bt_obex/
transport.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use fuchsia_bluetooth::types::Channel;
use futures::stream::{FusedStream, TryStreamExt};
use log::{info, trace};
use packet_encoding::Encodable;
use std::cell::{RefCell, RefMut};

use crate::error::{Error, PacketError};
use crate::operation::{OpCode, ResponsePacket, MAX_PACKET_SIZE, MIN_MAX_PACKET_SIZE};

/// Returns the maximum packet size that will be used for the OBEX session.
/// `transport_max` is the maximum size that the underlying transport (e.g. L2CAP, RFCOMM) supports.
pub fn max_packet_size_from_transport(transport_max: usize) -> u16 {
    let bounded = transport_max.clamp(MIN_MAX_PACKET_SIZE, MAX_PACKET_SIZE);
    bounded.try_into().expect("bounded by u16 max")
}

/// The underlying communication protocol used for the OBEX transport.
#[derive(Copy, Clone, Debug, PartialEq)]
pub enum TransportType {
    L2cap,
    Rfcomm,
}

impl TransportType {
    pub fn srm_supported(&self) -> bool {
        match &self {
            // Per GOEP Section 7.1, SRM can be used with the L2CAP transport.
            Self::L2cap => true,
            // Neither the OBEX nor GOEP specifications explicitly state that SRM cannot be used
            // with the RFCOMM transport. However, all qualification tests and spec language
            // suggest that SRM is to be used only on the L2CAP transport.
            Self::Rfcomm => false,
        }
    }
}

/// Holds the underlying RFCOMM or L2CAP transport for an OBEX operation.
#[derive(Debug)]
pub struct ObexTransport<'a> {
    /// A mutable reference to the permit given to the operation.
    /// The L2CAP or RFCOMM connection to the remote peer.
    channel: RefMut<'a, Channel>,
    /// The type of transport used in the OBEX connection.
    type_: TransportType,
}

impl<'a> ObexTransport<'a> {
    pub fn new(channel: RefMut<'a, Channel>, type_: TransportType) -> Self {
        Self { channel, type_ }
    }

    /// Returns true if this transport supports the Single Response Mode (SRM) feature.
    pub fn srm_supported(&self) -> bool {
        self.type_.srm_supported()
    }

    /// Encodes and sends the OBEX `data` to the remote peer.
    /// Returns Error if the send operation could not be completed.
    pub fn send(&self, data: impl Encodable<Error = PacketError>) -> Result<(), Error> {
        let mut buf = vec![0; data.encoded_len()];
        data.encode(&mut buf[..])?;
        let _ = self.channel.write(&buf)?;
        Ok(())
    }

    /// Attempts to receive and parse an OBEX response packet from the `channel`.
    /// Returns the parsed packet on success, Error otherwise.
    // TODO(https://fxbug.dev/42076096): Make this more generic to decode either request or response packets
    // when OBEX Server functionality is needed.
    pub async fn receive_response(&mut self, code: OpCode) -> Result<ResponsePacket, Error> {
        if self.channel.is_terminated() {
            return Err(Error::PeerDisconnected);
        }

        match self.channel.try_next().await? {
            Some(raw_data) => {
                let decoded = ResponsePacket::decode(&raw_data[..], code)?;
                trace!("Received response: {decoded:?}");
                Ok(decoded)
            }
            None => {
                info!("OBEX transport closed");
                Err(Error::PeerDisconnected)
            }
        }
    }
}

/// Manages the transport connection (L2CAP/RFCOMM) to a remote peer.
/// Provides a reservation system for acquiring the transport for an in-progress OBEX operation.
#[derive(Debug)]
pub struct ObexTransportManager {
    /// Holds the underlying transport. The type of transport is indicated by the `type_` field.
    /// There can only be one operation outstanding at any time. A mutable reference to the
    /// `Channel` will be held by the `ObexTransport` during an ongoing operation and is
    /// assigned using `ObexTransportManager::try_new_operation`. On operation termination (e.g.
    /// `ObexTransport` is dropped), the `Channel` will be available for subsequent mutable access.
    channel: RefCell<Channel>,
    /// The transport type (L2CAP or RFCOMM) for the `channel`.
    type_: TransportType,
}

