wlan_mlme/client/
channel_switch.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use crate::client::scanner::Scanner;
use crate::client::{Context, TimedEvent};
use crate::device::DeviceOps;
use anyhow::bail;
use futures::Future;
use log::error;
use wlan_common::mac::BeaconHdr;
use wlan_common::timer::EventId;
use wlan_common::{ie, TimeUnit};
use zerocopy::SplitByteSlice;
use {fidl_fuchsia_wlan_common as fidl_common, fuchsia_async as fasync};

pub trait ChannelActions {
    fn switch_channel(
        &mut self,
        new_main_channel: fidl_common::WlanChannel,
    ) -> impl Future<Output = Result<(), zx::Status>>;
    fn schedule_channel_switch_timeout(&mut self, time: zx::MonotonicInstant) -> EventId;
    fn disable_scanning(&mut self) -> impl Future<Output = Result<(), zx::Status>>;
    fn enable_scanning(&mut self);
    fn disable_tx(&mut self) -> Result<(), zx::Status>;
    fn enable_tx(&mut self);
}

pub struct ChannelActionHandle<'a, D> {
    ctx: &'a mut Context<D>,
    scanner: &'a mut Scanner,
}

impl<'a, D: DeviceOps> ChannelActions for ChannelActionHandle<'a, D> {
    async fn switch_channel(
        &mut self,
        new_main_channel: fidl_common::WlanChannel,
    ) -> Result<(), zx::Status> {
        self.ctx.device.set_channel(new_main_channel).await
    }
    fn schedule_channel_switch_timeout(&mut self, time: zx::MonotonicInstant) -> EventId {
        self.ctx.timer.schedule_at(time, TimedEvent::ChannelSwitch)
    }
    async fn disable_scanning(&mut self) -> Result<(), zx::Status> {
        let mut bound_scanner = self.scanner.bind(self.ctx);
        bound_scanner.disable_scanning().await
    }
    fn enable_scanning(&mut self) {
        let mut bound_scanner = self.scanner.bind(self.ctx);
        bound_scanner.enable_scanning()
    }
    fn disable_tx(&mut self) -> Result<(), zx::Status> {
        // TODO(https://fxbug.dev/42060974): Support transmission pause.
        Err(zx::Status::NOT_SUPPORTED)
    }
    fn enable_tx(&mut self) {}
}

#[derive(Default)]
pub struct ChannelState {
    // The current main channel configured in the driver. If None, the driver may
    // be set to any channel.
    main_channel: Option<fidl_common::WlanChannel>,
    pending_channel_switch: Option<(ChannelSwitch, EventId)>,
    beacon_interval: Option<TimeUnit>,
    last_beacon_timestamp: Option<fasync::MonotonicInstant>,
}

pub struct BoundChannelState<'a, T> {
    channel_state: &'a mut ChannelState,
    actions: T,
}

impl ChannelState {
    #[cfg(test)]
    pub fn new_with_main_channel(main_channel: fidl_common::WlanChannel) -> Self {
        Self { main_channel: Some(main_channel), ..Default::default() }
    }

    pub fn get_main_channel(&self) -> Option<fidl_common::WlanChannel> {
        self.main_channel
    }

    pub fn bind<'a, D>(
        &'a mut self,
        ctx: &'a mut Context<D>,
        scanner: &'a mut Scanner,
    ) -> BoundChannelState<'a, ChannelActionHandle<'a, D>> {
        BoundChannelState { channel_state: self, actions: ChannelActionHandle { ctx, scanner } }
    }

    #[cfg(test)]
    pub fn test_bind<'a, T: ChannelActions>(&'a mut self, actions: T) -> BoundChannelState<'a, T> {
        BoundChannelState { channel_state: self, actions }
    }

    fn channel_switch_time_from_count(&self, channel_switch_count: u8) -> fasync::MonotonicInstant {
        let beacon_interval =
            self.beacon_interval.clone().unwrap_or(TimeUnit::DEFAULT_BEACON_INTERVAL);
        let beacon_duration = fasync::MonotonicDuration::from(beacon_interval);
        let duration = beacon_duration * channel_switch_count;
        let now = fasync::MonotonicInstant::now();
        let mut last_beacon =
            self.last_beacon_timestamp.unwrap_or_else(|| fasync::MonotonicInstant::now());
        // Calculate the theoretical latest beacon timestamp before now.
        // Note this may be larger than last_beacon_timestamp if a beacon frame was missed.
        while now - last_beacon > beacon_duration {
            last_beacon += beacon_duration;
        }
        last_beacon + duration
    }
}

impl<'a, T: ChannelActions> BoundChannelState<'a, T> {
    /// Immediately set a new main channel in the device.
    pub async fn set_main_channel(
        &mut self,
        new_main_channel: fidl_common::WlanChannel,
    ) -> Result<(), zx::Status> {
        self.channel_state.pending_channel_switch.take();
        let result = self.actions.switch_channel(new_main_channel).await;
        match result {
            Ok(()) => {
                log::info!("Switched to new main channel {:?}", new_main_channel);
                self.channel_state.main_channel.replace(new_main_channel);
            }
            Err(e) => {
                log::error!("Failed to switch to new main channel {:?}: {}", new_main_channel, e);
            }
        }
        self.actions.enable_scanning();
        self.actions.enable_tx();
        result
    }

