1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
// This is a part of Chrono.
// See README.md and LICENSE.txt for details.

//! ISO 8601 time without timezone.

#[cfg(feature = "alloc")]
use core::borrow::Borrow;
use core::ops::{Add, AddAssign, Sub, SubAssign};
use core::time::Duration;
use core::{fmt, str};

#[cfg(any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"))]
use rkyv::{Archive, Deserialize, Serialize};

#[cfg(feature = "alloc")]
use crate::format::DelayedFormat;
use crate::format::{
    parse, parse_and_remainder, write_hundreds, Fixed, Item, Numeric, Pad, ParseError, ParseResult,
    Parsed, StrftimeItems,
};
use crate::{expect, try_opt};
use crate::{FixedOffset, TimeDelta, Timelike};

#[cfg(feature = "rustc-serialize")]
mod rustc_serialize;

#[cfg(feature = "serde")]
mod serde;

#[cfg(test)]
mod tests;

/// ISO 8601 time without timezone.
/// Allows for the nanosecond precision and optional leap second representation.
///
/// # Leap Second Handling
///
/// Since 1960s, the manmade atomic clock has been so accurate that
/// it is much more accurate than Earth's own motion.
/// It became desirable to define the civil time in terms of the atomic clock,
/// but that risks the desynchronization of the civil time from Earth.
/// To account for this, the designers of the Coordinated Universal Time (UTC)
/// made that the UTC should be kept within 0.9 seconds of the observed Earth-bound time.
/// When the mean solar day is longer than the ideal (86,400 seconds),
/// the error slowly accumulates and it is necessary to add a **leap second**
/// to slow the UTC down a bit.
/// (We may also remove a second to speed the UTC up a bit, but it never happened.)
/// The leap second, if any, follows 23:59:59 of June 30 or December 31 in the UTC.
///
/// Fast forward to the 21st century,
/// we have seen 26 leap seconds from January 1972 to December 2015.
/// Yes, 26 seconds. Probably you can read this paragraph within 26 seconds.
/// But those 26 seconds, and possibly more in the future, are never predictable,
/// and whether to add a leap second or not is known only before 6 months.
/// Internet-based clocks (via NTP) do account for known leap seconds,
/// but the system API normally doesn't (and often can't, with no network connection)
/// and there is no reliable way to retrieve leap second information.
///
/// Chrono does not try to accurately implement leap seconds; it is impossible.
/// Rather, **it allows for leap seconds but behaves as if there are *no other* leap seconds.**
/// Various operations will ignore any possible leap second(s)
/// except when any of the operands were actually leap seconds.
///
/// If you cannot tolerate this behavior,
/// you must use a separate `TimeZone` for the International Atomic Time (TAI).
/// TAI is like UTC but has no leap seconds, and thus slightly differs from UTC.
/// Chrono does not yet provide such implementation, but it is planned.
///
/// ## Representing Leap Seconds
///
/// The leap second is indicated via fractional seconds more than 1 second.
/// This makes possible to treat a leap second as the prior non-leap second
/// if you don't care about sub-second accuracy.
/// You should use the proper formatting to get the raw leap second.
///
/// All methods accepting fractional seconds will accept such values.
///
/// ```
/// use chrono::{NaiveDate, NaiveTime, Utc};
///
/// let t = NaiveTime::from_hms_milli_opt(8, 59, 59, 1_000).unwrap();
///
/// let dt1 = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_micro_opt(8, 59, 59, 1_000_000).unwrap();
///
/// let dt2 = NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_nano_opt(23, 59, 59, 1_000_000_000).unwrap().and_local_timezone(Utc).unwrap();
/// # let _ = (t, dt1, dt2);
/// ```
///
/// Note that the leap second can happen anytime given an appropriate time zone;
/// 2015-07-01 01:23:60 would be a proper leap second if UTC+01:24 had existed.
/// Practically speaking, though, by the time of the first leap second on 1972-06-30,
/// every time zone offset around the world has standardized to the 5-minute alignment.
///
/// ## Date And Time Arithmetics
///
/// As a concrete example, let's assume that `03:00:60` and `04:00:60` are leap seconds.
/// In reality, of course, leap seconds are separated by at least 6 months.
/// We will also use some intuitive concise notations for the explanation.
///
/// `Time + TimeDelta`
/// (short for [`NaiveTime::overflowing_add_signed`](#method.overflowing_add_signed)):
///
/// - `03:00:00 + 1s = 03:00:01`.
/// - `03:00:59 + 60s = 03:01:59`.
/// - `03:00:59 + 61s = 03:02:00`.
/// - `03:00:59 + 1s = 03:01:00`.
/// - `03:00:60 + 1s = 03:01:00`.
///   Note that the sum is identical to the previous.
/// - `03:00:60 + 60s = 03:01:59`.
/// - `03:00:60 + 61s = 03:02:00`.
/// - `03:00:60.1 + 0.8s = 03:00:60.9`.
///
/// `Time - TimeDelta`
/// (short for [`NaiveTime::overflowing_sub_signed`](#method.overflowing_sub_signed)):
///
/// - `03:00:00 - 1s = 02:59:59`.
/// - `03:01:00 - 1s = 03:00:59`.
/// - `03:01:00 - 60s = 03:00:00`.
/// - `03:00:60 - 60s = 03:00:00`.
///   Note that the result is identical to the previous.
/// - `03:00:60.7 - 0.4s = 03:00:60.3`.
/// - `03:00:60.7 - 0.9s = 03:00:59.8`.
///
/// `Time - Time`
/// (short for [`NaiveTime::signed_duration_since`](#method.signed_duration_since)):
///
/// - `04:00:00 - 03:00:00 = 3600s`.
/// - `03:01:00 - 03:00:00 = 60s`.
/// - `03:00:60 - 03:00:00 = 60s`.
///   Note that the difference is identical to the previous.
/// - `03:00:60.6 - 03:00:59.4 = 1.2s`.
/// - `03:01:00 - 03:00:59.8 = 0.2s`.
/// - `03:01:00 - 03:00:60.5 = 0.5s`.
///   Note that the difference is larger than the previous,
///   even though the leap second clearly follows the previous whole second.
/// - `04:00:60.9 - 03:00:60.1 =
///   (04:00:60.9 - 04:00:00) + (04:00:00 - 03:01:00) + (03:01:00 - 03:00:60.1) =
///   60.9s + 3540s + 0.9s = 3601.8s`.
///
/// In general,
///
/// - `Time + TimeDelta` unconditionally equals to `TimeDelta + Time`.
///
/// - `Time - TimeDelta` unconditionally equals to `Time + (-TimeDelta)`.
///
/// - `Time1 - Time2` unconditionally equals to `-(Time2 - Time1)`.
///
/// - Associativity does not generally hold, because
///   `(Time + TimeDelta1) - TimeDelta2` no longer equals to `Time + (TimeDelta1 - TimeDelta2)`
///   for two positive durations.
///
///     - As a special case, `(Time + TimeDelta) - TimeDelta` also does not equal to `Time`.
///
///     - If you can assume that all durations have the same sign, however,
///       then the associativity holds:
///       `(Time + TimeDelta1) + TimeDelta2` equals to `Time + (TimeDelta1 + TimeDelta2)`
///       for two positive durations.
///
/// ## Reading And Writing Leap Seconds
///
/// The "typical" leap seconds on the minute boundary are
/// correctly handled both in the formatting and parsing.
/// The leap second in the human-readable representation
/// will be represented as the second part being 60, as required by ISO 8601.
///
/// ```
/// use chrono::{Utc, NaiveDate};
///
/// let dt = NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_000).unwrap().and_local_timezone(Utc).unwrap();
/// assert_eq!(format!("{:?}", dt), "2015-06-30T23:59:60Z");
/// ```
///
/// There are hypothetical leap seconds not on the minute boundary nevertheless supported by Chrono.
/// They are allowed for the sake of completeness and consistency; there were several "exotic" time
/// zone offsets with fractional minutes prior to UTC after all.
/// For such cases the human-readable representation is ambiguous and would be read back to the next
/// non-leap second.
///
/// A `NaiveTime` with a leap second that is not on a minute boundary can only be created from a
/// [`DateTime`](crate::DateTime) with fractional minutes as offset, or using
/// [`Timelike::with_nanosecond()`].
///
/// ```
/// use chrono::{FixedOffset, NaiveDate, TimeZone};
///
/// let paramaribo_pre1945 = FixedOffset::east_opt(-13236).unwrap(); // -03:40:36
/// let leap_sec_2015 =
///     NaiveDate::from_ymd_opt(2015, 6, 30).unwrap().and_hms_milli_opt(23, 59, 59, 1_000).unwrap();
/// let dt1 = paramaribo_pre1945.from_utc_datetime(&leap_sec_2015);
/// assert_eq!(format!("{:?}", dt1), "2015-06-30T20:19:24-03:40:36");
/// assert_eq!(format!("{:?}", dt1.time()), "20:19:24");
///
/// let next_sec = NaiveDate::from_ymd_opt(2015, 7, 1).unwrap().and_hms_opt(0, 0, 0).unwrap();
/// let dt2 = paramaribo_pre1945.from_utc_datetime(&next_sec);
/// assert_eq!(format!("{:?}", dt2), "2015-06-30T20:19:24-03:40:36");
/// assert_eq!(format!("{:?}", dt2.time()), "20:19:24");
///
/// assert!(dt1.time() != dt2.time());
/// assert!(dt1.time().to_string() == dt2.time().to_string());
/// ```
///
/// Since Chrono alone cannot determine any existence of leap seconds,
/// **there is absolutely no guarantee that the leap second read has actually happened**.
#[derive(PartialEq, Eq, Hash, PartialOrd, Ord, Copy, Clone)]
#[cfg_attr(
    any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"),
    derive(Archive, Deserialize, Serialize),
    archive(compare(PartialEq, PartialOrd)),
    archive_attr(derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug, Hash))
)]
#[cfg_attr(feature = "rkyv-validation", archive(check_bytes))]
pub struct NaiveTime {
    secs: u32,
    frac: u32,
}

