criterion/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
//! A statistics-driven micro-benchmarking library written in Rust.
//!
//! This crate is a microbenchmarking library which aims to provide strong
//! statistical confidence in detecting and estimating the size of performance
//! improvements and regressions, whle also being easy to use.
//!
//! See
//! [the user guide](https://bheisler.github.io/criterion.rs/book/index.html)
//! for examples as well as details on the measurement and analysis process,
//! and the output.
//!
//! ## Features:
//! * Benchmark Rust code as well as external programs
//! * Collects detailed statistics, providing strong confidence that changes
//!   to performance are real, not measurement noise
//! * Produces detailed charts, providing thorough understanding of your code's
//!   performance behavior.

#![deny(missing_docs)]
#![cfg_attr(feature = "real_blackbox", feature(test))]
#![cfg_attr(not(feature = "html_reports"), allow(dead_code))]
#![cfg_attr(
    feature = "cargo-clippy",
    allow(
        clippy::used_underscore_binding,
        clippy::just_underscores_and_digits,
        clippy::transmute_ptr_to_ptr
    )
)]

#[cfg(test)]
#[macro_use]
extern crate approx;

#[cfg(test)]
#[macro_use]
extern crate quickcheck;

#[cfg(test)]
extern crate rand;

#[macro_use]
extern crate clap;

#[macro_use]
extern crate lazy_static;

extern crate atty;
extern crate cast;
extern crate csv;
extern crate itertools;
extern crate num_traits;
extern crate rand_core;
extern crate rand_os;
extern crate rand_xoshiro;
extern crate rayon;
extern crate serde;
extern crate serde_json;
extern crate walkdir;

#[cfg(feature = "html_reports")]
extern crate criterion_plot;

#[cfg(feature = "html_reports")]
extern crate tinytemplate;

#[cfg(feature = "real_blackbox")]
extern crate test;

#[macro_use]
extern crate serde_derive;

// Needs to be declared before other modules
// in order to be usable there.
#[macro_use]
mod macros_private;
#[macro_use]
mod analysis;
mod benchmark;
mod csv_report;
mod error;
mod estimate;
mod format;
mod fs;
mod macros;
mod program;
mod report;
mod routine;
mod stats;

#[cfg(feature = "html_reports")]
mod kde;

#[cfg(feature = "html_reports")]
mod plot;

#[cfg(feature = "html_reports")]
mod html;

use std::cell::RefCell;
use std::collections::BTreeMap;
use std::default::Default;
use std::fmt;
use std::iter::IntoIterator;
use std::process::Command;
use std::time::{Duration, Instant};

use benchmark::BenchmarkConfig;
use benchmark::NamedRoutine;
use csv_report::FileCsvReport;
use estimate::{Distributions, Estimates, Statistic};
use plotting::Plotting;
use report::{CliReport, Report, ReportContext, Reports};
use routine::Function;

#[cfg(feature = "html_reports")]
use html::Html;

pub use benchmark::{Benchmark, BenchmarkDefinition, ParameterizedBenchmark};

lazy_static! {
    static ref DEBUG_ENABLED: bool = { std::env::vars().any(|(key, _)| key == "CRITERION_DEBUG") };
}

fn debug_enabled() -> bool {
    *DEBUG_ENABLED
}

// Fake function which shows a deprecation warning when compiled without the html_reports feature.
#[cfg(not(feature = "html_reports"))]
#[cfg_attr(not(feature = "html_reports"), doc(hidden))]
pub fn deprecation_warning() {
    #[deprecated(
        since = "0.2.6",
        note = "The html_reports cargo feature is deprecated. As of 0.3.0, HTML reports will no longer be optional."
    )]
    fn deprecation_warning_inner() {}

    deprecation_warning_inner()
}

/// A function that is opaque to the optimizer, used to prevent the compiler from
/// optimizing away computations in a benchmark.
///
/// This variant is backed by the (unstable) test::black_box function.
#[cfg(feature = "real_blackbox")]
pub fn black_box<T>(dummy: T) -> T {
    test::black_box(dummy)
}