impl ObexTransportManager {
    pub fn new(channel: Channel, type_: TransportType) -> Self {
        Self { channel: RefCell::new(channel), type_ }
    }

    fn new_permit(&self) -> Result<RefMut<'_, Channel>, Error> {
        self.channel.try_borrow_mut().map_err(|_| Error::OperationInProgress)
    }

    pub fn is_transport_closed(&self) -> bool {
        self.channel.try_borrow().map_or(false, |chan| chan.is_closed())
    }

    pub fn try_new_operation(&self) -> Result<ObexTransport<'_>, Error> {
        // Only one operation can be outstanding at a time.
        let channel = self.new_permit()?;
        Ok(ObexTransport::new(channel, self.type_))
    }
}

#[cfg(test)]
pub(crate) mod test_utils {
    use super::*;

    use async_test_helpers::expect_stream_item;
    use fuchsia_async as fasync;
    use packet_encoding::Decodable;

    use crate::operation::RequestPacket;

    /// Set `srm_supported` to true to build a transport that supports the OBEX SRM feature.
    pub(crate) fn new_manager(srm_supported: bool) -> (ObexTransportManager, Channel) {
        let (local, remote) = Channel::create();
        let type_ = if srm_supported { TransportType::L2cap } else { TransportType::Rfcomm };
        let manager = ObexTransportManager::new(local, type_);
        (manager, remote)
    }

    #[derive(Clone)]
    pub struct TestPacket(pub u8);

    impl Encodable for TestPacket {
        type Error = PacketError;
        fn encoded_len(&self) -> usize {
            1
        }
        fn encode(&self, buf: &mut [u8]) -> Result<(), Self::Error> {
            buf[0] = self.0;
            Ok(())
        }
    }

    impl Decodable for TestPacket {
        type Error = PacketError;
        fn decode(buf: &[u8]) -> Result<Self, Self::Error> {
            Ok(TestPacket(buf[0]))
        }
    }

    #[track_caller]
    pub fn reply(channel: &mut Channel, response: ResponsePacket) {
        let mut response_buf = vec![0; response.encoded_len()];
        response.encode(&mut response_buf[..]).expect("can encode response");
        let _ = channel.write(&response_buf[..]).expect("write to channel success");
    }

    /// Sends the `packet` over the provided `channel`.
    #[track_caller]
    pub fn send_packet<T>(channel: &mut Channel, packet: T)
    where
        T: Encodable,
        <T as Encodable>::Error: std::fmt::Debug,
    {
        let mut buf = vec![0; packet.encoded_len()];
        packet.encode(&mut buf[..]).expect("can encode packet");
        let _ = channel.write(&buf[..]).expect("write to channel success");
    }

    #[track_caller]
    pub fn expect_request<F>(exec: &mut fasync::TestExecutor, channel: &mut Channel, expectation: F)
    where
        F: FnOnce(RequestPacket),
    {
        let request_raw = expect_stream_item(exec, channel).expect("request");
        let request = RequestPacket::decode(&request_raw[..]).expect("can decode request");
        expectation(request);
    }

    #[track_caller]
    pub fn expect_response<F>(
        exec: &mut fasync::TestExecutor,
        channel: &mut Channel,
        expectation: F,
        opcode: OpCode,
    ) where
        F: FnOnce(ResponsePacket),
    {
        let request_raw = expect_stream_item(exec, channel).expect("request");
        let request = ResponsePacket::decode(&request_raw[..], opcode).expect("can decode request");
        expectation(request);
    }