#[cfg(feature = "arbitrary")]
impl arbitrary::Arbitrary<'_> for NaiveTime {
    fn arbitrary(u: &mut arbitrary::Unstructured) -> arbitrary::Result<NaiveTime> {
        let mins = u.int_in_range(0..=1439)?;
        let mut secs = u.int_in_range(0..=60)?;
        let mut nano = u.int_in_range(0..=999_999_999)?;
        if secs == 60 {
            secs = 59;
            nano += 1_000_000_000;
        }
        let time = NaiveTime::from_num_seconds_from_midnight_opt(mins * 60 + secs, nano)
            .expect("Could not generate a valid chrono::NaiveTime. It looks like implementation of Arbitrary for NaiveTime is erroneous.");
        Ok(time)
    }
}

impl NaiveTime {
    /// Makes a new `NaiveTime` from hour, minute and second.
    ///
    /// No [leap second](#leap-second-handling) is allowed here;
    /// use `NaiveTime::from_hms_*` methods with a subsecond parameter instead.
    ///
    /// # Panics
    ///
    /// Panics on invalid hour, minute and/or second.
    #[deprecated(since = "0.4.23", note = "use `from_hms_opt()` instead")]
    #[inline]
    #[must_use]
    pub const fn from_hms(hour: u32, min: u32, sec: u32) -> NaiveTime {
        expect!(NaiveTime::from_hms_opt(hour, min, sec), "invalid time")
    }

    /// Makes a new `NaiveTime` from hour, minute and second.
    ///
    /// The millisecond part is allowed to exceed 1,000,000,000 in order to represent a
    /// [leap second](#leap-second-handling), but only when `sec == 59`.
    ///
    /// # Errors
    ///
    /// Returns `None` on invalid hour, minute and/or second.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::NaiveTime;
    ///
    /// let from_hms_opt = NaiveTime::from_hms_opt;
    ///
    /// assert!(from_hms_opt(0, 0, 0).is_some());
    /// assert!(from_hms_opt(23, 59, 59).is_some());
    /// assert!(from_hms_opt(24, 0, 0).is_none());
    /// assert!(from_hms_opt(23, 60, 0).is_none());
    /// assert!(from_hms_opt(23, 59, 60).is_none());
    /// ```
    #[inline]
    #[must_use]
    pub const fn from_hms_opt(hour: u32, min: u32, sec: u32) -> Option<NaiveTime> {
        NaiveTime::from_hms_nano_opt(hour, min, sec, 0)
    }

    /// Makes a new `NaiveTime` from hour, minute, second and millisecond.
    ///
    /// The millisecond part can exceed 1,000
    /// in order to represent the [leap second](#leap-second-handling).
    ///
    /// # Panics
    ///
    /// Panics on invalid hour, minute, second and/or millisecond.
    #[deprecated(since = "0.4.23", note = "use `from_hms_milli_opt()` instead")]
    #[inline]
    #[must_use]
    pub const fn from_hms_milli(hour: u32, min: u32, sec: u32, milli: u32) -> NaiveTime {
        expect!(NaiveTime::from_hms_milli_opt(hour, min, sec, milli), "invalid time")
    }

    /// Makes a new `NaiveTime` from hour, minute, second and millisecond.
    ///
    /// The millisecond part is allowed to exceed 1,000,000,000 in order to represent a
    /// [leap second](#leap-second-handling), but only when `sec == 59`.
    ///
    /// # Errors
    ///
    /// Returns `None` on invalid hour, minute, second and/or millisecond.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::NaiveTime;
    ///
    /// let from_hmsm_opt = NaiveTime::from_hms_milli_opt;
    ///
    /// assert!(from_hmsm_opt(0, 0, 0, 0).is_some());
    /// assert!(from_hmsm_opt(23, 59, 59, 999).is_some());
    /// assert!(from_hmsm_opt(23, 59, 59, 1_999).is_some()); // a leap second after 23:59:59
    /// assert!(from_hmsm_opt(24, 0, 0, 0).is_none());
    /// assert!(from_hmsm_opt(23, 60, 0, 0).is_none());
    /// assert!(from_hmsm_opt(23, 59, 60, 0).is_none());
    /// assert!(from_hmsm_opt(23, 59, 59, 2_000).is_none());
    /// ```
    #[inline]
    #[must_use]
    pub const fn from_hms_milli_opt(
        hour: u32,
        min: u32,
        sec: u32,
        milli: u32,
    ) -> Option<NaiveTime> {
        let nano = try_opt!(milli.checked_mul(1_000_000));
        NaiveTime::from_hms_nano_opt(hour, min, sec, nano)
    }

    /// Makes a new `NaiveTime` from hour, minute, second and microsecond.
    ///
    /// The microsecond part is allowed to exceed 1,000,000,000 in order to represent a
    /// [leap second](#leap-second-handling), but only when `sec == 59`.
    ///
    /// # Panics
    ///
    /// Panics on invalid hour, minute, second and/or microsecond.
    #[deprecated(since = "0.4.23", note = "use `from_hms_micro_opt()` instead")]
    #[inline]
    #[must_use]
    pub const fn from_hms_micro(hour: u32, min: u32, sec: u32, micro: u32) -> NaiveTime {
        expect!(NaiveTime::from_hms_micro_opt(hour, min, sec, micro), "invalid time")
    }

    /// Makes a new `NaiveTime` from hour, minute, second and microsecond.
    ///
    /// The microsecond part is allowed to exceed 1,000,000,000 in order to represent a
    /// [leap second](#leap-second-handling), but only when `sec == 59`.
    ///
    /// # Errors
    ///
    /// Returns `None` on invalid hour, minute, second and/or microsecond.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::NaiveTime;
    ///
    /// let from_hmsu_opt = NaiveTime::from_hms_micro_opt;
    ///
    /// assert!(from_hmsu_opt(0, 0, 0, 0).is_some());
    /// assert!(from_hmsu_opt(23, 59, 59, 999_999).is_some());
    /// assert!(from_hmsu_opt(23, 59, 59, 1_999_999).is_some()); // a leap second after 23:59:59
    /// assert!(from_hmsu_opt(24, 0, 0, 0).is_none());
    /// assert!(from_hmsu_opt(23, 60, 0, 0).is_none());
    /// assert!(from_hmsu_opt(23, 59, 60, 0).is_none());
    /// assert!(from_hmsu_opt(23, 59, 59, 2_000_000).is_none());
    /// ```
    #[inline]
    #[must_use]
    pub const fn from_hms_micro_opt(
        hour: u32,
        min: u32,
        sec: u32,
        micro: u32,
    ) -> Option<NaiveTime> {
        let nano = try_opt!(micro.checked_mul(1_000));
        NaiveTime::from_hms_nano_opt(hour, min, sec, nano)
    }

