assert_eq!(format!("{:?}", dt1), "2015-06-30T20:19:24-03:40:36");
/// assert_eq!(format!("{:?}", dt1.time()), "20:19:24");
///
/// let next_sec = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_opt(0, 0, 0).unwrap();
/// let dt2 = paramaribo_pre1945.from_utc_datetime(&next_sec);
/// assert_eq!(format!("{:?}", dt2), "2015-06-30T20:19:24-03:40:36");
/// assert_eq!(format!("{:?}", dt2.time()), "20:19:24");
///
/// assert!(dt1.time() != dt2.time());
/// assert!(dt1.time().to_string() == dt2.time().to_string());
/// ```
///
/// Since Chrono alone cannot determine any existence of leap seconds,
/// **there is absolutely no guarantee that the leap second read has actually happened**.
#[derive(PartialEq, Eq, Hash, PartialOrd, Ord, Copy, Clone)]
#[cfg_attr(
any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"),
derive(Archive, Deserialize, Serialize),
archive(compare(PartialEq, PartialOrd)),
archive_attr(derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Hash))
)]
#[cfg_attr(feature = "rkyv-validation", archive(check_bytes))]
pub struct NaiveTime {
secs: u32,
frac: u32,
}
#[cfg(feature = "arbitrary")]
impl arbitrary::Arbitrary<'_> for NaiveTime {
fn arbitrary(u: &mut arbitrary::Unstructured) -> arbitrary::Result<NaiveTime> {
let mins = u.int_in_range(0..=1439)?;
let mut secs = u.int_in_range(0..=60)?;
let mut nano = u.int_in_range(0..=999_999_999)?;
if secs == 60 {
secs = 59;
nano += 1_000_000_000;
}
let time = NaiveTime::from_num_seconds_from_midnight_opt(mins * 60 + secs, nano)
.expect("Could not generate a valid chrono::NaiveTime. It looks like implementation of Arbitrary for NaiveTime is erroneous.");
Ok(time)
}
}
impl NaiveTime {
/// Makes a new `NaiveTime` from hour, minute and second.
///
/// No [leap second](#leap-second-handling) is allowed here;
/// use `NaiveTime::from_hms_*` methods with a subsecond parameter instead.
///
/// # Panics
///
/// Panics on invalid hour, minute and/or second.
#[deprecated(since = "0.4.23", note = "use `from_hms_opt()` instead")]
#[inline]
#[must_use]
pub const fn from_hms(hour: u32, min: u32, sec: u32) -> NaiveTime {
expect!(NaiveTime::from_hms_opt(hour, min, sec), "invalid time")
}
/// Makes a new `NaiveTime` from hour, minute and second.
///
/// The millisecond part is allowed to exceed 1,000,000,000 in order to represent a
/// [leap second](#leap-second-handling), but only when `sec == 59`.
///
/// # Errors
///
/// Returns `None` on invalid hour, minute and/or second.
///
/// # Example
///
/// ```
/// use chrono::NaiveTime;
///
/// let from_hms_opt = NaiveTime::from_hms_opt;
///
/// assert!(from_hms_opt(0, 0, 0).is_some());
/// assert!(from_hms_opt(23, 59, 59).is_some());
/// assert!(from_hms_opt(24, 0, 0).is_none());
/// assert!(from_hms_opt(23, 60, 0).is_none());
/// assert!(from_hms_opt(23, 59, 60).is_none());
/// ```
#[inline]
#[must_use]
pub const fn from_hms_opt(hour: u32, min: u32, sec: u32) -> Option<NaiveTime> {
NaiveTime::from_hms_nano_opt(hour, min, sec, 0)
}
/// Makes a new `NaiveTime` from hour, minute, second and millisecond.
///
/// The millisecond part can exceed 1,000
/// in order to represent the [leap second](#leap-second-handling).
///
/// # Panics
///
/// Panics on invalid hour, minute, second and/or millisecond.
#[deprecated(since = "0.4.23", note = "use `from_hms_milli_opt()` instead")]
#[inline]
#[must_use]
pub const fn from_hms_milli(hour: u32, min: u32, sec: u32, milli: u32) -> NaiveTime {
expect!(NaiveTime::from_hms_milli_opt(hour, min, sec, milli), "invalid time")
}
/// Makes a new `NaiveTime` from hour, minute, second and millisecond.
///
/// The millisecond part is allowed to exceed 1,000,000,000 in order to represent a
/// [leap second](#leap-second-handling), but only when `sec == 59`.
///
/// # Errors
///
/// Returns `None` on invalid hour, minute, second and/or millisecond.
///
/// # Example
///
/// ```
/// use chrono::NaiveTime;
///
/// let from_hmsm_opt = NaiveTime::from_hms_milli_opt;
///
/// assert!(from_hmsm_opt(0, 0, 0, 0).is_some());
/// assert!(from_hmsm_opt(23, 59, 59, 999).is_some());
/// assert!(from_hmsm_opt(23, 59, 59, 1_999).is_some()); // a leap second after 23:59:59
/// assert!(from_hmsm_opt(24, 0, 0, 0).is_none());
/// assert!(from_hmsm_opt(23, 60, 0, 0).is_none());
/// assert!(from_hmsm_opt(23, 59, 60, 0).is_none());
/// assert!(from_hmsm_opt(23, 59, 59, 2_000).is_none());
/// ```
#[inline]
#[must_use]
pub const fn from_hms_milli_opt(
hour: u32,
min: u32,
sec: u32,
milli: u32,
) -> Option<NaiveTime> {
let nano = try_opt!(milli.checked_mul(1_000_000));
NaiveTime::from_hms_nano_opt(hour, min, sec, nano)
}
/// Makes a new `NaiveTime` from hour, minute, second and microsecond.
///
/// The microsecond part is allowed to exceed 1,000,000,000 in order to represent a
/// [leap second](#leap-second-handling), but only when `sec == 59`.
///
/// # Panics
///
/// Panics on invalid hour, minute, second and/or microsecond.
#[deprecated(since = "0.4.23", note = "use `from_hms_micro_opt()` instead")]
#[inline]
#[must_use]
pub const fn from_hms_micro(hour: u32, min: u32, sec: u32, micro: u32) -> NaiveTime {
expect!(NaiveTime::from_hms_micro_opt(hour, min, sec, micro), "invalid time")
}
/// Makes a new `NaiveTime` from hour, minute, second and microsecond.
///
/// The microsecond part is allowed to exceed 1,000,000,000 in order to represent a
/// [leap second](#leap-second-handling), but only when `sec == 59`.
///
/// # Errors
///
/// Returns `None` on invalid hour, minute, second and/or microsecond.