/// A function that is opaque to the optimizer, used to prevent the compiler from
/// optimizing away computations in a benchmark.
///
/// This variant is stable-compatible, but it may cause some performance overhead
/// or fail to prevent code from being eliminated.
#[cfg(not(feature = "real_blackbox"))]
pub fn black_box<T>(dummy: T) -> T {
    unsafe {
        let ret = std::ptr::read_volatile(&dummy);
        std::mem::forget(dummy);
        ret
    }
}

/// Representing a function to benchmark together with a name of that function.
/// Used together with `bench_functions` to represent one out of multiple functions
/// under benchmark.
pub struct Fun<I: fmt::Debug> {
    f: NamedRoutine<I>,
}

impl<I> Fun<I>
where
    I: fmt::Debug + 'static,
{
    /// Create a new `Fun` given a name and a closure
    pub fn new<F>(name: &str, f: F) -> Fun<I>
    where
        F: FnMut(&mut Bencher, &I) + 'static,
    {
        let routine = NamedRoutine {
            id: name.to_owned(),
            f: Box::new(RefCell::new(Function::new(f))),
        };

        Fun { f: routine }
    }
}

/// Argument to [`Bencher::iter_batched`](struct.Bencher.html#method.iter_batched) and
/// [`Bencher::iter_batched_ref`](struct.Bencher.html#method.iter_batched_ref) which controls the
/// batch size.
///
/// Generally speaking, almost all benchmarks should use `SmallInput`. If the input or the result
/// of the benchmark routine is large enough that `SmallInput` causes out-of-memory errors,
/// `LargeInput` can be used to reduce memory usage at the cost of increasing the measurement
/// overhead. If the input or the result is extremely large (or if it holds some
/// limited external resource like a file handle), `PerIteration` will set the number of iterations
/// per batch to exactly one. `PerIteration` can increase the measurement overhead substantially
/// and should be avoided wherever possible.
///
/// Each value lists an estimate of the measurement overhead. This is intended as a rough guide
/// to assist in choosing an option, it should not be relied upon. In particular, it is not valid
/// to subtract the listed overhead from the measurement and assume that the result represents the
/// true runtime of a function. The actual measurement overhead for your specific benchmark depends
/// on the details of the function you're benchmarking and the hardware and operating
/// system running the benchmark.
///
/// With that said, if the runtime of your function is small relative to the measurement overhead
/// it will be difficult to take accurate measurements. In this situation, the best option is to use
/// [`Bencher::iter`](struct.Bencher.html#method.iter_batched_ref) which has next-to-zero measurement
/// overhead.
#[derive(Debug, Eq, PartialEq, Copy, Hash, Clone)]
pub enum BatchSize {
    /// `SmallInput` indicates that the input to the benchmark routine (the value returned from
    /// the setup routine) is small enough that millions of values can be safely held in memory.
    /// Always prefer `SmallInput` unless the benchmark is using too much memory.
    ///
    /// In testing, the maximum measurement overhead from benchmarking with `SmallInput` is on the
    /// order of 500 picoseconds. This is presented as a rough guide; your results may vary.
    SmallInput,

    /// `LargeInput` indicates that the input to the benchmark routine or the value returned from
    /// that routine is large. This will reduce the memory usage but increase the measurement
    /// overhead.
    ///
    /// In testing, the maximum measurement overhead from benchmarking with `LargeInput` is on the
    /// order of 750 picoseconds. This is presented as a rough guide; your results may vary.
    LargeInput,

    /// `PerIteration` indicates that the input to the benchmark routine or the value returned from
    /// that routine is extremely large or holds some limited resource, such that holding many values
    /// in memory at once is infeasible. This provides the worst measurement overhead, but the
    /// lowest memory usage.
    ///
    /// In testing, the maximum measurement overhead from benchmarking with `PerIteration` is on the
    /// order of 350 nanoseconds or 350,000 picoseconds. This is presented as a rough guide; your
    /// results may vary.
    PerIteration,

    /// `NumBatches` will attempt to divide the iterations up into a given number of batches.
    /// A larger number of batches (and thus smaller batches) will reduce memory usage but increase
    /// measurement overhead. This allows the user to choose their own tradeoff between memory usage
    /// and measurement overhead, but care must be taken in tuning the number of batches. Most
    /// benchmarks should use `SmallInput` or `LargeInput` instead.
    NumBatches(u64),