    /// Makes a new `NaiveTime` from hour, minute, second and nanosecond.
    ///
    /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a
    /// [leap second](#leap-second-handling), but only when `sec == 59`.
    ///
    /// # Panics
    ///
    /// Panics on invalid hour, minute, second and/or nanosecond.
    #[deprecated(since = "0.4.23", note = "use `from_hms_nano_opt()` instead")]
    #[inline]
    #[must_use]
    pub const fn from_hms_nano(hour: u32, min: u32, sec: u32, nano: u32) -> NaiveTime {
        expect!(NaiveTime::from_hms_nano_opt(hour, min, sec, nano), "invalid time")
    }

    /// Makes a new `NaiveTime` from hour, minute, second and nanosecond.
    ///
    /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a
    /// [leap second](#leap-second-handling), but only when `sec == 59`.
    ///
    /// # Errors
    ///
    /// Returns `None` on invalid hour, minute, second and/or nanosecond.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::NaiveTime;
    ///
    /// let from_hmsn_opt = NaiveTime::from_hms_nano_opt;
    ///
    /// assert!(from_hmsn_opt(0, 0, 0, 0).is_some());
    /// assert!(from_hmsn_opt(23, 59, 59, 999_999_999).is_some());
    /// assert!(from_hmsn_opt(23, 59, 59, 1_999_999_999).is_some()); // a leap second after 23:59:59
    /// assert!(from_hmsn_opt(24, 0, 0, 0).is_none());
    /// assert!(from_hmsn_opt(23, 60, 0, 0).is_none());
    /// assert!(from_hmsn_opt(23, 59, 60, 0).is_none());
    /// assert!(from_hmsn_opt(23, 59, 59, 2_000_000_000).is_none());
    /// ```
    #[inline]
    #[must_use]
    pub const fn from_hms_nano_opt(hour: u32, min: u32, sec: u32, nano: u32) -> Option<NaiveTime> {
        if (hour >= 24 || min >= 60 || sec >= 60)
            || (nano >= 1_000_000_000 && sec != 59)
            || nano >= 2_000_000_000
        {
            return None;
        }
        let secs = hour * 3600 + min * 60 + sec;
        Some(NaiveTime { secs, frac: nano })
    }

    /// Makes a new `NaiveTime` from the number of seconds since midnight and nanosecond.
    ///
    /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a
    /// [leap second](#leap-second-handling), but only when `secs % 60 == 59`.
    ///
    /// # Panics
    ///
    /// Panics on invalid number of seconds and/or nanosecond.
    #[deprecated(since = "0.4.23", note = "use `from_num_seconds_from_midnight_opt()` instead")]
    #[inline]
    #[must_use]
    pub const fn from_num_seconds_from_midnight(secs: u32, nano: u32) -> NaiveTime {
        expect!(NaiveTime::from_num_seconds_from_midnight_opt(secs, nano), "invalid time")
    }

    /// Makes a new `NaiveTime` from the number of seconds since midnight and nanosecond.
    ///
    /// The nanosecond part is allowed to exceed 1,000,000,000 in order to represent a
    /// [leap second](#leap-second-handling), but only when `secs % 60 == 59`.
    ///
    /// # Errors
    ///
    /// Returns `None` on invalid number of seconds and/or nanosecond.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::NaiveTime;
    ///
    /// let from_nsecs_opt = NaiveTime::from_num_seconds_from_midnight_opt;
    ///
    /// assert!(from_nsecs_opt(0, 0).is_some());
    /// assert!(from_nsecs_opt(86399, 999_999_999).is_some());
    /// assert!(from_nsecs_opt(86399, 1_999_999_999).is_some()); // a leap second after 23:59:59
    /// assert!(from_nsecs_opt(86_400, 0).is_none());
    /// assert!(from_nsecs_opt(86399, 2_000_000_000).is_none());
    /// ```
    #[inline]
    #[must_use]
    pub const fn from_num_seconds_from_midnight_opt(secs: u32, nano: u32) -> Option<NaiveTime> {
        if secs >= 86_400 || nano >= 2_000_000_000 || (nano >= 1_000_000_000 && secs % 60 != 59) {
            return None;
        }
        Some(NaiveTime { secs, frac: nano })
    }

    /// Parses a string with the specified format string and returns a new `NaiveTime`.
    /// See the [`format::strftime` module](crate::format::strftime)
    /// on the supported escape sequences.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::NaiveTime;
    ///
    /// let parse_from_str = NaiveTime::parse_from_str;
    ///
    /// assert_eq!(parse_from_str("23:56:04", "%H:%M:%S"),
    ///            Ok(NaiveTime::from_hms_opt(23, 56, 4).unwrap()));
    /// assert_eq!(parse_from_str("pm012345.6789", "%p%I%M%S%.f"),
    ///            Ok(NaiveTime::from_hms_micro_opt(13, 23, 45, 678_900).unwrap()));
    /// ```
    ///
    /// Date and offset is ignored for the purpose of parsing.
    ///
    /// ```
    /// # use chrono::NaiveTime;
    /// # let parse_from_str = NaiveTime::parse_from_str;
    /// assert_eq!(parse_from_str("2014-5-17T12:34:56+09:30", "%Y-%m-%dT%H:%M:%S%z"),
    ///            Ok(NaiveTime::from_hms_opt(12, 34, 56).unwrap()));
    /// ```
    ///
    /// [Leap seconds](#leap-second-handling) are correctly handled by
    /// treating any time of the form `hh:mm:60` as a leap second.
    /// (This equally applies to the formatting, so the round trip is possible.)
    ///
    /// ```
    /// # use chrono::NaiveTime;
    /// # let parse_from_str = NaiveTime::parse_from_str;
    /// assert_eq!(parse_from_str("08:59:60.123", "%H:%M:%S%.f"),
    ///            Ok(NaiveTime::from_hms_milli_opt(8, 59, 59, 1_123).unwrap()));
    /// ```
    ///
    /// Missing seconds are assumed to be zero,
    /// but out-of-bound times or insufficient fields are errors otherwise.
    ///
    /// ```
    /// # use chrono::NaiveTime;
    /// # let parse_from_str = NaiveTime::parse_from_str;
    /// assert_eq!(parse_from_str("7:15", "%H:%M"),
    ///            Ok(NaiveTime::from_hms_opt(7, 15, 0).unwrap()));
    ///
    /// assert!(parse_from_str("04m33s", "%Mm%Ss").is_err());
    /// assert!(parse_from_str("12", "%H").is_err());
    /// assert!(parse_from_str("17:60", "%H:%M").is_err());
    /// assert!(parse_from_str("24:00:00", "%H:%M:%S").is_err());
    /// ```
    ///
    /// All parsed fields should be consistent to each other, otherwise it's an error.
    /// Here `%H` is for 24-hour clocks, unlike `%I`,
    /// and thus can be independently determined without AM/PM.
    ///
    /// ```
    /// # use chrono::NaiveTime;
    /// # let parse_from_str = NaiveTime::parse_from_str;
    /// assert!(parse_from_str("13:07 AM", "%H:%M %p").is_err());
    /// ```
    pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<NaiveTime> {
        let mut parsed = Parsed::new();
        parse(&mut parsed, s, StrftimeItems::new(fmt))?;
        parsed.to_naive_time()
    }

    /// Parses a string from a user-specified format into a new `NaiveTime` value, and a slice with
    /// the remaining portion of the string.
    /// See the [`format::strftime` module](crate::format::strftime)
    /// on the supported escape sequences.
    ///
    /// Similar to [`parse_from_str`](#method.parse_from_str).
    ///
    /// # Example
    ///
    /// ```rust
    /// # use chrono::{NaiveTime};
    /// let (time, remainder) = NaiveTime::parse_and_remainder(
    ///     "3h4m33s trailing text", "%-Hh%-Mm%-Ss").unwrap();
    /// assert_eq!(time, NaiveTime::from_hms_opt(3, 4, 33).unwrap());
    /// assert_eq!(remainder, " trailing text");
    /// ```
    pub fn parse_and_remainder<'a>(s: &'a str, fmt: &str) -> ParseResult<(NaiveTime, &'a str)> {
        let mut parsed = Parsed::new();
        let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?;
        parsed.to_naive_time().map(|t| (t, remainder))
    }