///
/// # Example
///
/// ```
/// use chrono::NaiveTime;
///
/// let from_hmsu_opt = NaiveTime::from_hms_micro_opt;
///
/// assert!(from_hmsu_opt(0, 0, 0, 0).is_some());
/// assert!(from_hmsu_opt(23, 59, 59, 999_999).is_some());
/// assert!(from_hmsu_opt(23, 59, 59, 1_999_999).is_some()); // a leap second after 23:59:59
/// assert!(from_hmsu_opt(24, 0, 0, 0).is_none());
/// assert!(from_hmsu_opt(23, 60, 0, 0).is_none());
/// assert!(from_hmsu_opt(23, 59, 60, 0).is_none());
/// assert!(from_hmsu_opt(23, 59, 59, 2_000_000).is_none());
/// ```
#[inline]
#[must_use]
pub const fn from_hms_micro_opt(
hour: u32,
min: u32,
sec: u32,
micro: u32,
) -> Option<NaiveTime> {
let nano = try_opt!(micro.checked_mul(1_000));
NaiveTime::from_hms_nano_opt(hour, min, sec, nano)
}
/// Makes a new `NaiveTime` from hour, minute, second and nanosecond.
///
/// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a
/// [leap second](#leap-second-handling), but only when `sec == 59`.
///
/// # Panics
///
/// Panics on invalid hour, minute, second and/or nanosecond.
#[deprecated(since = "0.4.23", note = "use `from_hms_nano_opt()` instead")]
#[inline]
#[must_use]
pub const fn from_hms_nano(hour: u32, min: u32, sec: u32, nano: u32) -> NaiveTime {
expect!(NaiveTime::from_hms_nano_opt(hour, min, sec, nano), "invalid time")
}
/// Makes a new `NaiveTime` from hour, minute, second and nanosecond.
///
/// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a
/// [leap second](#leap-second-handling), but only when `sec == 59`.
///
/// # Errors
///
/// Returns `None` on invalid hour, minute, second and/or nanosecond.
///
/// # Example
///
/// ```
/// use chrono::NaiveTime;
///
/// let from_hmsn_opt = NaiveTime::from_hms_nano_opt;
///
/// assert!(from_hmsn_opt(0, 0, 0, 0).is_some());
/// assert!(from_hmsn_opt(23, 59, 59, 999_999_999).is_some());
/// assert!(from_hmsn_opt(23, 59, 59, 1_999_999_999).is_some()); // a leap second after 23:59:59
/// assert!(from_hmsn_opt(24, 0, 0, 0).is_none());
/// assert!(from_hmsn_opt(23, 60, 0, 0).is_none());
/// assert!(from_hmsn_opt(23, 59, 60, 0).is_none());
/// assert!(from_hmsn_opt(23, 59, 59, 2_000_000_000).is_none());
/// ```
#[inline]
#[must_use]
pub const fn from_hms_nano_opt(hour: u32, min: u32, sec: u32, nano: u32) -> Option<NaiveTime> {
if (hour >= 24 || min >= 60 || sec >= 60)
|| (nano >= 1_000_000_000 && sec != 59)
|| nano >= 2_000_000_000
{
return None;
}
let secs = hour * 3600 + min * 60 + sec;
Some(NaiveTime { secs, frac: nano })
}
/// Makes a new `NaiveTime` from the number of seconds since midnight and nanosecond.
///
/// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a
/// [leap second](#leap-second-handling), but only when `secs % 60 == 59`.
///
/// # Panics
///
/// Panics on invalid number of seconds and/or nanosecond.
#[deprecated(since = "0.4.23", note = "use `from_num_seconds_from_midnight_opt()` instead")]
#[inline]
#[must_use]
pub const fn from_num_seconds_from_midnight(secs: u32, nano: u32) -> NaiveTime {
expect!(NaiveTime::from_num_seconds_from_midnight_opt(secs, nano), "invalid time")
}
/// Makes a new `NaiveTime` from the number of seconds since midnight and nanosecond.
///
/// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a
/// [leap second](#leap-second-handling), but only when `secs % 60 == 59`.
///
/// # Errors
///
/// Returns `None` on invalid number of seconds and/or nanosecond.
///
/// # Example
///
/// ```
/// use chrono::NaiveTime;
///
/// let from_nsecs_opt = NaiveTime::from_num_seconds_from_midnight_opt;
///
/// assert!(from_nsecs_opt(0, 0).is_some());
/// assert!(from_nsecs_opt(86399, 999_999_999).is_some());
/// assert!(from_nsecs_opt(86399, 1_999_999_999).is_some()); // a leap second after 23:59:59
/// assert!(from_nsecs_opt(86_400, 0).is_none());
/// assert!(from_nsecs_opt(86399, 2_000_000_000).is_none());
/// ```
#[inline]
#[must_use]
pub const fn from_num_seconds_from_midnight_opt(secs: u32, nano: u32) -> Option<NaiveTime> {
if secs >= 86_400 || nano >= 2_000_000_000 || (nano >= 1_000_000_000 && secs % 60 != 59) {
return None;
}
Some(NaiveTime { secs, frac: nano })
}
/// Parses a string with the specified format string and returns a new `NaiveTime`.
/// See the [`format::strftime` module](crate::format::strftime)
/// on the supported escape sequences.
///
/// # Example
///
/// ```
/// use chrono::NaiveTime;
///
/// let parse_from_str = NaiveTime::parse_from_str;
///
/// assert_eq!(parse_from_str("23:56:04", "%H:%M:%S"),
/// Ok(NaiveTime::from_hms_opt(23, 56, 4).unwrap()));
/// assert_eq!(parse_from_str("pm012345.6789", "%p%I%M%S%.f"),
/// Ok(NaiveTime::from_hms_micro_opt(13, 23, 45, 678_900).unwrap()));
/// ```
///
/// Date and offset is ignored for the purpose of parsing.
///
/// ```
/// # use chrono::NaiveTime;
/// # let parse_from_str = NaiveTime::parse_from_str;
/// assert_eq!(parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"),
/// Ok(NaiveTime::from_hms_opt(12, 34, 56).unwrap()));
/// ```
///
/// [Leap seconds](#leap-second-handling) are correctly handled by
/// treating any time of the form `hh:mm:60` as a leap second.
/// (This equally applies to the formatting, so the round trip is possible.)
///
/// ```
/// # use chrono::NaiveTime;
/// # let parse_from_str = NaiveTime::parse_from_str;
/// assert_eq!(parse_from_str("08:59:60.123", "%H:%M:%S%.f"),
/// Ok(NaiveTime::from_hms_milli_opt(8, 59, 59, 1_123).unwrap()));
/// ```
///
/// Missing seconds are assumed to be zero,
/// but out-of-bound times or insufficient fields are errors otherwise.