    /// Clear the main channel, disable any channel switches, and return to a
    /// normal idle state. The device will remain on whichever channel was
    /// most recently configured.
    pub fn clear_main_channel(&mut self) {
        self.channel_state.main_channel.take();
        self.channel_state.pending_channel_switch.take();
        self.channel_state.last_beacon_timestamp.take();
        self.channel_state.beacon_interval.take();
        self.actions.enable_scanning();
        self.actions.enable_tx();
    }

    pub async fn handle_beacon(
        &mut self,
        header: &BeaconHdr,
        elements: &[u8],
    ) -> Result<(), anyhow::Error> {
        self.channel_state.last_beacon_timestamp.replace(fasync::MonotonicInstant::now());
        self.channel_state.beacon_interval.replace(header.beacon_interval);
        self.handle_channel_switch_elements_if_present(elements, false).await
    }

    pub async fn handle_announcement_frame(
        &mut self,
        elements: &[u8],
    ) -> Result<(), anyhow::Error> {
        self.handle_channel_switch_elements_if_present(elements, true).await
    }

    async fn handle_channel_switch_elements_if_present(
        &mut self,
        elements: &[u8],
        action_frame: bool,
    ) -> Result<(), anyhow::Error> {
        let mut csa_builder = ChannelSwitchBuilder::<&[u8]>::default();
        for (ie_type, range) in ie::IeSummaryIter::new(elements) {
            match ie_type {
                ie::IeType::CHANNEL_SWITCH_ANNOUNCEMENT => {
                    let csa = ie::parse_channel_switch_announcement(&elements[range])?;
                    csa_builder.add_channel_switch_announcement((*csa).clone());
                }
                ie::IeType::SECONDARY_CHANNEL_OFFSET => {
                    let sco = ie::parse_sec_chan_offset(&elements[range])?;
                    csa_builder.add_secondary_channel_offset((*sco).clone());
                }
                ie::IeType::EXTENDED_CHANNEL_SWITCH_ANNOUNCEMENT => {
                    let ecsa = ie::parse_extended_channel_switch_announcement(&elements[range])?;
                    csa_builder.add_extended_channel_switch_announcement((*ecsa).clone());
                }
                ie::IeType::CHANNEL_SWITCH_WRAPPER => {
                    let csw = ie::parse_channel_switch_wrapper(&elements[range])?;
                    csa_builder.add_channel_switch_wrapper(csw);
                }
                ie::IeType::WIDE_BANDWIDTH_CHANNEL_SWITCH if action_frame => {
                    let wbcs = ie::parse_wide_bandwidth_channel_switch(&elements[range])?;
                    csa_builder.add_wide_bandwidth_channel_switch((*wbcs).clone());
                }
                ie::IeType::TRANSMIT_POWER_ENVELOPE if action_frame => {
                    let tpe = ie::parse_transmit_power_envelope(&elements[range])?;
                    csa_builder.add_transmit_power_envelope(tpe);
                }
                _ => (),
            }
        }
        match csa_builder.build() {
            ChannelSwitchResult::ChannelSwitch(cs) => self.handle_channel_switch(cs).await,
            ChannelSwitchResult::NoChannelSwitch => Ok(()),
            ChannelSwitchResult::Error(err) => Err(err.into()),
        }
    }

    async fn handle_channel_switch(
        &mut self,
        channel_switch: ChannelSwitch,
    ) -> Result<(), anyhow::Error> {
        if !channel_switch.compatible() {
            bail!("Incompatible channel switch announcement received.");
        }

        self.actions.disable_scanning().await?;
        if channel_switch.channel_switch_count == 0 {
            self.set_main_channel(channel_switch.new_channel).await.map_err(|e| e.into())
        } else {
            if channel_switch.pause_transmission {
                // TODO(b/254334420): Determine if this should be fatal to the switch.
                self.actions.disable_tx()?;
            }
            let time = self
                .channel_state
                .channel_switch_time_from_count(channel_switch.channel_switch_count);
            let event_id = self.actions.schedule_channel_switch_timeout(time.into());
            self.channel_state.pending_channel_switch.replace((channel_switch, event_id));
            Ok(())
        }
    }

    pub async fn handle_channel_switch_timeout(
        &mut self,
        event_id: EventId,
    ) -> Result<(), anyhow::Error> {
        if let Some((channel_switch, switch_id)) = self.channel_state.pending_channel_switch.take()
        {
            if event_id == switch_id {
                // This is the most recently scheduled channel switch. Execute it.
                self.set_main_channel(channel_switch.new_channel).await?;
            } else {
                self.channel_state.pending_channel_switch.replace((channel_switch, switch_id));
            }
        }
        Ok(())
    }
}

