1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! This module contains the top level AT command library methods.  It contains a
//! trait for serialization and deserialization, which is implemented by the high level
//! generated Command and Response types by composing together the parsing and
//! unparsing methods for the low level ASTs with the the generated methods
//! for raising and lowering from and to the low level ASTs and high level generated tyoes.

pub use crate::parser::common::ParseError;
use {
    crate::{highlevel, lowlevel},
    std::io,
    thiserror::Error,
};

/// Errors that can occur while deserializing AT commands into high level generated AT command
/// and response types.
#[derive(Clone, Debug, Error, PartialEq)]
pub enum DeserializeErrorCause {
    // IO errors aren't Clone, so just use a String.
    #[error("IO error: {0:?}")]
    IoError(String),
    // Just store the parse errors as Strings so as to not require clients to know about the
    // pest parser types.
    #[error("Parse error: {0:?}")]
    ParseError(String),
    #[error("Bad UTF8: {0:?}")]
    Utf8Error(std::string::FromUtf8Error),
    #[error("Parsed unknown command: {0:?}")]
    UnknownCommand(lowlevel::Command),
    #[error("Parsed unknown response: {0:?}")]
    UnknownResponse(lowlevel::Response),
    #[error("Parsed arguments do not match argument definition: {0:?}")]
    UnknownArguments(lowlevel::Arguments),
}

impl From<io::Error> for DeserializeErrorCause {
    fn from(io_error: io::Error) -> DeserializeErrorCause {
        let string = format!("{:?}", io_error);
        DeserializeErrorCause::IoError(string)
    }
}

impl<RT: pest::RuleType> From<ParseError<RT>> for DeserializeErrorCause {
    fn from(parse_error: ParseError<RT>) -> DeserializeErrorCause {
        let string = format!("{:?}", parse_error);
        DeserializeErrorCause::ParseError(string)
    }
}

impl From<std::string::FromUtf8Error> for DeserializeErrorCause {
    fn from(utf8_error: std::string::FromUtf8Error) -> DeserializeErrorCause {
        DeserializeErrorCause::Utf8Error(utf8_error)
    }
}

/// Error struct containing the cause of a deserialization error and the bytes that caused the error.
#[derive(Clone, Debug, PartialEq)]
pub struct DeserializeError {
    pub cause: DeserializeErrorCause,
    pub bytes: Vec<u8>,
}

#[derive(Debug, Error)]
pub enum SerializeErrorCause {
    #[error("IO error: {0:?}")]
    IoError(io::Error),
}

impl From<io::Error> for SerializeErrorCause {
    fn from(io_error: io::Error) -> SerializeErrorCause {
        SerializeErrorCause::IoError(io_error)
    }
}

// While public traits can't depend on private traits, they can depend on public traits
// in private modules.  By wrapping traits library clients should not have access to in
// a module, clients can be prevented from using them.  The module is pub(crate) to allow
// tests access to the internal traits.
pub(crate) mod internal {
    use {
        super::{DeserializeError, DeserializeErrorCause, ParseError, SerializeErrorCause},
        crate::{
            highlevel, lowlevel,
            lowlevel::write_to::WriteTo,
            parser::{command_grammar, command_parser, response_grammar, response_parser},
            translate,
        },
        std::io,
    };

    /// Trait to specify the parse, raise and lower functions for AT commands or responses.
    /// This is used by the blanket SerDe implementation below to glue together the pieces
    /// in a generic way.
    pub trait SerDeMethods: Sized {
        type Lowlevel: WriteTo;
        type Rule: pest::RuleType;

        fn parse(string: &String) -> Result<Self::Lowlevel, ParseError<Self::Rule>>;
        fn raise(lowlevel: &Self::Lowlevel) -> Result<Self, DeserializeErrorCause>;
        fn lower(&self) -> Self::Lowlevel;

        fn write_to<W: io::Write>(sink: &mut W, lowlevel: &Self::Lowlevel) -> io::Result<()> {
            lowlevel.write_to(sink)
        }
    }