///
/// ```
/// # use chrono::NaiveTime;
/// # let parse_from_str = NaiveTime::parse_from_str;
/// assert_eq!(parse_from_str("7:15", "%H:%M"),
/// Ok(NaiveTime::from_hms_opt(7, 15, 0).unwrap()));
///
/// assert!(parse_from_str("04m33s", "%Mm%Ss").is_err());
/// assert!(parse_from_str("12", "%H").is_err());
/// assert!(parse_from_str("17:60", "%H:%M").is_err());
/// assert!(parse_from_str("24:00:00", "%H:%M:%S").is_err());
/// ```
///
/// All parsed fields should be consistent to each other, otherwise it's an error.
/// Here `%H` is for 24-hour clocks, unlike `%I`,
/// and thus can be independently determined without AM/PM.
///
/// ```
/// # use chrono::NaiveTime;
/// # let parse_from_str = NaiveTime::parse_from_str;
/// assert!(parse_from_str("13:07 AM", "%H:%M %p").is_err());
/// ```
pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveTime> {
let mut parsed = Parsed::new();
parse(&mut parsed, s, StrftimeItems::new(fmt))?;
parsed.to_naive_time()
}
/// Parses a string from a user-specified format into a new `NaiveTime` value, and a slice with
/// the remaining portion of the string.
/// See the [`format::strftime` module](crate::format::strftime)
/// on the supported escape sequences.
///
/// Similar to [`parse_from_str`](#method.parse_from_str).
///
/// # Example
///
/// ```rust
/// # use chrono::{NaiveTime};
/// let (time, remainder) = NaiveTime::parse_and_remainder(
/// "3h4m33s trailing text", "%-Hh%-Mm%-Ss").unwrap();
/// assert_eq!(time, NaiveTime::from_hms_opt(3, 4, 33).unwrap());
/// assert_eq!(remainder, " trailing text");
/// ```
pub fn parse_and_remainder<'a>(s: &'a str, fmt: &str) -> ParseResult<(NaiveTime, &'a str)> {
let mut parsed = Parsed::new();
let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?;
parsed.to_naive_time().map(|t| (t, remainder))
}
/// Adds given `TimeDelta` to the current time, and also returns the number of *seconds*
/// in the integral number of days ignored from the addition.
///
/// # Example
///
/// ```
/// use chrono::{TimeDelta, NaiveTime};
///
/// let from_hms = |h, m, s| { NaiveTime::from_hms_opt(h, m, s).unwrap() };
///
/// assert_eq!(from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::hours(11)),
/// (from_hms(14, 4, 5), 0));
/// assert_eq!(from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::hours(23)),
/// (from_hms(2, 4, 5), 86_400));
/// assert_eq!(from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::hours(-7)),
/// (from_hms(20, 4, 5), -86_400));
/// ```
#[must_use]
pub const fn overflowing_add_signed(&self, rhs: TimeDelta) -> (NaiveTime, i64) {
let mut secs = self.secs as i64;
let mut frac = self.frac as i32;
let secs_to_add = rhs.num_seconds();
let frac_to_add = rhs.subsec_nanos();
// Check if `self` is a leap second and adding `rhs` would escape that leap second.
// If that is the case, update `frac` and `secs` to involve no leap second.
// If it stays within the leap second or the second before, and only adds a fractional
// second, just do that and return (this way the rest of the code can ignore leap seconds).
if frac >= 1_000_000_000 {
// check below is adjusted to not overflow an i32: `frac + frac_to_add >= 2_000_000_000`
if secs_to_add > 0 || (frac_to_add > 0 && frac >= 2_000_000_000 - frac_to_add) {
frac -= 1_000_000_000;
} else if secs_to_add < 0 {
frac -= 1_000_000_000;
secs += 1;
} else {
return (NaiveTime { secs: self.secs, frac: (frac + frac_to_add) as u32 }, 0);
}
}
let mut secs = secs + secs_to_add;
frac += frac_to_add;
if frac < 0 {
frac += 1_000_000_000;
secs -= 1;
} else if frac >= 1_000_000_000 {
frac -= 1_000_000_000;
secs += 1;
}
let secs_in_day = secs.rem_euclid(86_400);
let remaining = secs - secs_in_day;
(NaiveTime { secs: secs_in_day as u32, frac: frac as u32 }, remaining)
}
/// Subtracts given `TimeDelta` from the current time, and also returns the number of *seconds*
/// in the integral number of days ignored from the subtraction.
///
/// # Example
///
/// ```
/// use chrono::{TimeDelta, NaiveTime};
///
/// let from_hms = |h, m, s| { NaiveTime::from_hms_opt(h, m, s).unwrap() };
///
/// assert_eq!(from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::hours(2)),
/// (from_hms(1, 4, 5), 0));
/// assert_eq!(from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::hours(17)),
/// (from_hms(10, 4, 5), 86_400));
/// assert_eq!(from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::hours(-22)),
/// (from_hms(1, 4, 5), -86_400));
/// ```
#[inline]
#[must_use]
pub const fn overflowing_sub_signed(&self, rhs: TimeDelta) -> (NaiveTime, i64) {
let (time, rhs) = self.overflowing_add_signed(rhs.neg());
(time, -rhs) // safe to negate, rhs is within +/- (2^63 / 1000)
}
/// Subtracts another `NaiveTime` from the current time.
/// Returns a `TimeDelta` within +/- 1 day.
/// This does not overflow or underflow at all.
///
/// As a part of Chrono's [leap second handling](#leap-second-handling),
/// the subtraction assumes that **there is no leap second ever**,
/// except when any of the `NaiveTime`s themselves represents a leap second
/// in which case the assumption becomes that
/// **there are exactly one (or two) leap second(s) ever**.
///
/// # Example
///
/// ```
/// use chrono::{TimeDelta, NaiveTime};
///
/// let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
/// let since = NaiveTime::signed_duration_since;
///
/// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 900)),
/// TimeDelta::zero());
/// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 875)),
/// TimeDelta::milliseconds(25));
/// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 6, 925)),
/// TimeDelta::milliseconds(975));
/// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 0, 900)),
/// TimeDelta::seconds(7));
/// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 0, 7, 900)),
/// TimeDelta::seconds(5 * 60));
/// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(0, 5, 7, 900)),
/// TimeDelta::seconds(3 * 3600));
/// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(4, 5, 7, 900)),
/// TimeDelta::seconds(-3600));
/// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(2, 4, 6, 800)),
/// TimeDelta::seconds(3600 + 60 + 1) + TimeDelta::milliseconds(100));
/// ```
///
/// Leap seconds are handled, but the subtraction assumes that
/// there were no other leap seconds happened.