#[derive(Debug, PartialEq)]
pub struct ChannelSwitch {
    pub channel_switch_count: u8,
    pub new_channel: fidl_common::WlanChannel,
    pub pause_transmission: bool,
    pub new_operating_class: Option<u8>,
    // TODO(https://fxbug.dev/42180124): Support transmit power envelope.
    pub new_transmit_power_envelope_specified: bool,
}

impl ChannelSwitch {
    // TODO(https://fxbug.dev/42180124): Support channel switch related feature queries.
    /// Determines whether this ChannelSwitch can be performed by the driver.
    fn compatible(&self) -> bool {
        self.new_operating_class.is_none()
            && !self.new_transmit_power_envelope_specified
            && !self.pause_transmission
    }
}

#[derive(Default)]
pub struct ChannelSwitchBuilder<B> {
    channel_switch: Option<ie::ChannelSwitchAnnouncement>,
    secondary_channel_offset: Option<ie::SecChanOffset>,
    extended_channel_switch: Option<ie::ExtendedChannelSwitchAnnouncement>,
    new_country: Option<ie::CountryView<B>>,
    wide_bandwidth_channel_switch: Option<ie::WideBandwidthChannelSwitch>,
    transmit_power_envelope: Option<ie::TransmitPowerEnvelopeView<B>>,
}

#[derive(Debug)]
pub enum ChannelSwitchResult {
    ChannelSwitch(ChannelSwitch),
    NoChannelSwitch,
    Error(ChannelSwitchError),
}

#[derive(Debug, thiserror::Error)]
pub enum ChannelSwitchError {
    #[error("Frame contains multiple channel switch elements with conflicting information.")]
    ConflictingElements,
    #[error("Invalid channel switch mode {}", _0)]
    InvalidChannelSwitchMode(u8),
}

impl<B: SplitByteSlice> ChannelSwitchBuilder<B> {
    // Convert a set of received channel-switch-related IEs into the parameters
    // for a channel switch. Returns an error if the IEs received do not describe
    // a deterministic, valid channel switch.
    pub fn build(self) -> ChannelSwitchResult {
        // Extract shared information from the channel switch or extended channel switch elements
        // present. If both are present we check that they agree on the destination channel and then
        // use the CSA instead of the ECSA. This decision is to avoid specifying a
        // new_operating_class wherever possible, since operating class switches are unsupported.
        let (mode, new_channel_number, channel_switch_count, new_operating_class) =
            if let Some(csa) = self.channel_switch {
                if let Some(ecsa) = self.extended_channel_switch {
                    // If both CSA and ECSA elements are present, make sure they match.
                    if csa.new_channel_number != ecsa.new_channel_number {
                        return ChannelSwitchResult::Error(ChannelSwitchError::ConflictingElements);
                    }
                }
                // IEEE Std 802.11-2016 11.9.8 describes the operation of a CSA.
                (csa.mode, csa.new_channel_number, csa.channel_switch_count, None)
            } else if let Some(ecsa) = self.extended_channel_switch {
                // IEEE Std 802.11-2016 11.10 describes the operation of an extended CSA.
                (
                    ecsa.mode,
                    ecsa.new_channel_number,
                    ecsa.channel_switch_count,
                    Some(ecsa.new_operating_class),
                )
            } else {
                return ChannelSwitchResult::NoChannelSwitch;
            };

        let pause_transmission = match mode {
            1 => true,
            0 => false,
            other => {
                return ChannelSwitchResult::Error(ChannelSwitchError::InvalidChannelSwitchMode(
                    other,
                ))
            }
        };

        // IEEE Std 802.11-2016 9.4.2.159 Table 9-252 specifies that wide bandwidth channel switch
        // elements are treated identically to those in a VHT element.
        let vht_cbw_and_segs = self
            .wide_bandwidth_channel_switch
            .map(|wbcs| (wbcs.new_width, wbcs.new_center_freq_seg0, wbcs.new_center_freq_seg1));
        let sec_chan_offset =
            self.secondary_channel_offset.unwrap_or(ie::SecChanOffset::SECONDARY_NONE);
        let (cbw, secondary80) =
            wlan_common::channel::derive_wide_channel_bandwidth(vht_cbw_and_segs, sec_chan_offset)
                .to_fidl();

        ChannelSwitchResult::ChannelSwitch(ChannelSwitch {
            channel_switch_count: channel_switch_count,
            new_channel: fidl_common::WlanChannel { primary: new_channel_number, cbw, secondary80 },
            pause_transmission,
            new_operating_class,
            new_transmit_power_envelope_specified: self.transmit_power_envelope.is_some(),
        })
    }

    pub fn add_channel_switch_announcement(&mut self, csa: ie::ChannelSwitchAnnouncement) {
        self.channel_switch.replace(csa);
    }

    pub fn add_secondary_channel_offset(&mut self, sco: ie::SecChanOffset) {
        self.secondary_channel_offset.replace(sco);
    }

    pub fn add_extended_channel_switch_announcement(
        &mut self,
        ecsa: ie::ExtendedChannelSwitchAnnouncement,
    ) {
        self.extended_channel_switch.replace(ecsa);
    }

    pub fn add_wide_bandwidth_channel_switch(&mut self, wbcs: ie::WideBandwidthChannelSwitch) {
        self.wide_bandwidth_channel_switch.replace(wbcs);
    }

    pub fn add_transmit_power_envelope(&mut self, tpe: ie::TransmitPowerEnvelopeView<B>) {
        self.transmit_power_envelope.replace(tpe);
    }