    /// Adds given `TimeDelta` to the current time, and also returns the number of *seconds*
    /// in the integral number of days ignored from the addition.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::{TimeDelta, NaiveTime};
    ///
    /// let from_hms = |h, m, s| { NaiveTime::from_hms_opt(h, m, s).unwrap() };
    ///
    /// assert_eq!(from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::hours(11)),
    ///            (from_hms(14, 4, 5), 0));
    /// assert_eq!(from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::hours(23)),
    ///            (from_hms(2, 4, 5), 86_400));
    /// assert_eq!(from_hms(3, 4, 5).overflowing_add_signed(TimeDelta::hours(-7)),
    ///            (from_hms(20, 4, 5), -86_400));
    /// ```
    #[must_use]
    pub const fn overflowing_add_signed(&self, rhs: TimeDelta) -> (NaiveTime, i64) {
        let mut secs = self.secs as i64;
        let mut frac = self.frac as i32;
        let secs_to_add = rhs.num_seconds();
        let frac_to_add = rhs.subsec_nanos();

        // Check if `self` is a leap second and adding `rhs` would escape that leap second.
        // If that is the case, update `frac` and `secs` to involve no leap second.
        // If it stays within the leap second or the second before, and only adds a fractional
        // second, just do that and return (this way the rest of the code can ignore leap seconds).
        if frac >= 1_000_000_000 {
            // check below is adjusted to not overflow an i32: `frac + frac_to_add >= 2_000_000_000`
            if secs_to_add > 0 || (frac_to_add > 0 && frac >= 2_000_000_000 - frac_to_add) {
                frac -= 1_000_000_000;
            } else if secs_to_add < 0 {
                frac -= 1_000_000_000;
                secs += 1;
            } else {
                return (NaiveTime { secs: self.secs, frac: (frac + frac_to_add) as u32 }, 0);
            }
        }

        let mut secs = secs + secs_to_add;
        frac += frac_to_add;

        if frac < 0 {
            frac += 1_000_000_000;
            secs -= 1;
        } else if frac >= 1_000_000_000 {
            frac -= 1_000_000_000;
            secs += 1;
        }

        let secs_in_day = secs.rem_euclid(86_400);
        let remaining = secs - secs_in_day;
        (NaiveTime { secs: secs_in_day as u32, frac: frac as u32 }, remaining)
    }

    /// Subtracts given `TimeDelta` from the current time, and also returns the number of *seconds*
    /// in the integral number of days ignored from the subtraction.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::{TimeDelta, NaiveTime};
    ///
    /// let from_hms = |h, m, s| { NaiveTime::from_hms_opt(h, m, s).unwrap() };
    ///
    /// assert_eq!(from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::hours(2)),
    ///            (from_hms(1, 4, 5), 0));
    /// assert_eq!(from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::hours(17)),
    ///            (from_hms(10, 4, 5), 86_400));
    /// assert_eq!(from_hms(3, 4, 5).overflowing_sub_signed(TimeDelta::hours(-22)),
    ///            (from_hms(1, 4, 5), -86_400));
    /// ```
    #[inline]
    #[must_use]
    pub const fn overflowing_sub_signed(&self, rhs: TimeDelta) -> (NaiveTime, i64) {
        let (time, rhs) = self.overflowing_add_signed(rhs.neg());
        (time, -rhs) // safe to negate, rhs is within +/- (2^63 / 1000)
    }

    /// Subtracts another `NaiveTime` from the current time.
    /// Returns a `TimeDelta` within +/- 1 day.
    /// This does not overflow or underflow at all.
    ///
    /// As a part of Chrono's [leap second handling](#leap-second-handling),
    /// the subtraction assumes that **there is no leap second ever**,
    /// except when any of the `NaiveTime`s themselves represents a leap second
    /// in which case the assumption becomes that
    /// **there are exactly one (or two) leap second(s) ever**.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::{TimeDelta, NaiveTime};
    ///
    /// let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
    /// let since = NaiveTime::signed_duration_since;
    ///
    /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 900)),
    ///            TimeDelta::zero());
    /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 7, 875)),
    ///            TimeDelta::milliseconds(25));
    /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 6, 925)),
    ///            TimeDelta::milliseconds(975));
    /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 5, 0, 900)),
    ///            TimeDelta::seconds(7));
    /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(3, 0, 7, 900)),
    ///            TimeDelta::seconds(5 * 60));
    /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(0, 5, 7, 900)),
    ///            TimeDelta::seconds(3 * 3600));
    /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(4, 5, 7, 900)),
    ///            TimeDelta::seconds(-3600));
    /// assert_eq!(since(from_hmsm(3, 5, 7, 900), from_hmsm(2, 4, 6, 800)),
    ///            TimeDelta::seconds(3600 + 60 + 1) + TimeDelta::milliseconds(100));
    /// ```
    ///
    /// Leap seconds are handled, but the subtraction assumes that
    /// there were no other leap seconds happened.
    ///
    /// ```
    /// # use chrono::{TimeDelta, NaiveTime};
    /// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
    /// # let since = NaiveTime::signed_duration_since;
    /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 59, 0)),
    ///            TimeDelta::seconds(1));
    /// assert_eq!(since(from_hmsm(3, 0, 59, 1_500), from_hmsm(3, 0, 59, 0)),
    ///            TimeDelta::milliseconds(1500));
    /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(3, 0, 0, 0)),
    ///            TimeDelta::seconds(60));
    /// assert_eq!(since(from_hmsm(3, 0, 0, 0), from_hmsm(2, 59, 59, 1_000)),
    ///            TimeDelta::seconds(1));
    /// assert_eq!(since(from_hmsm(3, 0, 59, 1_000), from_hmsm(2, 59, 59, 1_000)),
    ///            TimeDelta::seconds(61));
    /// ```
    #[must_use]
    pub const fn signed_duration_since(self, rhs: NaiveTime) -> TimeDelta {
        //     |    |    :leap|    |    |    |    |    |    |    :leap|    |
        //     |    |    :    |    |    |    |    |    |    |    :    |    |
        // ----+----+-----*---+----+----+----+----+----+----+-------*-+----+----
        //          |   `rhs` |                             |    `self`
        //          |======================================>|       |
        //          |     |  `self.secs - rhs.secs`         |`self.frac`
        //          |====>|   |                             |======>|
        //      `rhs.frac`|========================================>|
        //          |     |   |        `self - rhs`         |       |

        let mut secs = self.secs as i64 - rhs.secs as i64;
        let frac = self.frac as i64 - rhs.frac as i64;

        // `secs` may contain a leap second yet to be counted
        if self.secs > rhs.secs && rhs.frac >= 1_000_000_000 {
            secs += 1;
        } else if self.secs < rhs.secs && self.frac >= 1_000_000_000 {
            secs -= 1;
        }

        let secs_from_frac = frac.div_euclid(1_000_000_000);
        let frac = frac.rem_euclid(1_000_000_000) as u32;

        expect!(TimeDelta::new(secs + secs_from_frac, frac), "must be in range")
    }

    /// Adds given `FixedOffset` to the current time, and returns the number of days that should be
    /// added to a date as a result of the offset (either `-1`, `0`, or `1` because the offset is
    /// always less than 24h).
    ///
    /// This method is similar to [`overflowing_add_signed`](#method.overflowing_add_signed), but
    /// preserves leap seconds.
    pub(super) const fn overflowing_add_offset(&self, offset: FixedOffset) -> (NaiveTime, i32) {
        let secs = self.secs as i32 + offset.local_minus_utc();
        let days = secs.div_euclid(86_400);
        let secs = secs.rem_euclid(86_400);
        (NaiveTime { secs: secs as u32, frac: self.frac }, days)
    }

    /// Subtracts given `FixedOffset` from the current time, and returns the number of days that
    /// should be added to a date as a result of the offset (either `-1`, `0`, or `1` because the
    /// offset is always less than 24h).
    ///
    /// This method is similar to [`overflowing_sub_signed`](#method.overflowing_sub_signed), but
    /// preserves leap seconds.
    pub(super) const fn overflowing_sub_offset(&self, offset: FixedOffset) -> (NaiveTime, i32) {
        let secs = self.secs as i32 - offset.local_minus_utc();
        let days = secs.div_euclid(86_400);
        let secs = secs.rem_euclid(86_400);
        (NaiveTime { secs: secs as u32, frac: self.frac }, days)
    }