///
/// ```
/// # use chrono::{TimeDelta, NaiveTime};
/// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
/// # let since = NaiveTime::signed_duration_since;
/// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 59, 0)),
/// TimeDelta::seconds(1));
/// assert_eq!(since(from_hmsm(3, 0, 59, 1_500), from_hmsm(3, 0, 59, 0)),
/// TimeDelta::milliseconds(1500));
/// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 0, 0)),
/// TimeDelta::seconds(60));
/// assert_eq!(since(from_hmsm(3, 0, 0, 0), from_hmsm(2, 59, 59, 1_000)),
/// TimeDelta::seconds(1));
/// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(2, 59, 59, 1_000)),
/// TimeDelta::seconds(61));
/// ```
#[must_use]
pub const fn signed_duration_since(self, rhs: NaiveTime) -> TimeDelta {
// | | :leap| | | | | | | :leap| |
// | | : | | | | | | | : | |
// ----+----+-----*---+----+----+----+----+----+----+-------*-+----+----
// | `rhs` | | `self`
// |======================================>| |
// | | `self.secs - rhs.secs` |`self.frac`
// |====>| | |======>|
// `rhs.frac`|========================================>|
// | | | `self - rhs` | |
let mut secs = self.secs as i64 - rhs.secs as i64;
let frac = self.frac as i64 - rhs.frac as i64;
// `secs` may contain a leap second yet to be counted
if self.secs > rhs.secs && rhs.frac >= 1_000_000_000 {
secs += 1;
} else if self.secs < rhs.secs && self.frac >= 1_000_000_000 {
secs -= 1;
}
let secs_from_frac = frac.div_euclid(1_000_000_000);
let frac = frac.rem_euclid(1_000_000_000) as u32;
expect!(TimeDelta::new(secs + secs_from_frac, frac), "must be in range")
}
/// Adds given `FixedOffset` to the current time, and returns the number of days that should be
/// added to a date as a result of the offset (either `-1`, `0`, or `1` because the offset is
/// always less than 24h).
///
/// This method is similar to [`overflowing_add_signed`](#method.overflowing_add_signed), but
/// preserves leap seconds.
pub(super) const fn overflowing_add_offset(&self, offset: FixedOffset) -> (NaiveTime, i32) {
let secs = self.secs as i32 + offset.local_minus_utc();
let days = secs.div_euclid(86_400);
let secs = secs.rem_euclid(86_400);
(NaiveTime { secs: secs as u32, frac: self.frac }, days)
}
/// Subtracts given `FixedOffset` from the current time, and returns the number of days that
/// should be added to a date as a result of the offset (either `-1`, `0`, or `1` because the
/// offset is always less than 24h).
///
/// This method is similar to [`overflowing_sub_signed`](#method.overflowing_sub_signed), but
/// preserves leap seconds.
pub(super) const fn overflowing_sub_offset(&self, offset: FixedOffset) -> (NaiveTime, i32) {
let secs = self.secs as i32 - offset.local_minus_utc();
let days = secs.div_euclid(86_400);
let secs = secs.rem_euclid(86_400);
(NaiveTime { secs: secs as u32, frac: self.frac }, days)
}
/// Formats the time with the specified formatting items.
/// Otherwise it is the same as the ordinary [`format`](#method.format) method.
///
/// The `Iterator` of items should be `Clone`able,
/// since the resulting `DelayedFormat` value may be formatted multiple times.
///
/// # Example
///
/// ```
/// use chrono::NaiveTime;
/// use chrono::format::strftime::StrftimeItems;
///
/// let fmt = StrftimeItems::new("%H:%M:%S");
/// let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap();
/// assert_eq!(t.format_with_items(fmt.clone()).to_string(), "23:56:04");
/// assert_eq!(t.format("%H:%M:%S").to_string(), "23:56:04");
/// ```
///
/// The resulting `DelayedFormat` can be formatted directly via the `Display` trait.
///
/// ```
/// # use chrono::NaiveTime;
/// # use chrono::format::strftime::StrftimeItems;
/// # let fmt = StrftimeItems::new("%H:%M:%S").clone();
/// # let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap();
/// assert_eq!(format!("{}", t.format_with_items(fmt)), "23:56:04");
/// ```
#[cfg(feature = "alloc")]
#[inline]
#[must_use]
pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I>
where
I: Iterator<Item = B> + Clone,
B: Borrow<Item<'a>>,
{
DelayedFormat::new(None, Some(*self), items)
}
/// Formats the time with the specified format string.
/// See the [`format::strftime` module](crate::format::strftime)
/// on the supported escape sequences.
///
/// This returns a `DelayedFormat`,
/// which gets converted to a string only when actual formatting happens.
/// You may use the `to_string` method to get a `String`,
/// or just feed it into `print!` and other formatting macros.
/// (In this way it avoids the redundant memory allocation.)
///
/// A wrong format string does *not* issue an error immediately.
/// Rather, converting or formatting the `DelayedFormat` fails.
/// You are recommended to immediately use `DelayedFormat` for this reason.
///
/// # Example
///
/// ```
/// use chrono::NaiveTime;
///
/// let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
/// assert_eq!(t.format("%H:%M:%S").to_string(), "23:56:04");
/// assert_eq!(t.format("%H:%M:%S%.6f").to_string(), "23:56:04.012345");
/// assert_eq!(t.format("%-I:%M %p").to_string(), "11:56 PM");
/// ```
///
/// The resulting `DelayedFormat` can be formatted directly via the `Display` trait.
///
/// ```
/// # use chrono::NaiveTime;
/// # let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
/// assert_eq!(format!("{}", t.format("%H:%M:%S")), "23:56:04");
/// assert_eq!(format!("{}", t.format("%H:%M:%S%.6f")), "23:56:04.012345");
/// assert_eq!(format!("{}", t.format("%-I:%M %p")), "11:56 PM");
/// ```
#[cfg(feature = "alloc")]
#[inline]
#[must_use]
pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> {
self.format_with_items(StrftimeItems::new(fmt))
}
/// Returns a triple of the hour, minute and second numbers.
pub(crate) fn hms(&self) -> (u32, u32, u32) {
let sec = self.secs % 60;
let mins = self.secs / 60;
let min = mins % 60;
let hour = mins / 60;
(hour, min, sec)
}
/// Returns the number of non-leap seconds past the last midnight.
// This duplicates `Timelike::num_seconds_from_midnight()`, because trait methods can't be const
// yet.
#[inline]
pub(crate) const fn num_seconds_from_midnight(&self) -> u32 {
self.secs
}
/// Returns the number of nanoseconds since the whole non-leap second.
// This duplicates `Timelike::nanosecond()`, because trait methods can't be const yet.
#[inline]
pub(crate) const fn nanosecond(&self) -> u32 {
self.frac
}
/// The earliest possible `NaiveTime`
pub const MIN: Self = Self { secs: 0, frac: 0 };
pub(super) const MAX: Self = Self { secs: 23 * 3600 + 59 * 60 + 59, frac: 999_999_999 };
}
impl Timelike for NaiveTime {
/// Returns the hour number from 0 to 23.
///
/// # Example
///
/// ```
/// use chrono::{NaiveTime, Timelike};
///
/// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().hour(), 0);
/// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().hour(), 23);
/// ```
#[inline]
fn hour(&self) -> u32 {
self.hms().0
}
/// Returns the minute number from 0 to 59.