    pub fn add_channel_switch_wrapper(&mut self, csw: ie::ChannelSwitchWrapperView<B>) {
        csw.new_country.map(|new_country| self.new_country.replace(new_country));
        csw.new_transmit_power_envelope.map(|tpe| self.add_transmit_power_envelope(tpe));
        csw.wide_bandwidth_channel_switch.map(|wbcs| self.add_wide_bandwidth_channel_switch(*wbcs));
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use futures::task::Poll;
    use std::pin::pin;
    use test_case::test_case;
    use wlan_common::assert_variant;
    use wlan_common::mac::CapabilityInfo;
    use zerocopy::IntoBytes;

    const NEW_CHANNEL: u8 = 10;
    const NEW_OPERATING_CLASS: u8 = 20;
    const COUNT: u8 = 30;

    const CHANNEL_SWITCH_ANNOUNCEMENT_HEADER: &[u8] = &[37, 3];

    fn csa(
        mode: u8,
        new_channel_number: u8,
        channel_switch_count: u8,
    ) -> ie::ChannelSwitchAnnouncement {
        ie::ChannelSwitchAnnouncement { mode, new_channel_number, channel_switch_count }
    }

    fn csa_bytes(mode: u8, new_channel_number: u8, channel_switch_count: u8) -> Vec<u8> {
        let mut elements = vec![];
        elements.extend(CHANNEL_SWITCH_ANNOUNCEMENT_HEADER);
        elements.extend(csa(mode, new_channel_number, channel_switch_count).as_bytes());
        elements
    }

    fn ecsa(
        mode: u8,
        new_operating_class: u8,
        new_channel_number: u8,
        channel_switch_count: u8,
    ) -> ie::ExtendedChannelSwitchAnnouncement {
        ie::ExtendedChannelSwitchAnnouncement {
            mode,
            new_operating_class,
            new_channel_number,
            channel_switch_count,
        }
    }

    fn wbcs(seg0: u8, seg1: u8) -> ie::WideBandwidthChannelSwitch {
        ie::WideBandwidthChannelSwitch {
            new_width: ie::VhtChannelBandwidth::CBW_80_160_80P80,
            new_center_freq_seg0: seg0,
            new_center_freq_seg1: seg1,
        }
    }

    #[test_case(Some(NEW_OPERATING_CLASS), false, false ; "when operating class present")]
    #[test_case(None, true, false ; "when new TPE present")]
    #[test_case(Some(NEW_OPERATING_CLASS), true, false ; "when operating class and new TPE present")]
    #[test_case(None, false, true ; "when operating class and new TPE absent")]
    #[fuchsia::test]
    fn channel_switch_compatible(
        new_operating_class: Option<u8>,
        new_transmit_power_envelope_specified: bool,
        expected_compatible: bool,
    ) {
        let channel_switch = ChannelSwitch {
            channel_switch_count: COUNT,
            new_channel: fidl_common::WlanChannel {
                primary: NEW_CHANNEL,
                cbw: fidl_common::ChannelBandwidth::Cbw20,
                secondary80: 0,
            },
            pause_transmission: false,
            new_operating_class,
            new_transmit_power_envelope_specified,
        };
        assert_eq!(channel_switch.compatible(), expected_compatible);
    }

    #[test]
    fn empty_builder_returns_no_csa() {
        let builder = ChannelSwitchBuilder::<&[u8]>::default();
        assert_variant!(builder.build(), ChannelSwitchResult::NoChannelSwitch);
    }

    #[test_case(0, false ; "when transmission is not paused")]
    #[test_case(1, true ; "when transmission is paused")]
    #[fuchsia::test]
    fn basic_csa_20mhz(mode: u8, pause_transmission: bool) {
        let mut builder = ChannelSwitchBuilder::<&[u8]>::default();
        builder.add_channel_switch_announcement(csa(mode, NEW_CHANNEL, COUNT));
        let channel_switch =
            assert_variant!(builder.build(), ChannelSwitchResult::ChannelSwitch(cs) => cs);
        let expected_channel_switch = ChannelSwitch {
            channel_switch_count: COUNT,
            new_channel: fidl_common::WlanChannel {
                primary: NEW_CHANNEL,
                cbw: fidl_common::ChannelBandwidth::Cbw20,
                secondary80: 0,
            },
            pause_transmission,
            new_operating_class: None,
            new_transmit_power_envelope_specified: false,
        };
        assert_eq!(channel_switch, expected_channel_switch);
    }

    #[test_case(0, false ; "when transmission is not paused")]
    #[test_case(1, true ; "when transmission is paused")]
    #[fuchsia::test]
    fn basic_ecsa_20mhz(mode: u8, pause_transmission: bool) {
        let mut builder = ChannelSwitchBuilder::<&[u8]>::default();
        builder.add_extended_channel_switch_announcement(ecsa(
            mode,
            NEW_OPERATING_CLASS,
            NEW_CHANNEL,
            COUNT,
        ));
        let channel_switch =
            assert_variant!(builder.build(), ChannelSwitchResult::ChannelSwitch(cs) => cs);
        let expected_channel_switch = ChannelSwitch {
            channel_switch_count: COUNT,
            new_channel: fidl_common::WlanChannel {
                primary: NEW_CHANNEL,
                cbw: fidl_common::ChannelBandwidth::Cbw20,
                secondary80: 0,
            },
            pause_transmission,
            new_operating_class: Some(NEW_OPERATING_CLASS),
            new_transmit_power_envelope_specified: false,
        };
        assert_eq!(channel_switch, expected_channel_switch);
    }