    /// Formats the time with the specified formatting items.
    /// Otherwise it is the same as the ordinary [`format`](#method.format) method.
    ///
    /// The `Iterator` of items should be `Clone`able,
    /// since the resulting `DelayedFormat` value may be formatted multiple times.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::NaiveTime;
    /// use chrono::format::strftime::StrftimeItems;
    ///
    /// let fmt = StrftimeItems::new("%H:%M:%S");
    /// let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap();
    /// assert_eq!(t.format_with_items(fmt.clone()).to_string(), "23:56:04");
    /// assert_eq!(t.format("%H:%M:%S").to_string(),             "23:56:04");
    /// ```
    ///
    /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait.
    ///
    /// ```
    /// # use chrono::NaiveTime;
    /// # use chrono::format::strftime::StrftimeItems;
    /// # let fmt = StrftimeItems::new("%H:%M:%S").clone();
    /// # let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap();
    /// assert_eq!(format!("{}", t.format_with_items(fmt)), "23:56:04");
    /// ```
    #[cfg(feature = "alloc")]
    #[inline]
    #[must_use]
    pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I>
    where
        I: Iterator<Item = B> + Clone,
        B: Borrow<Item<'a>>,
    {
        DelayedFormat::new(None, Some(*self), items)
    }

    /// Formats the time with the specified format string.
    /// See the [`format::strftime` module](crate::format::strftime)
    /// on the supported escape sequences.
    ///
    /// This returns a `DelayedFormat`,
    /// which gets converted to a string only when actual formatting happens.
    /// You may use the `to_string` method to get a `String`,
    /// or just feed it into `print!` and other formatting macros.
    /// (In this way it avoids the redundant memory allocation.)
    ///
    /// A wrong format string does *not* issue an error immediately.
    /// Rather, converting or formatting the `DelayedFormat` fails.
    /// You are recommended to immediately use `DelayedFormat` for this reason.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::NaiveTime;
    ///
    /// let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
    /// assert_eq!(t.format("%H:%M:%S").to_string(), "23:56:04");
    /// assert_eq!(t.format("%H:%M:%S%.6f").to_string(), "23:56:04.012345");
    /// assert_eq!(t.format("%-I:%M %p").to_string(), "11:56 PM");
    /// ```
    ///
    /// The resulting `DelayedFormat` can be formatted directly via the `Display` trait.
    ///
    /// ```
    /// # use chrono::NaiveTime;
    /// # let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
    /// assert_eq!(format!("{}", t.format("%H:%M:%S")), "23:56:04");
    /// assert_eq!(format!("{}", t.format("%H:%M:%S%.6f")), "23:56:04.012345");
    /// assert_eq!(format!("{}", t.format("%-I:%M %p")), "11:56 PM");
    /// ```
    #[cfg(feature = "alloc")]
    #[inline]
    #[must_use]
    pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> {
        self.format_with_items(StrftimeItems::new(fmt))
    }

    /// Returns a triple of the hour, minute and second numbers.
    pub(crate) fn hms(&self) -> (u32, u32, u32) {
        let sec = self.secs % 60;
        let mins = self.secs / 60;
        let min = mins % 60;
        let hour = mins / 60;
        (hour, min, sec)
    }

    /// Returns the number of non-leap seconds past the last midnight.
    // This duplicates `Timelike::num_seconds_from_midnight()`, because trait methods can't be const
    // yet.
    #[inline]
    pub(crate) const fn num_seconds_from_midnight(&self) -> u32 {
        self.secs
    }

    /// Returns the number of nanoseconds since the whole non-leap second.
    // This duplicates `Timelike::nanosecond()`, because trait methods can't be const yet.
    #[inline]
    pub(crate) const fn nanosecond(&self) -> u32 {
        self.frac
    }

    /// The earliest possible `NaiveTime`
    pub const MIN: Self = Self { secs: 0, frac: 0 };
    pub(super) const MAX: Self = Self { secs: 23 * 3600 + 59 * 60 + 59, frac: 999_999_999 };
}

impl Timelike for NaiveTime {
    /// Returns the hour number from 0 to 23.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::{NaiveTime, Timelike};
    ///
    /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().hour(), 0);
    /// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().hour(), 23);
    /// ```
    #[inline]
    fn hour(&self) -> u32 {
        self.hms().0
    }

    /// Returns the minute number from 0 to 59.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::{NaiveTime, Timelike};
    ///
    /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().minute(), 0);
    /// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().minute(), 56);
    /// ```
    #[inline]
    fn minute(&self) -> u32 {
        self.hms().1
    }

    /// Returns the second number from 0 to 59.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::{NaiveTime, Timelike};
    ///
    /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().second(), 0);
    /// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().second(), 4);
    /// ```
    ///
    /// This method never returns 60 even when it is a leap second.
    /// ([Why?](#leap-second-handling))
    /// Use the proper [formatting method](#method.format) to get a human-readable representation.
    ///
    #[cfg_attr(not(feature = "std"), doc = "```ignore")]
    #[cfg_attr(feature = "std", doc = "```")]
    /// # use chrono::{NaiveTime, Timelike};
    /// let leap = NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap();
    /// assert_eq!(leap.second(), 59);
    /// assert_eq!(leap.format("%H:%M:%S").to_string(), "23:59:60");
    /// ```
    #[inline]
    fn second(&self) -> u32 {
        self.hms().2
    }

    /// Returns the number of nanoseconds since the whole non-leap second.
    /// The range from 1,000,000,000 to 1,999,999,999 represents
    /// the [leap second](#leap-second-handling).
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::{NaiveTime, Timelike};
    ///
    /// assert_eq!(NaiveTime::from_hms_opt(0, 0, 0).unwrap().nanosecond(), 0);
    /// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().nanosecond(), 12_345_678);
    /// ```
    ///
    /// Leap seconds may have seemingly out-of-range return values.
    /// You can reduce the range with `time.nanosecond() % 1_000_000_000`, or
    /// use the proper [formatting method](#method.format) to get a human-readable representation.
    ///
    #[cfg_attr(not(feature = "std"), doc = "```ignore")]
    #[cfg_attr(feature = "std", doc = "```")]
    /// # use chrono::{NaiveTime, Timelike};
    /// let leap = NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap();
    /// assert_eq!(leap.nanosecond(), 1_000_000_000);
    /// assert_eq!(leap.format("%H:%M:%S%.9f").to_string(), "23:59:60.000000000");
    /// ```
    #[inline]
    fn nanosecond(&self) -> u32 {
        self.frac
    }

    /// Makes a new `NaiveTime` with the hour number changed.
    ///
    /// # Errors
    ///
    /// Returns `None` if the value for `hour` is invalid.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::{NaiveTime, Timelike};
    ///
    /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
    /// assert_eq!(dt.with_hour(7), Some(NaiveTime::from_hms_nano_opt(7, 56, 4, 12_345_678).unwrap()));
    /// assert_eq!(dt.with_hour(24), None);
    /// ```
    #[inline]
    fn with_hour(&self, hour: u32) -> Option<NaiveTime> {
        if hour >= 24 {
            return None;
        }
        let secs = hour * 3600 + self.secs % 3600;
        Some(NaiveTime { secs, ..*self })
    }

    /// Makes a new `NaiveTime` with the minute number changed.
    ///
    /// # Errors
    ///
    /// Returns `None` if the value for `minute` is invalid.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::{NaiveTime, Timelike};
    ///
    /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
    /// assert_eq!(dt.with_minute(45), Some(NaiveTime::from_hms_nano_opt(23, 45, 4, 12_345_678).unwrap()));
    /// assert_eq!(dt.with_minute(60), None);
    /// ```
    #[inline]
    fn with_minute(&self, min: u32) -> Option<NaiveTime> {
        if min >= 60 {
            return None;
        }
        let secs = self.secs / 3600 * 3600 + min * 60 + self.secs % 60;
        Some(NaiveTime { secs, ..*self })
    }