///
/// # Example
///
/// ```
/// use chrono::{NaiveTime, Timelike};
///
/// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().minute(), 0);
/// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().minute(), 56);
/// ```
#[inline]
fn minute(&self) -> u32 {
self.hms().1
}
/// Returns the second number from 0 to 59.
///
/// # Example
///
/// ```
/// use chrono::{NaiveTime, Timelike};
///
/// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().second(), 0);
/// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().second(), 4);
/// ```
///
/// This method never returns 60 even when it is a leap second.
/// ([Why?](#leap-second-handling))
/// Use the proper [formatting method](#method.format) to get a human-readable representation.
///
#[cfg_attr(not(feature = "std"), doc = "```ignore")]
#[cfg_attr(feature = "std", doc = "```")]
/// # use chrono::{NaiveTime, Timelike};
/// let leap = NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap();
/// assert_eq!(leap.second(), 59);
/// assert_eq!(leap.format("%H:%M:%S").to_string(), "23:59:60");
/// ```
#[inline]
fn second(&self) -> u32 {
self.hms().2
}
/// Returns the number of nanoseconds since the whole non-leap second.
/// The range from 1,000,000,000 to 1,999,999,999 represents
/// the [leap second](#leap-second-handling).
///
/// # Example
///
/// ```
/// use chrono::{NaiveTime, Timelike};
///
/// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().nanosecond(), 0);
/// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().nanosecond(), 12_345_678);
/// ```
///
/// Leap seconds may have seemingly out-of-range return values.
/// You can reduce the range with `time.nanosecond() % 1_000_000_000`, or
/// use the proper [formatting method](#method.format) to get a human-readable representation.
///
#[cfg_attr(not(feature = "std"), doc = "```ignore")]
#[cfg_attr(feature = "std", doc = "```")]
/// # use chrono::{NaiveTime, Timelike};
/// let leap = NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap();
/// assert_eq!(leap.nanosecond(), 1_000_000_000);
/// assert_eq!(leap.format("%H:%M:%S%.9f").to_string(), "23:59:60.000000000");
/// ```
#[inline]
fn nanosecond(&self) -> u32 {
self.frac
}
/// Makes a new `NaiveTime` with the hour number changed.
///
/// # Errors
///
/// Returns `None` if the value for `hour` is invalid.
///
/// # Example
///
/// ```
/// use chrono::{NaiveTime, Timelike};
///
/// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
/// assert_eq!(dt.with_hour(7), Some(NaiveTime::from_hms_nano_opt(7, 56, 4, 12_345_678).unwrap()));
/// assert_eq!(dt.with_hour(24), None);
/// ```
#[inline]
fn with_hour(&self, hour: u32) -> Option<NaiveTime> {
if hour >= 24 {
return None;
}
let secs = hour * 3600 + self.secs % 3600;
Some(NaiveTime { secs, ..*self })
}
/// Makes a new `NaiveTime` with the minute number changed.
///
/// # Errors
///
/// Returns `None` if the value for `minute` is invalid.
///
/// # Example
///
/// ```
/// use chrono::{NaiveTime, Timelike};
///
/// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
/// assert_eq!(dt.with_minute(45), Some(NaiveTime::from_hms_nano_opt(23, 45, 4, 12_345_678).unwrap()));
/// assert_eq!(dt.with_minute(60), None);
/// ```
#[inline]
fn with_minute(&self, min: u32) -> Option<NaiveTime> {
if min >= 60 {
return None;
}
let secs = self.secs / 3600 * 3600 + min * 60 + self.secs % 60;
Some(NaiveTime { secs, ..*self })
}
/// Makes a new `NaiveTime` with the second number changed.
///
/// As with the [`second`](#method.second) method,
/// the input range is restricted to 0 through 59.
///
/// # Errors
///
/// Returns `None` if the value for `second` is invalid.
///
/// # Example
///
/// ```
/// use chrono::{NaiveTime, Timelike};
///
/// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
/// assert_eq!(dt.with_second(17), Some(NaiveTime::from_hms_nano_opt(23, 56, 17, 12_345_678).unwrap()));
/// assert_eq!(dt.with_second(60), None);
/// ```
#[inline]
fn with_second(&self, sec: u32) -> Option<NaiveTime> {
if sec >= 60 {
return None;
}
let secs = self.secs / 60 * 60 + sec;
Some(NaiveTime { secs, ..*self })
}
/// Makes a new `NaiveTime` with nanoseconds since the whole non-leap second changed.
///
/// As with the [`nanosecond`](#method.nanosecond) method,
/// the input range can exceed 1,000,000,000 for leap seconds.
///
/// # Errors
///
/// Returns `None` if `nanosecond >= 2,000,000,000`.
///
/// # Example
///
/// ```
/// use chrono::{NaiveTime, Timelike};
///
/// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
/// assert_eq!(dt.with_nanosecond(333_333_333),
/// Some(NaiveTime::from_hms_nano_opt(23, 56, 4, 333_333_333).unwrap()));
/// assert_eq!(dt.with_nanosecond(2_000_000_000), None);
/// ```
///
/// Leap seconds can theoretically follow *any* whole second.
/// The following would be a proper leap second at the time zone offset of UTC-00:03:57
/// (there are several historical examples comparable to this "non-sense" offset),
/// and therefore is allowed.
///
/// ```
/// # use chrono::{NaiveTime, Timelike};
/// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
/// let strange_leap_second = dt.with_nanosecond(1_333_333_333).unwrap();
/// assert_eq!(strange_leap_second.nanosecond(), 1_333_333_333);
/// ```
#[inline]
fn with_nanosecond(&self, nano: u32) -> Option<NaiveTime> {
if nano >= 2_000_000_000 {
return None;
}
Some(NaiveTime { frac: nano, ..*self })
}
/// Returns the number of non-leap seconds past the last midnight.
///
/// # Example
///
/// ```
/// use chrono::{NaiveTime, Timelike};
///
/// assert_eq!(NaiveTime::from_hms_opt(1, 2, 3).unwrap().num_seconds_from_midnight(),
/// 3723);
/// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().num_seconds_from_midnight(),
/// 86164);
/// assert_eq!(NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap().num_seconds_from_midnight(),
/// 86399);
/// ```
#[inline]
fn num_seconds_from_midnight(&self) -> u32 {
self.secs // do not repeat the calculation!
}
}
/// Add `TimeDelta` to `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the addition ignores integral number of days.
///
/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
/// second ever**, except when the `NaiveTime` itself represents a leap second in which case the
/// assumption becomes that **there is exactly a single leap second ever**.