    #[test]
    fn basic_csa_40mhz() {
        let mut builder = ChannelSwitchBuilder::<&[u8]>::default();
        builder.add_channel_switch_announcement(csa(0, NEW_CHANNEL, COUNT));
        builder.add_secondary_channel_offset(ie::SecChanOffset::SECONDARY_ABOVE);
        let channel_switch =
            assert_variant!(builder.build(), ChannelSwitchResult::ChannelSwitch(cs) => cs);
        let expected_channel_switch = ChannelSwitch {
            channel_switch_count: COUNT,
            new_channel: fidl_common::WlanChannel {
                primary: NEW_CHANNEL,
                cbw: fidl_common::ChannelBandwidth::Cbw40,
                secondary80: 0,
            },
            pause_transmission: false,
            new_operating_class: None,
            new_transmit_power_envelope_specified: false,
        };
        assert_eq!(channel_switch, expected_channel_switch);
    }

    #[test]
    fn basic_csa_80mhz() {
        let mut builder = ChannelSwitchBuilder::<&[u8]>::default();
        builder.add_channel_switch_announcement(csa(0, NEW_CHANNEL, COUNT));
        builder.add_secondary_channel_offset(ie::SecChanOffset::SECONDARY_ABOVE);
        builder.add_wide_bandwidth_channel_switch(wbcs(NEW_CHANNEL + 8, 0));
        let channel_switch =
            assert_variant!(builder.build(), ChannelSwitchResult::ChannelSwitch(cs) => cs);
        let expected_channel_switch = ChannelSwitch {
            channel_switch_count: COUNT,
            new_channel: fidl_common::WlanChannel {
                primary: NEW_CHANNEL,
                cbw: fidl_common::ChannelBandwidth::Cbw80,
                secondary80: 0,
            },
            pause_transmission: false,
            new_operating_class: None,
            new_transmit_power_envelope_specified: false,
        };
        assert_eq!(channel_switch, expected_channel_switch);
    }

    #[test]
    fn basic_csa_160mhz() {
        let mut builder = ChannelSwitchBuilder::<&[u8]>::default();
        builder.add_channel_switch_announcement(csa(0, NEW_CHANNEL, COUNT));
        builder.add_secondary_channel_offset(ie::SecChanOffset::SECONDARY_ABOVE);
        builder.add_wide_bandwidth_channel_switch(wbcs(NEW_CHANNEL + 8, NEW_CHANNEL + 16));
        let channel_switch =
            assert_variant!(builder.build(), ChannelSwitchResult::ChannelSwitch(cs) => cs);
        let expected_channel_switch = ChannelSwitch {
            channel_switch_count: COUNT,
            new_channel: fidl_common::WlanChannel {
                primary: NEW_CHANNEL,
                cbw: fidl_common::ChannelBandwidth::Cbw160,
                secondary80: 0,
            },
            pause_transmission: false,
            new_operating_class: None,
            new_transmit_power_envelope_specified: false,
        };
        assert_eq!(channel_switch, expected_channel_switch);
    }

    #[test]
    fn basic_csa_80p80mhz() {
        let mut builder = ChannelSwitchBuilder::<&[u8]>::default();
        builder.add_channel_switch_announcement(csa(0, NEW_CHANNEL, COUNT));
        builder.add_secondary_channel_offset(ie::SecChanOffset::SECONDARY_ABOVE);
        builder.add_wide_bandwidth_channel_switch(wbcs(NEW_CHANNEL + 8, NEW_CHANNEL + 100));
        let channel_switch =
            assert_variant!(builder.build(), ChannelSwitchResult::ChannelSwitch(cs) => cs);
        let expected_channel_switch = ChannelSwitch {
            channel_switch_count: COUNT,
            new_channel: fidl_common::WlanChannel {
                primary: NEW_CHANNEL,
                cbw: fidl_common::ChannelBandwidth::Cbw80P80,
                secondary80: NEW_CHANNEL + 100,
            },
            pause_transmission: false,
            new_operating_class: None,
            new_transmit_power_envelope_specified: false,
        };
        assert_eq!(channel_switch, expected_channel_switch);
    }

    #[test_case(0, false ; "when transmission is not paused")]
    #[test_case(1, true ; "when transmission is paused")]
    #[fuchsia::test]
    fn mixed_csa_ecsa_20mhz(mode: u8, pause_transmission: bool) {
        let mut builder = ChannelSwitchBuilder::<&[u8]>::default();
        builder.add_channel_switch_announcement(csa(mode, NEW_CHANNEL, COUNT));
        builder.add_extended_channel_switch_announcement(ecsa(
            mode,
            NEW_OPERATING_CLASS,
            NEW_CHANNEL,
            COUNT,
        ));
        let channel_switch =
            assert_variant!(builder.build(), ChannelSwitchResult::ChannelSwitch(cs) => cs);
        let expected_channel_switch = ChannelSwitch {
            channel_switch_count: COUNT,
            new_channel: fidl_common::WlanChannel {
                primary: NEW_CHANNEL,
                cbw: fidl_common::ChannelBandwidth::Cbw20,
                secondary80: 0,
            },
            pause_transmission,
            new_operating_class: None,
            new_transmit_power_envelope_specified: false,
        };
        assert_eq!(channel_switch, expected_channel_switch);
    }