    /// `NumIterations` fixes the batch size to a constant number, specified by the user. This
    /// allows the user to choose their own tradeoff between overhead and memory usage, but care must
    /// be taken in tuning the batch size. In general, the measurement overhead of NumIterations
    /// will be larger than that of `NumBatches`. Most benchmarks should use `SmallInput` or
    /// `LargeInput` instead.
    NumIterations(u64),

    #[doc(hidden)]
    __NonExhaustive,
}
impl BatchSize {
    /// Convert to a number of iterations per batch.
    ///
    /// We try to do a constant number of batches regardless of the number of iterations in this
    /// sample. If the measurement overhead is roughly constant regardless of the number of
    /// iterations the analysis of the results later will have an easier time separating the
    /// measurement overhead from the benchmark time.
    fn iters_per_batch(self, iters: u64) -> u64 {
        match self {
            BatchSize::SmallInput => (iters + 10 - 1) / 10,
            BatchSize::LargeInput => (iters + 1000 - 1) / 1000,
            BatchSize::PerIteration => 1,
            BatchSize::NumBatches(batches) => (iters + batches - 1) / batches,
            BatchSize::NumIterations(size) => size,
            BatchSize::__NonExhaustive => panic!("__NonExhaustive is not a valid BatchSize."),
        }
    }
}

/// Timer struct to iterate a benchmarked function and measure the runtime.
///
/// This struct provides different timing loops as methods. Each timing loop provides a different
/// way to time a routine and each has advantages and disadvantages.
///
/// * If your routine requires no per-iteration setup and returns a value with an expensive `drop`
///   method, use `iter_with_large_drop`.
/// * If your routine requires some per-iteration setup that shouldn't be timed, use `iter_batched`
///   or `iter_batched_ref`. See [`BatchSize`](enum.BatchSize.html) for a discussion of batch sizes.
///   If the setup value implements `Drop` and you don't want to include the `drop` time in the
///   measurement, use `iter_batched_ref`, otherwise use `iter_batched`. These methods are also
///   suitable for benchmarking routines which return a value with an expensive `drop` method,
///   but are more complex than `iter_with_large_drop`.
/// * Otherwise, use `iter`.
#[derive(Clone, Copy)]
pub struct Bencher {
    iterated: bool,
    iters: u64,
    elapsed: Duration,
}
impl Bencher {
    /// Times a `routine` by executing it many times and timing the total elapsed time.
    ///
    /// Prefer this timing loop when `routine` returns a value that doesn't have a destructor.
    ///
    /// # Timing model
    ///
    /// Note that the `Bencher` also times the time required to destroy the output of `routine()`.
    /// Therefore prefer this timing loop when the runtime of `mem::drop(O)` is negligible compared
    /// to the runtime of the `routine`.
    ///
    /// ```text
    /// elapsed = Instant::now + iters * (routine + mem::drop(O) + Range::next)
    /// ```
    ///
    /// # Example
    ///
    /// ```rust
    /// #[macro_use] extern crate criterion;
    ///
    /// use criterion::*;
    ///
    /// // The function to benchmark
    /// fn foo() {
    ///     // ...
    /// }
    ///
    /// fn bench(c: &mut Criterion) {
    ///     c.bench_function("iter", move |b| {
    ///         b.iter(|| foo())
    ///     });
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    ///
    #[inline(never)]
    pub fn iter<O, R>(&mut self, mut routine: R)
    where
        R: FnMut() -> O,
    {
        self.iterated = true;
        let start = Instant::now();
        for _ in 0..self.iters {
            black_box(routine());
        }
        self.elapsed = start.elapsed();
    }

    #[doc(hidden)]
    pub fn iter_with_setup<I, O, S, R>(&mut self, setup: S, routine: R)
    where
        S: FnMut() -> I,
        R: FnMut(I) -> O,
    {
        self.iter_batched(setup, routine, BatchSize::PerIteration);
    }