///
/// # Example
///
/// ```
/// use chrono::{TimeDelta, NaiveTime};
///
/// let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
///
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::zero(), from_hmsm(3, 5, 7, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::seconds(1), from_hmsm(3, 5, 8, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::seconds(-1), from_hmsm(3, 5, 6, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::seconds(60 + 4), from_hmsm(3, 6, 11, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::seconds(7*60*60 - 6*60), from_hmsm(9, 59, 7, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::milliseconds(80), from_hmsm(3, 5, 7, 80));
/// assert_eq!(from_hmsm(3, 5, 7, 950) + TimeDelta::milliseconds(280), from_hmsm(3, 5, 8, 230));
/// assert_eq!(from_hmsm(3, 5, 7, 950) + TimeDelta::milliseconds(-980), from_hmsm(3, 5, 6, 970));
/// ```
///
/// The addition wraps around.
///
/// ```
/// # use chrono::{TimeDelta, NaiveTime};
/// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::seconds(22*60*60), from_hmsm(1, 5, 7, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::seconds(-8*60*60), from_hmsm(19, 5, 7, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::days(800), from_hmsm(3, 5, 7, 0));
/// ```
///
/// Leap seconds are handled, but the addition assumes that it is the only leap second happened.
///
/// ```
/// # use chrono::{TimeDelta, NaiveTime};
/// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
/// let leap = from_hmsm(3, 5, 59, 1_300);
/// assert_eq!(leap + TimeDelta::zero(), from_hmsm(3, 5, 59, 1_300));
/// assert_eq!(leap + TimeDelta::milliseconds(-500), from_hmsm(3, 5, 59, 800));
/// assert_eq!(leap + TimeDelta::milliseconds(500), from_hmsm(3, 5, 59, 1_800));
/// assert_eq!(leap + TimeDelta::milliseconds(800), from_hmsm(3, 6, 0, 100));
/// assert_eq!(leap + TimeDelta::seconds(10), from_hmsm(3, 6, 9, 300));
/// assert_eq!(leap + TimeDelta::seconds(-10), from_hmsm(3, 5, 50, 300));
/// assert_eq!(leap + TimeDelta::days(1), from_hmsm(3, 5, 59, 300));
/// ```
///
/// [leap second handling]: crate::NaiveTime#leap-second-handling
impl Add<TimeDelta> for NaiveTime {
type Output = NaiveTime;
#[inline]
fn add(self, rhs: TimeDelta) -> NaiveTime {
self.overflowing_add_signed(rhs).0
}
}
/// Add-assign `TimeDelta` to `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the addition ignores integral number of days.
impl AddAssign<TimeDelta> for NaiveTime {
#[inline]
fn add_assign(&mut self, rhs: TimeDelta) {
*self = self.add(rhs);
}
}
/// Add `std::time::Duration` to `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the addition ignores integral number of days.
impl Add<Duration> for NaiveTime {
type Output = NaiveTime;
#[inline]
fn add(self, rhs: Duration) -> NaiveTime {
// We don't care about values beyond `24 * 60 * 60`, so we can take a modulus and avoid
// overflow during the conversion to `TimeDelta`.
// But we limit to double that just in case `self` is a leap-second.
let secs = rhs.as_secs() % (2 * 24 * 60 * 60);
let d = TimeDelta::new(secs as i64, rhs.subsec_nanos()).unwrap();
self.overflowing_add_signed(d).0
}
}
/// Add-assign `std::time::Duration` to `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the addition ignores integral number of days.
impl AddAssign<Duration> for NaiveTime {
#[inline]
fn add_assign(&mut self, rhs: Duration) {
*self = *self + rhs;
}
}
/// Add `FixedOffset` to `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the addition ignores integral number of days.
impl Add<FixedOffset> for NaiveTime {
type Output = NaiveTime;
#[inline]
fn add(self, rhs: FixedOffset) -> NaiveTime {
self.overflowing_add_offset(rhs).0
}
}
/// Subtract `TimeDelta` from `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the subtraction ignores integral number of days.
/// This is the same as addition with a negated `TimeDelta`.
///
/// As a part of Chrono's [leap second handling], the subtraction assumes that **there is no leap
/// second ever**, except when the `NaiveTime` itself represents a leap second in which case the
/// assumption becomes that **there is exactly a single leap second ever**.
///
/// # Example
///
/// ```
/// use chrono::{TimeDelta, NaiveTime};
///
/// let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
///
/// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::zero(), from_hmsm(3, 5, 7, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::seconds(1), from_hmsm(3, 5, 6, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::seconds(60 + 5), from_hmsm(3, 4, 2, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::seconds(2*60*60 + 6*60), from_hmsm(0, 59, 7, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::milliseconds(80), from_hmsm(3, 5, 6, 920));
/// assert_eq!(from_hmsm(3, 5, 7, 950) - TimeDelta::milliseconds(280), from_hmsm(3, 5, 7, 670));
/// ```
///
/// The subtraction wraps around.
///
/// ```
/// # use chrono::{TimeDelta, NaiveTime};
/// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
/// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::seconds(8*60*60), from_hmsm(19, 5, 7, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::days(800), from_hmsm(3, 5, 7, 0));
/// ```
///
/// Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
///
/// ```
/// # use chrono::{TimeDelta, NaiveTime};
/// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
/// let leap = from_hmsm(3, 5, 59, 1_300);
/// assert_eq!(leap - TimeDelta::zero(), from_hmsm(3, 5, 59, 1_300));
/// assert_eq!(leap - TimeDelta::milliseconds(200), from_hmsm(3, 5, 59, 1_100));
/// assert_eq!(leap - TimeDelta::milliseconds(500), from_hmsm(3, 5, 59, 800));
/// assert_eq!(leap - TimeDelta::seconds(60), from_hmsm(3, 5, 0, 300));
/// assert_eq!(leap - TimeDelta::days(1), from_hmsm(3, 6, 0, 300));
/// ```
///
/// [leap second handling]: crate::NaiveTime#leap-second-handling
impl Sub<TimeDelta> for NaiveTime {
type Output = NaiveTime;
#[inline]
fn sub(self, rhs: TimeDelta) -> NaiveTime {
self.overflowing_sub_signed(rhs).0
}
}
/// Subtract-assign `TimeDelta` from `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the subtraction ignores integral number of days.
impl SubAssign<TimeDelta> for NaiveTime {
#[inline]
fn sub_assign(&mut self, rhs: TimeDelta) {
*self = self.sub(rhs);
}
}
/// Subtract `std::time::Duration` from `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the subtraction ignores integral number of days.
impl Sub<Duration> for NaiveTime {
type Output = NaiveTime;
#[inline]
fn sub(self, rhs: Duration) -> NaiveTime {
// We don't care about values beyond `24 * 60 * 60`, so we can take a modulus and avoid
// overflow during the conversion to `TimeDelta`.