    /// Makes a new `NaiveTime` with the second number changed.
    ///
    /// As with the [`second`](#method.second) method,
    /// the input range is restricted to 0 through 59.
    ///
    /// # Errors
    ///
    /// Returns `None` if the value for `second` is invalid.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::{NaiveTime, Timelike};
    ///
    /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
    /// assert_eq!(dt.with_second(17), Some(NaiveTime::from_hms_nano_opt(23, 56, 17, 12_345_678).unwrap()));
    /// assert_eq!(dt.with_second(60), None);
    /// ```
    #[inline]
    fn with_second(&self, sec: u32) -> Option<NaiveTime> {
        if sec >= 60 {
            return None;
        }
        let secs = self.secs / 60 * 60 + sec;
        Some(NaiveTime { secs, ..*self })
    }

    /// Makes a new `NaiveTime` with nanoseconds since the whole non-leap second changed.
    ///
    /// As with the [`nanosecond`](#method.nanosecond) method,
    /// the input range can exceed 1,000,000,000 for leap seconds.
    ///
    /// # Errors
    ///
    /// Returns `None` if `nanosecond >= 2,000,000,000`.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::{NaiveTime, Timelike};
    ///
    /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
    /// assert_eq!(dt.with_nanosecond(333_333_333),
    ///            Some(NaiveTime::from_hms_nano_opt(23, 56, 4, 333_333_333).unwrap()));
    /// assert_eq!(dt.with_nanosecond(2_000_000_000), None);
    /// ```
    ///
    /// Leap seconds can theoretically follow *any* whole second.
    /// The following would be a proper leap second at the time zone offset of UTC-00:03:57
    /// (there are several historical examples comparable to this "non-sense" offset),
    /// and therefore is allowed.
    ///
    /// ```
    /// # use chrono::{NaiveTime, Timelike};
    /// let dt = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
    /// let strange_leap_second = dt.with_nanosecond(1_333_333_333).unwrap();
    /// assert_eq!(strange_leap_second.nanosecond(), 1_333_333_333);
    /// ```
    #[inline]
    fn with_nanosecond(&self, nano: u32) -> Option<NaiveTime> {
        if nano >= 2_000_000_000 {
            return None;
        }
        Some(NaiveTime { frac: nano, ..*self })
    }

    /// Returns the number of non-leap seconds past the last midnight.
    ///
    /// # Example
    ///
    /// ```
    /// use chrono::{NaiveTime, Timelike};
    ///
    /// assert_eq!(NaiveTime::from_hms_opt(1, 2, 3).unwrap().num_seconds_from_midnight(),
    ///            3723);
    /// assert_eq!(NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap().num_seconds_from_midnight(),
    ///            86164);
    /// assert_eq!(NaiveTime::from_hms_milli_opt(23, 59, 59, 1_000).unwrap().num_seconds_from_midnight(),
    ///            86399);
    /// ```
    #[inline]
    fn num_seconds_from_midnight(&self) -> u32 {
        self.secs // do not repeat the calculation!
    }
}

/// Add `TimeDelta` to `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the addition ignores integral number of days.
///
/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
/// second ever**, except when the `NaiveTime` itself represents a leap second in which case the
/// assumption becomes that **there is exactly a single leap second ever**.
///
/// # Example
///
/// ```
/// use chrono::{TimeDelta, NaiveTime};
///
/// let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
///
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::zero(),                  from_hmsm(3, 5, 7, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::seconds(1),              from_hmsm(3, 5, 8, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::seconds(-1),             from_hmsm(3, 5, 6, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::seconds(60 + 4),         from_hmsm(3, 6, 11, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::seconds(7*60*60 - 6*60), from_hmsm(9, 59, 7, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::milliseconds(80),        from_hmsm(3, 5, 7, 80));
/// assert_eq!(from_hmsm(3, 5, 7, 950) + TimeDelta::milliseconds(280),     from_hmsm(3, 5, 8, 230));
/// assert_eq!(from_hmsm(3, 5, 7, 950) + TimeDelta::milliseconds(-980),    from_hmsm(3, 5, 6, 970));
/// ```
///
/// The addition wraps around.
///
/// ```
/// # use chrono::{TimeDelta, NaiveTime};
/// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::seconds(22*60*60), from_hmsm(1, 5, 7, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::seconds(-8*60*60), from_hmsm(19, 5, 7, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) + TimeDelta::days(800),         from_hmsm(3, 5, 7, 0));
/// ```
///
/// Leap seconds are handled, but the addition assumes that it is the only leap second happened.
///
/// ```
/// # use chrono::{TimeDelta, NaiveTime};
/// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
/// let leap = from_hmsm(3, 5, 59, 1_300);
/// assert_eq!(leap + TimeDelta::zero(),             from_hmsm(3, 5, 59, 1_300));
/// assert_eq!(leap + TimeDelta::milliseconds(-500), from_hmsm(3, 5, 59, 800));
/// assert_eq!(leap + TimeDelta::milliseconds(500),  from_hmsm(3, 5, 59, 1_800));
/// assert_eq!(leap + TimeDelta::milliseconds(800),  from_hmsm(3, 6, 0, 100));
/// assert_eq!(leap + TimeDelta::seconds(10),        from_hmsm(3, 6, 9, 300));
/// assert_eq!(leap + TimeDelta::seconds(-10),       from_hmsm(3, 5, 50, 300));
/// assert_eq!(leap + TimeDelta::days(1),            from_hmsm(3, 5, 59, 300));
/// ```
///
/// [leap second handling]: crate::NaiveTime#leap-second-handling
impl Add<TimeDelta> for NaiveTime {
    type Output = NaiveTime;

    #[inline]
    fn add(self, rhs: TimeDelta) -> NaiveTime {
        self.overflowing_add_signed(rhs).0
    }
}

/// Add-assign `TimeDelta` to `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the addition ignores integral number of days.
impl AddAssign<TimeDelta> for NaiveTime {
    #[inline]
    fn add_assign(&mut self, rhs: TimeDelta) {
        *self = self.add(rhs);
    }
}

/// Add `std::time::Duration` to `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the addition ignores integral number of days.
impl Add<Duration> for NaiveTime {
    type Output = NaiveTime;

    #[inline]
    fn add(self, rhs: Duration) -> NaiveTime {
        // We don't care about values beyond `24 * 60 * 60`, so we can take a modulus and avoid
        // overflow during the conversion to `TimeDelta`.
        // But we limit to double that just in case `self` is a leap-second.
        let secs = rhs.as_secs() % (2 * 24 * 60 * 60);
        let d = TimeDelta::new(secs as i64, rhs.subsec_nanos()).unwrap();
        self.overflowing_add_signed(d).0
    }
}

/// Add-assign `std::time::Duration` to `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the addition ignores integral number of days.
impl AddAssign<Duration> for NaiveTime {
    #[inline]
    fn add_assign(&mut self, rhs: Duration) {
        *self = *self + rhs;
    }
}

/// Add `FixedOffset` to `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the addition ignores integral number of days.
impl Add<FixedOffset> for NaiveTime {
    type Output = NaiveTime;

    #[inline]
    fn add(self, rhs: FixedOffset) -> NaiveTime {
        self.overflowing_add_offset(rhs).0
    }
}

/// Subtract `TimeDelta` from `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the subtraction ignores integral number of days.
/// This is the same as addition with a negated `TimeDelta`.
///
/// As a part of Chrono's [leap second handling], the subtraction assumes that **there is no leap
/// second ever**, except when the `NaiveTime` itself represents a leap second in which case the
/// assumption becomes that **there is exactly a single leap second ever**.
///
/// # Example
///
/// ```
/// use chrono::{TimeDelta, NaiveTime};
///
/// let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
///
/// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::zero(),                  from_hmsm(3, 5, 7, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::seconds(1),              from_hmsm(3, 5, 6, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::seconds(60 + 5),         from_hmsm(3, 4, 2, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::seconds(2*60*60 + 6*60), from_hmsm(0, 59, 7, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::milliseconds(80),        from_hmsm(3, 5, 6, 920));
/// assert_eq!(from_hmsm(3, 5, 7, 950) - TimeDelta::milliseconds(280),     from_hmsm(3, 5, 7, 670));
/// ```
///
/// The subtraction wraps around.
///
/// ```
/// # use chrono::{TimeDelta, NaiveTime};
/// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
/// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::seconds(8*60*60), from_hmsm(19, 5, 7, 0));
/// assert_eq!(from_hmsm(3, 5, 7, 0) - TimeDelta::days(800),        from_hmsm(3, 5, 7, 0));
/// ```
///
/// Leap seconds are handled, but the subtraction assumes that it is the only leap second happened.
///
/// ```
/// # use chrono::{TimeDelta, NaiveTime};
/// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
/// let leap = from_hmsm(3, 5, 59, 1_300);
/// assert_eq!(leap - TimeDelta::zero(),            from_hmsm(3, 5, 59, 1_300));
/// assert_eq!(leap - TimeDelta::milliseconds(200), from_hmsm(3, 5, 59, 1_100));
/// assert_eq!(leap - TimeDelta::milliseconds(500), from_hmsm(3, 5, 59, 800));
/// assert_eq!(leap - TimeDelta::seconds(60),       from_hmsm(3, 5, 0, 300));
/// assert_eq!(leap - TimeDelta::days(1),           from_hmsm(3, 6, 0, 300));
/// ```
///
/// [leap second handling]: crate::NaiveTime#leap-second-handling
impl Sub<TimeDelta> for NaiveTime {
    type Output = NaiveTime;