    /// Define the functions used for command serde.
    impl SerDeMethods for highlevel::Command {
        type Lowlevel = lowlevel::Command;
        type Rule = command_grammar::Rule;

        fn parse(string: &String) -> Result<lowlevel::Command, ParseError<Self::Rule>> {
            command_parser::parse(string)
        }

        fn raise(lowlevel: &Self::Lowlevel) -> Result<Self, DeserializeErrorCause> {
            translate::raise_command(lowlevel)
        }

        fn lower(&self) -> Self::Lowlevel {
            translate::lower_command(self)
        }
    }

    /// Define the functions used for response serde.
    impl SerDeMethods for highlevel::Response {
        type Lowlevel = lowlevel::Response;
        type Rule = response_grammar::Rule;

        fn parse(string: &String) -> Result<lowlevel::Response, ParseError<Self::Rule>> {
            response_parser::parse(string)
        }

        fn raise(lowlevel: &Self::Lowlevel) -> Result<Self, DeserializeErrorCause> {
            translate::raise_response(lowlevel)
        }

        fn lower(&self) -> Self::Lowlevel {
            translate::lower_response(self)
        }
    }

    /// Trait implemented for the generated high level AT command and response types
    /// to convert back and forth between individule objects of those types and byte
    /// streams.  This is used by SerDe to parse streams of commands and responses.
    pub trait SerDeOne: Sized {
        fn deserialize_one<R: io::Read>(source: &mut R) -> Result<Self, DeserializeError>;
        fn serialize_one<W: io::Write>(&self, sink: &mut W) -> Result<(), SerializeErrorCause>;
    }

    /// Blanket implementation of SerDeOne which uses SerDeMethods implemenations for commands
    /// and responses to glue the various serde functions together.
    impl<T: SerDeMethods> SerDeOne for T {
        fn deserialize_one<R: io::Read>(source: &mut R) -> Result<Self, DeserializeError> {
            //TODO(https://fxbug.dev/42144806) Remove the intermediate String and parse directly from the Read.
            let mut bytes: Vec<u8> = Vec::new();
            let mut string = String::new();

            let read_result = source.read_to_end(&mut bytes).map_err(|err| DeserializeError {
                cause: DeserializeErrorCause::from(err),
                bytes: bytes.clone(),
            });
            let string_result = read_result.and_then(|_byte_count| {
                String::from_utf8(bytes).map_err(|err| {
                    let bytes = Vec::from(err.as_bytes());
                    DeserializeError { cause: DeserializeErrorCause::from(err), bytes }
                })
            });
            let lowlevel_result = string_result.and_then(|s| {
                // Hold on to string for error reporting in other steps.
                string = s;
                Self::parse(&string).map_err(|err| DeserializeError {
                    cause: DeserializeErrorCause::from(err),
                    bytes: string.clone().into_bytes(),
                })
            });
            let highlevel_result = lowlevel_result.and_then(|lowlevel| {
                Self::raise(&lowlevel).map_err(|err| DeserializeError {
                    cause: DeserializeErrorCause::from(err),
                    // This unwrap can't fail since we're inside the and_then, so
                    // lowlevel_result and string_result both must be Ok(_).
                    bytes: string.into_bytes(),
                })
            });

            highlevel_result
        }

        fn serialize_one<W: io::Write>(&self, sink: &mut W) -> Result<(), SerializeErrorCause> {
            let lowlevel = Self::lower(self);
            Self::write_to(sink, &lowlevel)?;

            Ok(())
        }
    }
} // mod internal

/// An error and remaining item to serialize if a serialization failure occurs while
/// serializing multiple items.
#[derive(Debug)]
pub struct SerializeError<T> {
    pub remaining: Vec<T>,
    pub failed: T,
    pub cause: SerializeErrorCause,
}