// But we limit to double that just in case `self` is a leap-second.
let secs = rhs.as_secs() % (2 * 24 * 60 * 60);
let d = TimeDelta::new(secs as i64, rhs.subsec_nanos()).unwrap();
self.overflowing_sub_signed(d).0
}
}
/// Subtract-assign `std::time::Duration` from `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the subtraction ignores integral number of days.
impl SubAssign<Duration> for NaiveTime {
#[inline]
fn sub_assign(&mut self, rhs: Duration) {
*self = *self - rhs;
}
}
/// Subtract `FixedOffset` from `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the subtraction ignores integral number of days.
impl Sub<FixedOffset> for NaiveTime {
type Output = NaiveTime;
#[inline]
fn sub(self, rhs: FixedOffset) -> NaiveTime {
self.overflowing_sub_offset(rhs).0
}
}
/// Subtracts another `NaiveTime` from the current time.
/// Returns a `TimeDelta` within +/- 1 day.
/// This does not overflow or underflow at all.
///
/// As a part of Chrono's [leap second handling](#leap-second-handling),
/// the subtraction assumes that **there is no leap second ever**,
/// except when any of the `NaiveTime`s themselves represents a leap second
/// in which case the assumption becomes that
/// **there are exactly one (or two) leap second(s) ever**.
///
/// The implementation is a wrapper around
/// [`NaiveTime::signed_duration_since`](#method.signed_duration_since).
///
/// # Example
///
/// ```
/// use chrono::{TimeDelta, NaiveTime};
///
/// let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
///
/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 900), TimeDelta::zero());
/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 875), TimeDelta::milliseconds(25));
/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 6, 925), TimeDelta::milliseconds(975));
/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 0, 900), TimeDelta::seconds(7));
/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 0, 7, 900), TimeDelta::seconds(5 * 60));
/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(0, 5, 7, 900), TimeDelta::seconds(3 * 3600));
/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(4, 5, 7, 900), TimeDelta::seconds(-3600));
/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(2, 4, 6, 800),
/// TimeDelta::seconds(3600 + 60 + 1) + TimeDelta::milliseconds(100));
/// ```
///
/// Leap seconds are handled, but the subtraction assumes that
/// there were no other leap seconds happened.
///
/// ```
/// # use chrono::{TimeDelta, NaiveTime};
/// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
/// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 59, 0), TimeDelta::seconds(1));
/// assert_eq!(from_hmsm(3, 0, 59, 1_500) - from_hmsm(3, 0, 59, 0),
/// TimeDelta::milliseconds(1500));
/// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 0, 0), TimeDelta::seconds(60));
/// assert_eq!(from_hmsm(3, 0, 0, 0) - from_hmsm(2, 59, 59, 1_000), TimeDelta::seconds(1));
/// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(2, 59, 59, 1_000),
/// TimeDelta::seconds(61));
/// ```
impl Sub<NaiveTime> for NaiveTime {
type Output = TimeDelta;
#[inline]
fn sub(self, rhs: NaiveTime) -> TimeDelta {
self.signed_duration_since(rhs)
}
}
/// The `Debug` output of the naive time `t` is the same as
/// [`t.format("%H:%M:%S%.f")`](crate::format::strftime).
///
/// The string printed can be readily parsed via the `parse` method on `str`.
///
/// It should be noted that, for leap seconds not on the minute boundary,
/// it may print a representation not distinguishable from non-leap seconds.
/// This doesn't matter in practice, since such leap seconds never happened.
/// (By the time of the first leap second on 1972-06-30,
/// every time zone offset around the world has standardized to the 5-minute alignment.)
///
/// # Example
///
/// ```
/// use chrono::NaiveTime;
///
/// assert_eq!(format!("{:?}", NaiveTime::from_hms_opt(23, 56, 4).unwrap()), "23:56:04");
/// assert_eq!(format!("{:?}", NaiveTime::from_hms_milli_opt(23, 56, 4, 12).unwrap()), "23:56:04.012");
/// assert_eq!(format!("{:?}", NaiveTime::from_hms_micro_opt(23, 56, 4, 1234).unwrap()), "23:56:04.001234");
/// assert_eq!(format!("{:?}", NaiveTime::from_hms_nano_opt(23, 56, 4, 123456).unwrap()), "23:56:04.000123456");
/// ```
///
/// Leap seconds may also be used.
///
/// ```
/// # use chrono::NaiveTime;
/// assert_eq!(format!("{:?}", NaiveTime::from_hms_milli_opt(6, 59, 59, 1_500).unwrap()), "06:59:60.500");
/// ```
impl fmt::Debug for NaiveTime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let (hour, min, sec) = self.hms();
let (sec, nano) = if self.frac >= 1_000_000_000 {
(sec + 1, self.frac - 1_000_000_000)
} else {
(sec, self.frac)
};
use core::fmt::Write;
write_hundreds(f, hour as u8)?;
f.write_char(':')?;
write_hundreds(f, min as u8)?;
f.write_char(':')?;
write_hundreds(f, sec as u8)?;
if nano == 0 {
Ok(())
} else if nano % 1_000_000 == 0 {
write!(f, ".{:03}", nano / 1_000_000)
} else if nano % 1_000 == 0 {
write!(f, ".{:06}", nano / 1_000)
} else {
write!(f, ".{:09}", nano)
}
}
}
/// The `Display` output of the naive time `t` is the same as
/// [`t.format("%H:%M:%S%.f")`](crate::format::strftime).
///
/// The string printed can be readily parsed via the `parse` method on `str`.
///
/// It should be noted that, for leap seconds not on the minute boundary,
/// it may print a representation not distinguishable from non-leap seconds.
/// This doesn't matter in practice, since such leap seconds never happened.
/// (By the time of the first leap second on 1972-06-30,
/// every time zone offset around the world has standardized to the 5-minute alignment.)
///
/// # Example
///
/// ```
/// use chrono::NaiveTime;
///
/// assert_eq!(format!("{}", NaiveTime::from_hms_opt(23, 56, 4).unwrap()), "23:56:04");
/// assert_eq!(format!("{}", NaiveTime::from_hms_milli_opt(23, 56, 4, 12).unwrap()), "23:56:04.012");
/// assert_eq!(format!("{}", NaiveTime::from_hms_micro_opt(23, 56, 4, 1234).unwrap()), "23:56:04.001234");
/// assert_eq!(format!("{}", NaiveTime::from_hms_nano_opt(23, 56, 4, 123456).unwrap()), "23:56:04.000123456");
/// ```
///
/// Leap seconds may also be used.
///
/// ```
/// # use chrono::NaiveTime;
/// assert_eq!(format!("{}", NaiveTime::from_hms_milli_opt(6, 59, 59, 1_500).unwrap()), "06:59:60.500");
/// ```
impl fmt::Display for NaiveTime {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(self, f)
}
}
/// Parsing a `str` into a `NaiveTime` uses the same format,
/// [`%H:%M:%S%.f`](crate::format::strftime), as in `Debug` and `Display`.