    #[test]
    fn mixed_csa_ecsa_mismatch_20mhz() {
        let mut builder = ChannelSwitchBuilder::<&[u8]>::default();
        builder.add_channel_switch_announcement(csa(0, NEW_CHANNEL, COUNT));
        let mut ecsa = ecsa(0, NEW_OPERATING_CLASS, NEW_CHANNEL, COUNT);
        ecsa.new_channel_number += 1;
        builder.add_extended_channel_switch_announcement(ecsa);
        let err = assert_variant!(builder.build(), ChannelSwitchResult::Error(err) => err);
        assert_variant!(err, ChannelSwitchError::ConflictingElements);
    }

    #[test]
    fn basic_csa_invalid_mode_20mhz() {
        let mut builder = ChannelSwitchBuilder::<&[u8]>::default();
        builder.add_channel_switch_announcement(csa(123, NEW_CHANNEL, COUNT));
        let err = assert_variant!(builder.build(), ChannelSwitchResult::Error(err) => err);
        assert_variant!(err, ChannelSwitchError::InvalidChannelSwitchMode(123));
    }

    #[derive(Default)]
    struct MockChannelActions {
        actions: Vec<ChannelAction>,
        event_id_ctr: EventId,
    }

    #[derive(Debug, Copy, Clone)]
    enum ChannelAction {
        SwitchChannel(fidl_common::WlanChannel),
        Timeout(EventId, fasync::MonotonicInstant),
        DisableScanning,
        EnableScanning,
        DisableTx,
        EnableTx,
    }

    impl ChannelActions for &mut MockChannelActions {
        async fn switch_channel(
            &mut self,
            new_main_channel: fidl_common::WlanChannel,
        ) -> Result<(), zx::Status> {
            self.actions.push(ChannelAction::SwitchChannel(new_main_channel));
            Ok(())
        }
        fn schedule_channel_switch_timeout(&mut self, time: zx::MonotonicInstant) -> EventId {
            self.event_id_ctr += 1;
            self.actions.push(ChannelAction::Timeout(self.event_id_ctr, time.into()));
            self.event_id_ctr
        }
        async fn disable_scanning(&mut self) -> Result<(), zx::Status> {
            self.actions.push(ChannelAction::DisableScanning);
            Ok(())
        }
        fn enable_scanning(&mut self) {
            self.actions.push(ChannelAction::EnableScanning);
        }
        fn disable_tx(&mut self) -> Result<(), zx::Status> {
            self.actions.push(ChannelAction::DisableTx);
            Ok(())
        }
        fn enable_tx(&mut self) {
            self.actions.push(ChannelAction::EnableTx);
        }
    }

    #[fuchsia::test(allow_stalls = false)]
    async fn channel_state_ignores_empty_beacon_frame() {
        let mut channel_state = ChannelState::default();
        let mut actions = MockChannelActions::default();
        let header = BeaconHdr::new(TimeUnit(10), CapabilityInfo(0));
        let elements = [];
        channel_state
            .test_bind(&mut actions)
            .handle_beacon(&header, &elements[..])
            .await
            .expect("Failed to handle beacon");

        assert!(actions.actions.is_empty());
    }

    #[fuchsia::test(allow_stalls = false)]
    async fn channel_state_handles_immediate_csa_in_beacon_frame() {
        let mut channel_state = ChannelState::default();

        let mut actions = MockChannelActions::default();
        let header = BeaconHdr::new(TimeUnit(10), CapabilityInfo(0));
        let mut elements = vec![];
        elements.extend(csa_bytes(0, NEW_CHANNEL, 0));
        channel_state
            .test_bind(&mut actions)
            .handle_beacon(&header, &elements[..])
            .await
            .expect("Failed to handle beacon");

        assert_eq!(actions.actions.len(), 4);
        assert_variant!(actions.actions[0], ChannelAction::DisableScanning);
        let new_channel =
            assert_variant!(actions.actions[1], ChannelAction::SwitchChannel(chan) => chan);
        assert_eq!(new_channel.primary, NEW_CHANNEL);
        assert_variant!(actions.actions[2], ChannelAction::EnableScanning);
        assert_variant!(actions.actions[3], ChannelAction::EnableTx);
    }

    #[test]
    fn channel_state_handles_delayed_csa_in_beacon_frame() {
        let mut exec = fasync::TestExecutor::new_with_fake_time();
        let mut channel_state = ChannelState::default();
        let bcn_header = BeaconHdr::new(TimeUnit(10), CapabilityInfo(0));
        let mut time = fasync::MonotonicInstant::from_nanos(0);
        exec.set_fake_time(time);
        let mut actions = MockChannelActions::default();