    /// Times a `routine` by collecting its output on each iteration. This avoids timing the
    /// destructor of the value returned by `routine`.
    ///
    /// WARNING: This requires `O(iters * mem::size_of::<O>())` of memory, and `iters` is not under the
    /// control of the caller. If this causes out-of-memory errors, use `iter_batched` instead.
    ///
    /// # Timing model
    ///
    /// ``` text
    /// elapsed = Instant::now + iters * (routine) + Iterator::collect::<Vec<_>>
    /// ```
    ///
    /// # Example
    ///
    /// ```rust
    /// #[macro_use] extern crate criterion;
    ///
    /// use criterion::*;
    ///
    /// fn create_vector() -> Vec<u64> {
    ///     # vec![]
    ///     // ...
    /// }
    ///
    /// fn bench(c: &mut Criterion) {
    ///     c.bench_function("with_drop", move |b| {
    ///         // This will avoid timing the Vec::drop.
    ///         b.iter_with_large_drop(|| create_vector())
    ///     });
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    ///
    #[doc(hidden)]
    pub fn iter_with_large_drop<O, R>(&mut self, mut routine: R)
    where
        R: FnMut() -> O,
    {
        self.iter_batched(|| (), |_| routine(), BatchSize::SmallInput);
    }

    #[doc(hidden)]
    pub fn iter_with_large_setup<I, O, S, R>(&mut self, setup: S, routine: R)
    where
        S: FnMut() -> I,
        R: FnMut(I) -> O,
    {
        self.iter_batched(setup, routine, BatchSize::NumBatches(1));
    }

    /// Times a `routine` that requires some input by generating a batch of input, then timing the
    /// iteration of the benchmark over the input. See [`BatchSize`](struct.BatchSize.html) for
    /// details on choosing the batch size. Use this when the routine must consume its input.
    ///
    /// For example, use this loop to benchmark sorting algorithms, because they require unsorted
    /// data on each iteration.
    ///
    /// # Timing model
    ///
    /// ```text
    /// elapsed = (Instant::now * num_batches) + (iters * (routine + O::drop)) + Vec::extend
    /// ```
    ///
    /// # Example
    ///
    /// ```rust
    /// #[macro_use] extern crate criterion;
    ///
    /// use criterion::*;
    ///
    /// fn create_scrambled_data() -> Vec<u64> {
    ///     # vec![]
    ///     // ...
    /// }
    ///
    /// // The sorting algorithm to test
    /// fn sort(data: &mut [u64]) {
    ///     // ...
    /// }
    ///
    /// fn bench(c: &mut Criterion) {
    ///     let data = create_scrambled_data();
    ///
    ///     c.bench_function("with_setup", move |b| {
    ///         // This will avoid timing the to_vec call.
    ///         b.iter_batched(|| data.clone(), |mut data| sort(&mut data), BatchSize::SmallInput)
    ///     });
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    ///
    #[inline(never)]
    pub fn iter_batched<I, O, S, R>(&mut self, mut setup: S, mut routine: R, size: BatchSize)
    where
        S: FnMut() -> I,
        R: FnMut(I) -> O,
    {
        self.iterated = true;
        let batch_size = size.iters_per_batch(self.iters);
        assert!(batch_size != 0, "Batch size must not be zero.");
        self.elapsed = Duration::from_secs(0);

        if batch_size == 1 {
            for _ in 0..self.iters {
                let mut input = black_box(setup());

                let start = Instant::now();
                let output = routine(input);
                self.elapsed += start.elapsed();

                drop(black_box(output));
            }
        } else {
            let mut iteration_counter = 0;

            while iteration_counter < self.iters {
                let batch_size = ::std::cmp::min(batch_size, self.iters - iteration_counter);

                let inputs = black_box((0..batch_size).map(|_| setup()).collect::<Vec<_>>());
                let mut outputs = Vec::with_capacity(batch_size as usize);

                let start = Instant::now();
                outputs.extend(inputs.into_iter().map(&mut routine));
                self.elapsed += start.elapsed();

                black_box(outputs);