///
/// # Example
///
/// ```
/// use chrono::NaiveTime;
///
/// let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap();
/// assert_eq!("23:56:04".parse::<NaiveTime>(), Ok(t));
///
/// let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
/// assert_eq!("23:56:4.012345678".parse::<NaiveTime>(), Ok(t));
///
/// let t = NaiveTime::from_hms_nano_opt(23, 59, 59, 1_234_567_890).unwrap(); // leap second
/// assert_eq!("23:59:60.23456789".parse::<NaiveTime>(), Ok(t));
///
/// // Seconds are optional
/// let t = NaiveTime::from_hms_opt(23, 56, 0).unwrap();
/// assert_eq!("23:56".parse::<NaiveTime>(), Ok(t));
///
/// assert!("foo".parse::<NaiveTime>().is_err());
/// ```
impl str::FromStr for NaiveTime {
type Err = ParseError;
fn from_str(s: &str) -> ParseResult<NaiveTime> {
const HOUR_AND_MINUTE: &[Item<'static>] = &[
Item::Numeric(Numeric::Hour, Pad::Zero),
Item::Space(""),
Item::Literal(":"),
Item::Numeric(Numeric::Minute, Pad::Zero),
];
const SECOND_AND_NANOS: &[Item<'static>] = &[
Item::Space(""),
Item::Literal(":"),
Item::Numeric(Numeric::Second, Pad::Zero),
Item::Fixed(Fixed::Nanosecond),
Item::Space(""),
];
const TRAILING_WHITESPACE: [Item<'static>; 1] = [Item::Space("")];
let mut parsed = Parsed::new();
let s = parse_and_remainder(&mut parsed, s, HOUR_AND_MINUTE.iter())?;
// Seconds are optional, don't fail if parsing them doesn't succeed.
let s = parse_and_remainder(&mut parsed, s, SECOND_AND_NANOS.iter()).unwrap_or(s);
parse(&mut parsed, s, TRAILING_WHITESPACE.iter())?;
parsed.to_naive_time()
}
}
/// The default value for a NaiveTime is midnight, 00:00:00 exactly.
///
/// # Example
///
/// ```rust
/// use chrono::NaiveTime;
///
/// let default_time = NaiveTime::default();
/// assert_eq!(default_time, NaiveTime::from_hms_opt(0, 0, 0).unwrap());
/// ```
impl Default for NaiveTime {
fn default() -> Self {
NaiveTime::from_hms_opt(0, 0, 0).unwrap()
}
}
#[cfg(all(test, any(feature = "rustc-serialize", feature = "serde")))]
fn test_encodable_json<F, E>(to_string: F)
where
F: Fn(&NaiveTime) -> Result<String, E>,
E: ::std::fmt::Debug,
{
assert_eq!(
to_string(&NaiveTime::from_hms_opt(0, 0, 0).unwrap()).ok(),
Some(r#""00:00:00""#.into())
);
assert_eq!(
to_string(&NaiveTime::from_hms_milli_opt(0, 0, 0, 950).unwrap()).ok(),
Some(r#""00:00:00.950""#.into())
);
assert_eq!(
to_string(&NaiveTime::from_hms_milli_opt(0, 0, 59, 1_000).unwrap()).ok(),
Some(r#""00:00:60""#.into())
);
assert_eq!(
to_string(&NaiveTime::from_hms_opt(0, 1, 2).unwrap()).ok(),
Some(r#""00:01:02""#.into())
);
assert_eq!(
to_string(&NaiveTime::from_hms_nano_opt(3, 5, 7, 98765432).unwrap()).ok(),
Some(r#""03:05:07.098765432""#.into())
);
assert_eq!(
to_string(&NaiveTime::from_hms_opt(7, 8, 9).unwrap()).ok(),
Some(r#""07:08:09""#.into())
);
assert_eq!(
to_string(&NaiveTime::from_hms_micro_opt(12, 34, 56, 789).unwrap()).ok(),
Some(r#""12:34:56.000789""#.into())
);
assert_eq!(
to_string(&NaiveTime::from_hms_nano_opt(23, 59, 59, 1_999_999_999).unwrap()).ok(),
Some(r#""23:59:60.999999999""#.into())
);
}
#[cfg(all(test, any(feature = "rustc-serialize", feature = "serde")))]
fn test_decodable_json<F, E>(from_str: F)
where
F: Fn(&str) -> Result<NaiveTime, E>,
E: ::std::fmt::Debug,
{
assert_eq!(from_str(r#""00:00:00""#).ok(), Some(NaiveTime::from_hms_opt(0, 0, 0).unwrap()));
assert_eq!(from_str(r#""0:0:0""#).ok(), Some(NaiveTime::from_hms_opt(0, 0, 0).unwrap()));
assert_eq!(
from_str(r#""00:00:00.950""#).ok(),
Some(NaiveTime::from_hms_milli_opt(0, 0, 0, 950).unwrap())
);
assert_eq!(
from_str(r#""0:0:0.95""#).ok(),
Some(NaiveTime::from_hms_milli_opt(0, 0, 0, 950).unwrap())
);
assert_eq!(
from_str(r#""00:00:60""#).ok(),
Some(NaiveTime::from_hms_milli_opt(0, 0, 59, 1_000).unwrap())
);
assert_eq!(from_str(r#""00:01:02""#).ok(), Some(NaiveTime::from_hms_opt(0, 1, 2).unwrap()));
assert_eq!(
from_str(r#""03:05:07.098765432""#).ok(),
Some(NaiveTime::from_hms_nano_opt(3, 5, 7, 98765432).unwrap())
);
assert_eq!(from_str(r#""07:08:09""#).ok(), Some(NaiveTime::from_hms_opt(7, 8, 9).unwrap()));
assert_eq!(
from_str(r#""12:34:56.000789""#).ok(),
Some(NaiveTime::from_hms_micro_opt(12, 34, 56, 789).unwrap())
);
assert_eq!(
from_str(r#""23:59:60.999999999""#).ok(),
Some(NaiveTime::from_hms_nano_opt(23, 59, 59, 1_999_999_999).unwrap())
);
assert_eq!(
from_str(r#""23:59:60.9999999999997""#).ok(), // excess digits are ignored
Some(NaiveTime::from_hms_nano_opt(23, 59, 59, 1_999_999_999).unwrap())
);
// bad formats
assert!(from_str(r#""""#).is_err());
assert!(from_str(r#""000000""#).is_err());
assert!(from_str(r#""00:00:61""#).is_err());
assert!(from_str(r#""00:60:00""#).is_err());
assert!(from_str(r#""24:00:00""#).is_err());
assert!(from_str(r#""23:59:59,1""#).is_err());
assert!(from_str(r#""012:34:56""#).is_err());
assert!(from_str(r#""hh:mm:ss""#).is_err());
assert!(from_str(r#"0"#).is_err());
assert!(from_str(r#"86399"#).is_err());
assert!(from_str(r#"{}"#).is_err());
// pre-0.3.0 rustc-serialize format is now invalid
assert!(from_str(r#"{"secs":0,"frac":0}"#).is_err());
assert!(from_str(r#"null"#).is_err());
}