        // First channel switch announcement (count = 2)
        {
            let mut bound_channel_state = channel_state.test_bind(&mut actions);
            let elements = csa_bytes(0, NEW_CHANNEL, 2);
            let fut = bound_channel_state.handle_beacon(&bcn_header, &elements[..]);
            let mut fut = pin!(fut);
            assert_variant!(
                exec.run_until_stalled(&mut fut),
                Poll::Ready(Ok(_)),
                "Failed to handle beacon"
            );
        }
        assert_eq!(actions.actions.len(), 2);
        assert_variant!(actions.actions[0], ChannelAction::DisableScanning);
        let (first_event_id, event_time) =
            assert_variant!(actions.actions[1], ChannelAction::Timeout(eid, time) => (eid, time));
        assert_eq!(event_time, (time + (bcn_header.beacon_interval * 2u16).into()).into());
        actions.actions.clear();

        time += bcn_header.beacon_interval.into();
        exec.set_fake_time(time);

        // Second channel switch announcement (count = 1)
        {
            let mut bound_channel_state = channel_state.test_bind(&mut actions);
            let elements = csa_bytes(0, NEW_CHANNEL, 1);
            let fut = bound_channel_state.handle_beacon(&bcn_header, &elements[..]);
            let mut fut = pin!(fut);
            assert_variant!(
                exec.run_until_stalled(&mut fut),
                Poll::Ready(Ok(_)),
                "Failed to handle beacon"
            );
        }
        assert_eq!(actions.actions.len(), 2);
        assert_variant!(actions.actions[0], ChannelAction::DisableScanning);
        let (second_event_id, event_time) =
            assert_variant!(actions.actions[1], ChannelAction::Timeout(eid, time) => (eid, time));
        assert_eq!(event_time, (time + bcn_header.beacon_interval.into()).into());
        actions.actions.clear();

        time += bcn_header.beacon_interval.into();
        exec.set_fake_time(time);

        // First timeout is ignored.
        {
            let mut bound_channel_state = channel_state.test_bind(&mut actions);
            let fut = bound_channel_state.handle_channel_switch_timeout(first_event_id);
            let mut fut = pin!(fut);
            assert_variant!(
                exec.run_until_stalled(&mut fut),
                Poll::Ready(Ok(_)),
                "Failed to handle channel switch timeout"
            );
        }
        assert!(actions.actions.is_empty());

        // Second timeout results in completion.
        {
            let mut bound_channel_state = channel_state.test_bind(&mut actions);
            let fut = bound_channel_state.handle_channel_switch_timeout(second_event_id);
            let mut fut = pin!(fut);
            assert_variant!(
                exec.run_until_stalled(&mut fut),
                Poll::Ready(Ok(_)),
                "Failed to handle channel switch timeout"
            );
        }
        assert_eq!(actions.actions.len(), 3);
        let new_channel =
            assert_variant!(actions.actions[0], ChannelAction::SwitchChannel(chan) => chan);
        assert_eq!(new_channel.primary, NEW_CHANNEL);
        assert_variant!(actions.actions[1], ChannelAction::EnableScanning);
        assert_variant!(actions.actions[2], ChannelAction::EnableTx);
    }

    #[fuchsia::test(allow_stalls = false)]
    async fn channel_state_cannot_pause_tx() {
        let mut channel_state = ChannelState::default();
        let bcn_header = BeaconHdr::new(TimeUnit(10), CapabilityInfo(0));
        let mut actions = MockChannelActions::default();

        channel_state
            .test_bind(&mut actions)
            .handle_beacon(&bcn_header, &csa_bytes(1, NEW_CHANNEL, 2)[..])
            .await
            .expect_err("Shouldn't handle channel switch with tx pause");
        assert_eq!(actions.actions.len(), 0);
    }

    #[fuchsia::test(allow_stalls = false)]
    async fn channel_state_cannot_parse_malformed_csa() {
        let mut channel_state = ChannelState::default();
        let bcn_header = BeaconHdr::new(TimeUnit(10), CapabilityInfo(0));
        let mut actions = MockChannelActions::default();

        let mut element = vec![];
        element.extend(CHANNEL_SWITCH_ANNOUNCEMENT_HEADER);
        element.extend(&[10, 0, 0][..]); // Garbage info.
        channel_state
            .test_bind(&mut actions)
            .handle_beacon(&bcn_header, &element[..])
            .await
            .expect_err("Should not handle malformed beacon");
        assert_eq!(actions.actions.len(), 0);
    }

    #[fuchsia::test(allow_stalls = false)]
    async fn channel_state_handles_immediate_csa_in_action_frame() {
        let mut channel_state = ChannelState::default();

        let mut actions = MockChannelActions::default();
        channel_state
            .test_bind(&mut actions)
            .handle_announcement_frame(&csa_bytes(0, NEW_CHANNEL, 0)[..])
            .await
            .expect("Failed to handle beacon");

        assert_eq!(actions.actions.len(), 4);
        assert_variant!(actions.actions[0], ChannelAction::DisableScanning);
        let new_channel =
            assert_variant!(actions.actions[1], ChannelAction::SwitchChannel(chan) => chan);
        assert_eq!(new_channel.primary, NEW_CHANNEL);
        assert_variant!(actions.actions[2], ChannelAction::EnableScanning);
        assert_variant!(actions.actions[3], ChannelAction::EnableTx);
    }