                iteration_counter += batch_size;
            }
        }
    }

    /// Times a `routine` that requires some input by generating a batch of input, then timing the
    /// iteration of the benchmark over the input. See [`BatchSize`](struct.BatchSize.html) for
    /// details on choosing the batch size. Use this when the routine should accept the input by
    /// mutable reference.
    ///
    /// For example, use this loop to benchmark sorting algorithms, because they require unsorted
    /// data on each iteration.
    ///
    /// # Timing model
    ///
    /// ```text
    /// elapsed = (Instant::now * num_batches) + (iters * routine) + Vec::extend
    /// ```
    ///
    /// # Example
    ///
    /// ```rust
    /// #[macro_use] extern crate criterion;
    ///
    /// use criterion::*;
    ///
    /// fn create_scrambled_data() -> Vec<u64> {
    ///     # vec![]
    ///     // ...
    /// }
    ///
    /// // The sorting algorithm to test
    /// fn sort(data: &mut [u64]) {
    ///     // ...
    /// }
    ///
    /// fn bench(c: &mut Criterion) {
    ///     let data = create_scrambled_data();
    ///
    ///     c.bench_function("with_setup", move |b| {
    ///         // This will avoid timing the to_vec call.
    ///         b.iter_batched(|| data.clone(), |mut data| sort(&mut data), BatchSize::SmallInput)
    ///     });
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    ///
    #[inline(never)]
    pub fn iter_batched_ref<I, O, S, R>(&mut self, mut setup: S, mut routine: R, size: BatchSize)
    where
        S: FnMut() -> I,
        R: FnMut(&mut I) -> O,
    {
        self.iterated = true;
        let batch_size = size.iters_per_batch(self.iters);
        assert!(batch_size != 0, "Batch size must not be zero.");
        self.elapsed = Duration::from_secs(0);

        if batch_size == 1 {
            for _ in 0..self.iters {
                let mut input = black_box(setup());

                let start = Instant::now();
                let output = routine(&mut input);
                self.elapsed += start.elapsed();

                drop(black_box(output));
                drop(black_box(input));
            }
        } else {
            let mut iteration_counter = 0;

            while iteration_counter < self.iters {
                let batch_size = ::std::cmp::min(batch_size, self.iters - iteration_counter);

                let mut inputs = black_box((0..batch_size).map(|_| setup()).collect::<Vec<_>>());
                let mut outputs = Vec::with_capacity(batch_size as usize);

                let start = Instant::now();
                outputs.extend(inputs.iter_mut().map(&mut routine));
                self.elapsed += start.elapsed();

                black_box(outputs);

                iteration_counter += batch_size;
            }
        }
    }

    // Benchmarks must actually call one of the iter methods. This causes benchmarks to fail loudly
    // if they don't.
    fn assert_iterated(&mut self) {
        if !self.iterated {
            panic!("Benchmark function must call Bencher::iter or related method.");
        }
        self.iterated = false;
    }
}

/// Baseline describes how the baseline_directory is handled.
pub enum Baseline {
    /// Compare ensures a previous saved version of the baseline
    /// exists and runs comparison against that.
    Compare,
    /// Save writes the benchmark results to the baseline directory,
    /// overwriting any results that were previously there.
    Save,
}

/// The benchmark manager
///
/// `Criterion` lets you configure and execute benchmarks
///
/// Each benchmark consists of four phases:
///
/// - **Warm-up**: The routine is repeatedly executed, to let the CPU/OS/JIT/interpreter adapt to
/// the new load
/// - **Measurement**: The routine is repeatedly executed, and timing information is collected into
/// a sample
/// - **Analysis**: The sample is analyzed and distiled into meaningful statistics that get
/// reported to stdout, stored in files, and plotted
/// - **Comparison**: The current sample is compared with the sample obtained in the previous
/// benchmark.
pub struct Criterion {
    config: BenchmarkConfig,
    plotting: Plotting,
    filter: Option<String>,
    report: Box<Report>,
    output_directory: String,
    baseline_directory: String,
    baseline: Baseline,
    profile_time: Option<Duration>,
    test_mode: bool,
    list_mode: bool,
}

impl Default for Criterion {
    /// Creates a benchmark manager with the following default settings:
    ///
    /// - Sample size: 100 measurements
    /// - Warm-up time: 3 s
    /// - Measurement time: 5 s
    /// - Bootstrap size: 100 000 resamples
    /// - Noise threshold: 0.01 (1%)
    /// - Confidence level: 0.95
    /// - Significance level: 0.05
    /// - Plotting: enabled (if gnuplot is available)
    /// - No filter
    fn default() -> Criterion {
        #[allow(unused_mut, unused_assignments)]
        let mut plotting = Plotting::Unset;

        let mut reports: Vec<Box<Report>> = vec![];
        reports.push(Box::new(CliReport::new(false, false, false)));
        reports.push(Box::new(FileCsvReport));

        let output_directory =
            match std::env::vars().find(|&(ref key, _)| key == "CARGO_TARGET_DIR") {
                Some((_, value)) => format!("{}/criterion", value),
                None => "target/criterion".to_owned(),
            };