/// An abstract representaiton of bytes remaining after a deserialization failure.
#[derive(Debug, PartialEq)]
pub struct DeserializeBytes {
    // Public for testing; this allows the use of assert_eq on DeserializeBytes.
    pub(crate) bytes: Vec<u8>,
}

impl DeserializeBytes {
    /// Adds bytes to self from an io::Read source.  This should guarantee that *any* bytes read
    /// from the source are added, even in the case of an IO error.
    fn add_bytes<R: io::Read>(&mut self, source: &mut R) -> Result<(), DeserializeError> {
        let mut more_bytes = Vec::new();
        let byte_count_result = source.read_to_end(&mut more_bytes);
        self.bytes.append(&mut more_bytes);

        match byte_count_result {
            Ok(_byte_count) => Ok(()),
            Err(err) => Err(DeserializeError { cause: err.into(), bytes: more_bytes }),
        }
    }

    fn from(bytes: &[u8]) -> Self {
        DeserializeBytes { bytes: bytes.into() }
    }

    /// Creates an empty `SerializeBytes`.  This is the only method clients should use--
    /// the only other way to get an instance is to get one returned from `deserialize`.
    pub fn new() -> Self {
        DeserializeBytes { bytes: Vec::new() }
    }
}

impl Default for DeserializeBytes {
    fn default() -> Self {
        Self::new()
    }
}

/// Result from attempt to deserialize multiple items, including the successfully serialized
/// items, an error if one occurred, and the remaining bytes that were not serialized.
#[derive(Debug, PartialEq)]
pub struct DeserializeResult<T> {
    pub values: Vec<T>,
    pub error: Option<DeserializeError>,
    pub remaining_bytes: DeserializeBytes,
}

/// A trait for serializing or deserializing multiple items at once and defragmenting partially
/// serialized items when new bytes become available.
pub trait SerDe: Sized {
    fn serialize<W: io::Write>(sink: &mut W, values: &[Self]) -> Result<(), SerializeError<Self>>;
    fn deserialize<R: io::Read>(
        source: &mut R,
        existing_bytes: DeserializeBytes,
    ) -> DeserializeResult<Self>;
}

/// Blanket implementation for types that implement SerDe and which break bytestreams on newlines
/// when deserializing.  This is just used for AT commands and responses.
// Clone is needed to return copies of items which failed to serialize.
impl<T: internal::SerDeOne + Clone> SerDe for T {
    fn serialize<W: io::Write>(sink: &mut W, values: &[Self]) -> Result<(), SerializeError<Self>> {
        let mut iter = values.iter();
        for value in &mut iter {
            match value.serialize_one(sink) {
                Ok(()) => (),
                Err(cause) => {
                    return Err(SerializeError {
                        remaining: iter.cloned().collect(),
                        failed: value.clone(),
                        cause,
                    })
                }
            }
        }
        Ok(())
    }

    fn deserialize<R: io::Read>(
        source: &mut R,
        mut existing_bytes: DeserializeBytes,
    ) -> DeserializeResult<T> {
        let mut values = Vec::new();
        if let Err(error) = existing_bytes.add_bytes(source) {
            return DeserializeResult {
                values,
                error: Some(error),
                remaining_bytes: existing_bytes,
            };
        }
        let mut beginning = 0;
        let mut end = 0;
        let bytes = &existing_bytes.bytes;
        let len = bytes.len();
        let should_split = |b| b == &b'\n' || b == &b'\r';
        let is_not_whitespace = |b| !should_split(b);
        loop {
            end += 1;
            if end >= len {
                break;
            };
            if !(should_split(&bytes[end])) {
                continue;
            }
            let mut slice = &bytes[beginning..end];
            // If it's empty or all whitespace due to mulitple consecutive \n or \rs.
            if slice.is_empty() || slice.iter().position(is_not_whitespace).is_none() {
                beginning = end;
                continue;
            }

            let value_result = T::deserialize_one(&mut slice);
            match value_result {
                Ok(value) => values.push(value),
                Err(error) => {
                    // If the received bytes are unparseable, don't put them in the remaining bytes.
                    // Clients can retrieve these from the error struct itself if need be.
                    return DeserializeResult {
                        values,
                        error: Some(error),
                        remaining_bytes: DeserializeBytes::from(&bytes[end..]),
                    };
                }
            };

            beginning = end;
        }
        DeserializeResult {
            values,
            error: None,
            remaining_bytes: DeserializeBytes::from(&bytes[beginning..]),
        }
    }
}

/// Wrap a Success case in a Response.
pub fn success(success: highlevel::Success) -> highlevel::Response {
    highlevel::Response::Success(success)
}