    #[test]
    fn channel_state_handles_delayed_csa_in_announcement_frame() {
        let mut exec = fasync::TestExecutor::new_with_fake_time();
        let mut channel_state = ChannelState::default();
        let bcn_header = BeaconHdr::new(TimeUnit(100), CapabilityInfo(0));
        let bcn_time: fasync::MonotonicInstant =
            fasync::MonotonicInstant::from_nanos(0) + bcn_header.beacon_interval.into();
        exec.set_fake_time(fasync::MonotonicInstant::from_nanos(0));
        let mut actions = MockChannelActions::default();

        // Empty beacon frame to configure beacon parameters.
        {
            let mut bound_channel_state = channel_state.test_bind(&mut actions);
            let elements = [];
            let fut = bound_channel_state.handle_beacon(&bcn_header, &elements[..]);
            let mut fut = pin!(fut);
            assert_variant!(
                exec.run_until_stalled(&mut fut),
                Poll::Ready(Ok(_)),
                "Failed to handle beacon"
            );
        }
        assert!(actions.actions.is_empty());

        // CSA action frame arrives some time between beacons.
        exec.set_fake_time(bcn_time - fasync::MonotonicDuration::from_micros(500));
        {
            let mut bound_channel_state = channel_state.test_bind(&mut actions);
            let elements = csa_bytes(0, NEW_CHANNEL, 1);
            let fut = bound_channel_state.handle_announcement_frame(&elements[..]);
            let mut fut = pin!(fut);
            assert_variant!(
                exec.run_until_stalled(&mut fut),
                Poll::Ready(Ok(_)),
                "Failed to handle announcement"
            );
        }
        assert_eq!(actions.actions.len(), 2);
        assert_variant!(actions.actions[0], ChannelAction::DisableScanning);
        let (event_id, event_time) =
            assert_variant!(actions.actions[1], ChannelAction::Timeout(eid, time) => (eid, time));
        assert_eq!(event_time, bcn_time);
        actions.actions.clear();

        // Timeout arrives.
        exec.set_fake_time(bcn_time);
        {
            let mut bound_channel_state = channel_state.test_bind(&mut actions);
            let fut = bound_channel_state.handle_channel_switch_timeout(event_id);
            let mut fut = pin!(fut);
            assert_variant!(
                exec.run_until_stalled(&mut fut),
                Poll::Ready(Ok(_)),
                "Failed to handle channel switch timeout"
            );
        }
        assert_eq!(actions.actions.len(), 3);
        let new_channel =
            assert_variant!(actions.actions[0], ChannelAction::SwitchChannel(chan) => chan);
        assert_eq!(new_channel.primary, NEW_CHANNEL);
        assert_variant!(actions.actions[1], ChannelAction::EnableScanning);
        assert_variant!(actions.actions[2], ChannelAction::EnableTx);
    }

    #[test]
    fn channel_state_handles_delayed_csa_in_announcement_frame_with_missed_beacon() {
        let mut exec = fasync::TestExecutor::new_with_fake_time();
        let mut channel_state = ChannelState::default();
        let bcn_header = BeaconHdr::new(TimeUnit(100), CapabilityInfo(0));
        exec.set_fake_time(fasync::MonotonicInstant::from_nanos(0));
        let mut actions = MockChannelActions::default();

        // Empty beacon frame to configure beacon parameters.
        {
            let mut bound_channel_state = channel_state.test_bind(&mut actions);
            let elements = [];
            let fut = bound_channel_state.handle_beacon(&bcn_header, &elements[..]);
            let mut fut = pin!(fut);
            assert_variant!(
                exec.run_until_stalled(&mut fut),
                Poll::Ready(Ok(_)),
                "Failed to handle beacon"
            );
        }
        assert!(actions.actions.is_empty());

        // Advance time by a bit more than one beacon, simulating a missed frame.
        exec.set_fake_time(
            fasync::MonotonicInstant::from_nanos(0)
                + bcn_header.beacon_interval.into()
                + fasync::MonotonicDuration::from_micros(500),
        );

        // CSA action frame arrives after the missed beacon.
        {
            let mut bound_channel_state = channel_state.test_bind(&mut actions);
            let elements = csa_bytes(0, NEW_CHANNEL, 1);
            let fut = bound_channel_state.handle_announcement_frame(&elements[..]);
            let mut fut = pin!(fut);
            assert_variant!(
                exec.run_until_stalled(&mut fut),
                Poll::Ready(Ok(_)),
                "Failed to handle announcement"
            );
        }
        assert_eq!(actions.actions.len(), 2);
        assert_variant!(actions.actions[0], ChannelAction::DisableScanning);
        let (_event_id, event_time) =
            assert_variant!(actions.actions[1], ChannelAction::Timeout(eid, time) => (eid, time));
        // The CSA should be timed based on our best estimate of the missed beacon.
        assert_eq!(
            event_time,
            fasync::MonotonicInstant::from_nanos(0) + (bcn_header.beacon_interval * 2u16).into()
        );
    }
}