    #[inline]
    fn sub(self, rhs: TimeDelta) -> NaiveTime {
        self.overflowing_sub_signed(rhs).0
    }
}

/// Subtract-assign `TimeDelta` from `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the subtraction ignores integral number of days.
impl SubAssign<TimeDelta> for NaiveTime {
    #[inline]
    fn sub_assign(&mut self, rhs: TimeDelta) {
        *self = self.sub(rhs);
    }
}

/// Subtract `std::time::Duration` from `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the subtraction ignores integral number of days.
impl Sub<Duration> for NaiveTime {
    type Output = NaiveTime;

    #[inline]
    fn sub(self, rhs: Duration) -> NaiveTime {
        // We don't care about values beyond `24 * 60 * 60`, so we can take a modulus and avoid
        // overflow during the conversion to `TimeDelta`.
        // But we limit to double that just in case `self` is a leap-second.
        let secs = rhs.as_secs() % (2 * 24 * 60 * 60);
        let d = TimeDelta::new(secs as i64, rhs.subsec_nanos()).unwrap();
        self.overflowing_sub_signed(d).0
    }
}

/// Subtract-assign `std::time::Duration` from `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the subtraction ignores integral number of days.
impl SubAssign<Duration> for NaiveTime {
    #[inline]
    fn sub_assign(&mut self, rhs: Duration) {
        *self = *self - rhs;
    }
}

/// Subtract `FixedOffset` from `NaiveTime`.
///
/// This wraps around and never overflows or underflows.
/// In particular the subtraction ignores integral number of days.
impl Sub<FixedOffset> for NaiveTime {
    type Output = NaiveTime;

    #[inline]
    fn sub(self, rhs: FixedOffset) -> NaiveTime {
        self.overflowing_sub_offset(rhs).0
    }
}

/// Subtracts another `NaiveTime` from the current time.
/// Returns a `TimeDelta` within +/- 1 day.
/// This does not overflow or underflow at all.
///
/// As a part of Chrono's [leap second handling](#leap-second-handling),
/// the subtraction assumes that **there is no leap second ever**,
/// except when any of the `NaiveTime`s themselves represents a leap second
/// in which case the assumption becomes that
/// **there are exactly one (or two) leap second(s) ever**.
///
/// The implementation is a wrapper around
/// [`NaiveTime::signed_duration_since`](#method.signed_duration_since).
///
/// # Example
///
/// ```
/// use chrono::{TimeDelta, NaiveTime};
///
/// let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
///
/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 900), TimeDelta::zero());
/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 7, 875), TimeDelta::milliseconds(25));
/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 6, 925), TimeDelta::milliseconds(975));
/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 5, 0, 900), TimeDelta::seconds(7));
/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(3, 0, 7, 900), TimeDelta::seconds(5 * 60));
/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(0, 5, 7, 900), TimeDelta::seconds(3 * 3600));
/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(4, 5, 7, 900), TimeDelta::seconds(-3600));
/// assert_eq!(from_hmsm(3, 5, 7, 900) - from_hmsm(2, 4, 6, 800),
///            TimeDelta::seconds(3600 + 60 + 1) + TimeDelta::milliseconds(100));
/// ```
///
/// Leap seconds are handled, but the subtraction assumes that
/// there were no other leap seconds happened.
///
/// ```
/// # use chrono::{TimeDelta, NaiveTime};
/// # let from_hmsm = |h, m, s, milli| { NaiveTime::from_hms_milli_opt(h, m, s, milli).unwrap() };
/// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 59, 0), TimeDelta::seconds(1));
/// assert_eq!(from_hmsm(3, 0, 59, 1_500) - from_hmsm(3, 0, 59, 0),
///            TimeDelta::milliseconds(1500));
/// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(3, 0, 0, 0), TimeDelta::seconds(60));
/// assert_eq!(from_hmsm(3, 0, 0, 0) - from_hmsm(2, 59, 59, 1_000), TimeDelta::seconds(1));
/// assert_eq!(from_hmsm(3, 0, 59, 1_000) - from_hmsm(2, 59, 59, 1_000),
///            TimeDelta::seconds(61));
/// ```
impl Sub<NaiveTime> for NaiveTime {
    type Output = TimeDelta;

    #[inline]
    fn sub(self, rhs: NaiveTime) -> TimeDelta {
        self.signed_duration_since(rhs)
    }
}

/// The `Debug` output of the naive time `t` is the same as
/// [`t.format("%H:%M:%S%.f")`](crate::format::strftime).
///
/// The string printed can be readily parsed via the `parse` method on `str`.
///
/// It should be noted that, for leap seconds not on the minute boundary,
/// it may print a representation not distinguishable from non-leap seconds.
/// This doesn't matter in practice, since such leap seconds never happened.
/// (By the time of the first leap second on 1972-06-30,
/// every time zone offset around the world has standardized to the 5-minute alignment.)
///
/// # Example
///
/// ```
/// use chrono::NaiveTime;
///
/// assert_eq!(format!("{:?}", NaiveTime::from_hms_opt(23, 56, 4).unwrap()),              "23:56:04");
/// assert_eq!(format!("{:?}", NaiveTime::from_hms_milli_opt(23, 56, 4, 12).unwrap()),    "23:56:04.012");
/// assert_eq!(format!("{:?}", NaiveTime::from_hms_micro_opt(23, 56, 4, 1234).unwrap()),  "23:56:04.001234");
/// assert_eq!(format!("{:?}", NaiveTime::from_hms_nano_opt(23, 56, 4, 123456).unwrap()), "23:56:04.000123456");
/// ```
///
/// Leap seconds may also be used.
///
/// ```
/// # use chrono::NaiveTime;
/// assert_eq!(format!("{:?}", NaiveTime::from_hms_milli_opt(6, 59, 59, 1_500).unwrap()), "06:59:60.500");
/// ```
impl fmt::Debug for NaiveTime {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let (hour, min, sec) = self.hms();
        let (sec, nano) = if self.frac >= 1_000_000_000 {
            (sec + 1, self.frac - 1_000_000_000)
        } else {
            (sec, self.frac)
        };

        use core::fmt::Write;
        write_hundreds(f, hour as u8)?;
        f.write_char(':')?;
        write_hundreds(f, min as u8)?;
        f.write_char(':')?;
        write_hundreds(f, sec as u8)?;

        if nano == 0 {
            Ok(())
        } else if nano % 1_000_000 == 0 {
            write!(f, ".{:03}", nano / 1_000_000)
        } else if nano % 1_000 == 0 {
            write!(f, ".{:06}", nano / 1_000)
        } else {
            write!(f, ".{:09}", nano)
        }
    }
}

/// The `Display` output of the naive time `t` is the same as
/// [`t.format("%H:%M:%S%.f")`](crate::format::strftime).
///
/// The string printed can be readily parsed via the `parse` method on `str`.
///
/// It should be noted that, for leap seconds not on the minute boundary,
/// it may print a representation not distinguishable from non-leap seconds.
/// This doesn't matter in practice, since such leap seconds never happened.
/// (By the time of the first leap second on 1972-06-30,
/// every time zone offset around the world has standardized to the 5-minute alignment.)
///
/// # Example
///
/// ```
/// use chrono::NaiveTime;
///
/// assert_eq!(format!("{}", NaiveTime::from_hms_opt(23, 56, 4).unwrap()),              "23:56:04");
/// assert_eq!(format!("{}", NaiveTime::from_hms_milli_opt(23, 56, 4, 12).unwrap()),    "23:56:04.012");
/// assert_eq!(format!("{}", NaiveTime::from_hms_micro_opt(23, 56, 4, 1234).unwrap()),  "23:56:04.001234");
/// assert_eq!(format!("{}", NaiveTime::from_hms_nano_opt(23, 56, 4, 123456).unwrap()), "23:56:04.000123456");
/// ```
///
/// Leap seconds may also be used.
///
/// ```
/// # use chrono::NaiveTime;
/// assert_eq!(format!("{}", NaiveTime::from_hms_milli_opt(6, 59, 59, 1_500).unwrap()), "06:59:60.500");
/// ```
impl fmt::Display for NaiveTime {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Debug::fmt(self, f)
    }
}