    /// Expects a request packet on the `channel` and validates the contents with the provided
    /// `expectation`. Sends a `response` back on the channel.
    #[track_caller]
    pub fn expect_request_and_reply<F>(
        exec: &mut fasync::TestExecutor,
        channel: &mut Channel,
        expectation: F,
        response: ResponsePacket,
    ) where
        F: FnOnce(RequestPacket),
    {
        expect_request(exec, channel, expectation);
        reply(channel, response)
    }

    pub fn expect_code(code: OpCode) -> impl FnOnce(RequestPacket) {
        let f = move |request: RequestPacket| {
            assert_eq!(*request.code(), code);
        };
        f
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use assert_matches::assert_matches;

    use async_utils::PollExt;
    use fuchsia_async as fasync;
    use std::pin::pin;

    use crate::header::HeaderSet;
    use crate::operation::{RequestPacket, ResponseCode};
    use crate::transport::test_utils::{
        expect_code, expect_request_and_reply, new_manager, TestPacket,
    };

    #[fuchsia::test]
    fn transport_manager_new_operation() {
        let _exec = fasync::TestExecutor::new();
        let (manager, _remote) = new_manager(/* srm_supported */ false);

        // Nothing should be in progress.
        assert_matches!(manager.new_permit(), Ok(_));

        // Should be able to start a new operation.
        let transport1 = manager.try_new_operation().expect("can start operation");
        // Trying to start another should be an Error.
        assert_matches!(manager.try_new_operation(), Err(Error::OperationInProgress));

        // Once the first finishes, another can be claimed.
        drop(transport1);
        let transport2 = manager.try_new_operation().expect("can start another operation");
        let request = RequestPacket::new_connect(100, HeaderSet::new());
        transport2.send(request).expect("can send request");
    }

    #[fuchsia::test]
    fn send_and_receive() {
        let mut exec = fasync::TestExecutor::new();
        let (manager, mut remote) = new_manager(/* srm_supported */ false);
        let mut transport = manager.try_new_operation().expect("can start operation");

        // Local makes a request
        let request = RequestPacket::new_connect(100, HeaderSet::new());
        transport.send(request).expect("can send request");
        // Remote end should receive it - send an example response back.
        let peer_response =
            ResponsePacket::new(ResponseCode::Ok, vec![0x10, 0x00, 0x00, 0xff], HeaderSet::new());
        expect_request_and_reply(
            &mut exec,
            &mut remote,
            expect_code(OpCode::Connect),
            peer_response,
        );
        // Expect it on the ObexTransport
        let receive_fut = transport.receive_response(OpCode::Connect);
        let mut receive_fut = pin!(receive_fut);
        let received_response = exec
            .run_until_stalled(&mut receive_fut)
            .expect("stream item from response")
            .expect("valid response");
        assert_eq!(*received_response.code(), ResponseCode::Ok);
    }

    #[fuchsia::test]
    async fn send_while_channel_closed_is_error() {
        let (manager, remote) = new_manager(/* srm_supported */ false);
        let transport = manager.try_new_operation().expect("can start operation");
        drop(remote);

        let data = TestPacket(10);
        let send_result = transport.send(data.clone());
        assert_matches!(send_result, Err(Error::IOError(_)));
        // Trying again is still an Error.
        let send_result = transport.send(data.clone());
        assert_matches!(send_result, Err(Error::IOError(_)));
    }

    #[fuchsia::test]
    async fn is_transport_closed() {
        let (manager, remote) = new_manager(/* srm_supported */ false);
        assert!(!manager.is_transport_closed());

        {
            let _transport = manager.try_new_operation().expect("can start operation");
            assert!(!manager.is_transport_closed());

            // Even when the remote end is dropped, transport is deemed
            // as active since there is currently an ongoing operation.
            drop(remote);
            assert!(!manager.is_transport_closed());
        }

        // When transport goes out of scope, finally transport is
        // considered fully closed.
        assert!(manager.is_transport_closed());
    }

    #[fuchsia::test]
    async fn receive_while_channel_closed_is_error() {
        let (manager, remote) = new_manager(/* srm_supported */ false);
        let mut transport = manager.try_new_operation().expect("can start operation");
        drop(remote);

        let receive_result = transport.receive_response(OpCode::Connect).await;
        assert_matches!(receive_result, Err(Error::PeerDisconnected));
        // Trying again is handled gracefully - still an Error.
        let receive_result = transport.receive_response(OpCode::Connect).await;
        assert_matches!(receive_result, Err(Error::PeerDisconnected));
    }
}