/// Parsing a `str` into a `NaiveTime` uses the same format,
/// [`%H:%M:%S%.f`](crate::format::strftime), as in `Debug` and `Display`.
///
/// # Example
///
/// ```
/// use chrono::NaiveTime;
///
/// let t = NaiveTime::from_hms_opt(23, 56, 4).unwrap();
/// assert_eq!("23:56:04".parse::<NaiveTime>(), Ok(t));
///
/// let t = NaiveTime::from_hms_nano_opt(23, 56, 4, 12_345_678).unwrap();
/// assert_eq!("23:56:4.012345678".parse::<NaiveTime>(), Ok(t));
///
/// let t = NaiveTime::from_hms_nano_opt(23, 59, 59, 1_234_567_890).unwrap(); // leap second
/// assert_eq!("23:59:60.23456789".parse::<NaiveTime>(), Ok(t));
///
/// // Seconds are optional
/// let t = NaiveTime::from_hms_opt(23, 56, 0).unwrap();
/// assert_eq!("23:56".parse::<NaiveTime>(), Ok(t));
///
/// assert!("foo".parse::<NaiveTime>().is_err());
/// ```
impl str::FromStr for NaiveTime {
    type Err = ParseError;

    fn from_str(s: &str) -> ParseResult<NaiveTime> {
        const HOUR_AND_MINUTE: &[Item<'static>] = &[
            Item::Numeric(Numeric::Hour, Pad::Zero),
            Item::Space(""),
            Item::Literal(":"),
            Item::Numeric(Numeric::Minute, Pad::Zero),
        ];
        const SECOND_AND_NANOS: &[Item<'static>] = &[
            Item::Space(""),
            Item::Literal(":"),
            Item::Numeric(Numeric::Second, Pad::Zero),
            Item::Fixed(Fixed::Nanosecond),
            Item::Space(""),
        ];
        const TRAILING_WHITESPACE: [Item<'static>; 1] = [Item::Space("")];

        let mut parsed = Parsed::new();
        let s = parse_and_remainder(&mut parsed, s, HOUR_AND_MINUTE.iter())?;
        // Seconds are optional, don't fail if parsing them doesn't succeed.
        let s = parse_and_remainder(&mut parsed, s, SECOND_AND_NANOS.iter()).unwrap_or(s);
        parse(&mut parsed, s, TRAILING_WHITESPACE.iter())?;
        parsed.to_naive_time()
    }
}

/// The default value for a NaiveTime is midnight, 00:00:00 exactly.
///
/// # Example
///
/// ```rust
/// use chrono::NaiveTime;
///
/// let default_time = NaiveTime::default();
/// assert_eq!(default_time, NaiveTime::from_hms_opt(0, 0, 0).unwrap());
/// ```
impl Default for NaiveTime {
    fn default() -> Self {
        NaiveTime::from_hms_opt(0, 0, 0).unwrap()
    }
}

#[cfg(all(test, any(feature = "rustc-serialize", feature = "serde")))]
fn test_encodable_json<F, E>(to_string: F)
where
    F: Fn(&NaiveTime) -> Result<String, E>,
    E: ::std::fmt::Debug,
{
    assert_eq!(
        to_string(&NaiveTime::from_hms_opt(0, 0, 0).unwrap()).ok(),
        Some(r#""00:00:00""#.into())
    );
    assert_eq!(
        to_string(&NaiveTime::from_hms_milli_opt(0, 0, 0, 950).unwrap()).ok(),
        Some(r#""00:00:00.950""#.into())
    );
    assert_eq!(
        to_string(&NaiveTime::from_hms_milli_opt(0, 0, 59, 1_000).unwrap()).ok(),
        Some(r#""00:00:60""#.into())
    );
    assert_eq!(
        to_string(&NaiveTime::from_hms_opt(0, 1, 2).unwrap()).ok(),
        Some(r#""00:01:02""#.into())
    );
    assert_eq!(
        to_string(&NaiveTime::from_hms_nano_opt(3, 5, 7, 98765432).unwrap()).ok(),
        Some(r#""03:05:07.098765432""#.into())
    );
    assert_eq!(
        to_string(&NaiveTime::from_hms_opt(7, 8, 9).unwrap()).ok(),
        Some(r#""07:08:09""#.into())
    );
    assert_eq!(
        to_string(&NaiveTime::from_hms_micro_opt(12, 34, 56, 789).unwrap()).ok(),
        Some(r#""12:34:56.000789""#.into())
    );
    assert_eq!(
        to_string(&NaiveTime::from_hms_nano_opt(23, 59, 59, 1_999_999_999).unwrap()).ok(),
        Some(r#""23:59:60.999999999""#.into())
    );
}

#[cfg(all(test, any(feature = "rustc-serialize", feature = "serde")))]
fn test_decodable_json<F, E>(from_str: F)
where
    F: Fn(&str) -> Result<NaiveTime, E>,
    E: ::std::fmt::Debug,
{
    assert_eq!(from_str(r#""00:00:00""#).ok(), Some(NaiveTime::from_hms_opt(0, 0, 0).unwrap()));
    assert_eq!(from_str(r#""0:0:0""#).ok(), Some(NaiveTime::from_hms_opt(0, 0, 0).unwrap()));
    assert_eq!(
        from_str(r#""00:00:00.950""#).ok(),
        Some(NaiveTime::from_hms_milli_opt(0, 0, 0, 950).unwrap())
    );
    assert_eq!(
        from_str(r#""0:0:0.95""#).ok(),
        Some(NaiveTime::from_hms_milli_opt(0, 0, 0, 950).unwrap())
    );
    assert_eq!(
        from_str(r#""00:00:60""#).ok(),
        Some(NaiveTime::from_hms_milli_opt(0, 0, 59, 1_000).unwrap())
    );
    assert_eq!(from_str(r#""00:01:02""#).ok(), Some(NaiveTime::from_hms_opt(0, 1, 2).unwrap()));
    assert_eq!(
        from_str(r#""03:05:07.098765432""#).ok(),
        Some(NaiveTime::from_hms_nano_opt(3, 5, 7, 98765432).unwrap())
    );
    assert_eq!(from_str(r#""07:08:09""#).ok(), Some(NaiveTime::from_hms_opt(7, 8, 9).unwrap()));
    assert_eq!(
        from_str(r#""12:34:56.000789""#).ok(),
        Some(NaiveTime::from_hms_micro_opt(12, 34, 56, 789).unwrap())
    );
    assert_eq!(
        from_str(r#""23:59:60.999999999""#).ok(),
        Some(NaiveTime::from_hms_nano_opt(23, 59, 59, 1_999_999_999).unwrap())
    );
    assert_eq!(
        from_str(r#""23:59:60.9999999999997""#).ok(), // excess digits are ignored
        Some(NaiveTime::from_hms_nano_opt(23, 59, 59, 1_999_999_999).unwrap())
    );

    // bad formats
    assert!(from_str(r#""""#).is_err());
    assert!(from_str(r#""000000""#).is_err());
    assert!(from_str(r#""00:00:61""#).is_err());
    assert!(from_str(r#""00:60:00""#).is_err());
    assert!(from_str(r#""24:00:00""#).is_err());
    assert!(from_str(r#""23:59:59,1""#).is_err());
    assert!(from_str(r#""012:34:56""#).is_err());
    assert!(from_str(r#""hh:mm:ss""#).is_err());
    assert!(from_str(r#"0"#).is_err());
    assert!(from_str(r#"86399"#).is_err());
    assert!(from_str(r#"{}"#).is_err());
    // pre-0.3.0 rustc-serialize format is now invalid
    assert!(from_str(r#"{"secs":0,"frac":0}"#).is_err());
    assert!(from_str(r#"null"#).is_err());
}