        Criterion {
            config: BenchmarkConfig {
                confidence_level: 0.95,
                measurement_time: Duration::new(5, 0),
                noise_threshold: 0.01,
                nresamples: 100_000,
                sample_size: 100,
                significance_level: 0.05,
                warm_up_time: Duration::new(3, 0),
            },
            plotting,
            filter: None,
            report: Box::new(Reports::new(reports)),
            baseline_directory: "base".to_owned(),
            baseline: Baseline::Save,
            profile_time: None,
            test_mode: false,
            list_mode: false,
            output_directory,
        }
    }
}

impl Criterion {
    /// Changes the default size of the sample for benchmarks run with this runner.
    ///
    /// A bigger sample should yield more accurate results if paired with a sufficiently large
    /// measurement time.
    ///
    /// Sample size must be at least 2.
    ///
    /// # Panics
    ///
    /// Panics if set to zero or one
    pub fn sample_size(mut self, n: usize) -> Criterion {
        assert!(n >= 2);
        if n < 10 {
            println!("Warning: Sample sizes < 10 will be disallowed in Criterion.rs 0.3.0.");
        }

        self.config.sample_size = n;
        self
    }

    /// Changes the default warm up time for benchmarks run with this runner.
    ///
    /// # Panics
    ///
    /// Panics if the input duration is zero
    pub fn warm_up_time(mut self, dur: Duration) -> Criterion {
        assert!(dur.to_nanos() > 0);

        self.config.warm_up_time = dur;
        self
    }

    /// Changes the default measurement time for benchmarks run with this runner.
    ///
    /// With a longer time, the measurement will become more resilient to transitory peak loads
    /// caused by external programs
    ///
    /// **Note**: If the measurement time is too "low", Criterion will automatically increase it
    ///
    /// # Panics
    ///
    /// Panics if the input duration in zero
    pub fn measurement_time(mut self, dur: Duration) -> Criterion {
        assert!(dur.to_nanos() > 0);

        self.config.measurement_time = dur;
        self
    }

    /// Changes the default number of resamples for benchmarks run with this runner.
    ///
    /// Number of resamples to use for the
    /// [bootstrap](http://en.wikipedia.org/wiki/Bootstrapping_(statistics)#Case_resampling)
    ///
    /// A larger number of resamples reduces the random sampling errors, which are inherent to the
    /// bootstrap method, but also increases the analysis time
    ///
    /// # Panics
    ///
    /// Panics if the number of resamples is set to zero
    pub fn nresamples(mut self, n: usize) -> Criterion {
        assert!(n > 0);

        self.config.nresamples = n;
        self
    }

    /// Changes the default noise threshold for benchmarks run with this runner.
    ///
    /// This threshold is used to decide if an increase of `X%` in the execution time is considered
    /// significant or should be flagged as noise
    ///
    /// *Note:* A value of `0.02` is equivalent to `2%`
    ///
    /// # Panics
    ///
    /// Panics is the threshold is set to a negative value
    pub fn noise_threshold(mut self, threshold: f64) -> Criterion {
        assert!(threshold >= 0.0);

        self.config.noise_threshold = threshold;
        self
    }

    /// Changes the default confidence level for benchmarks run with this runner
    ///
    /// The confidence level is used to calculate the
    /// [confidence intervals](https://en.wikipedia.org/wiki/Confidence_interval) of the estimated
    /// statistics
    ///
    /// # Panics
    ///
    /// Panics if the confidence level is set to a value outside the `(0, 1)` range
    pub fn confidence_level(mut self, cl: f64) -> Criterion {
        assert!(cl > 0.0 && cl < 1.0);

        self.config.confidence_level = cl;
        self
    }

    /// Changes the default [significance level](https://en.wikipedia.org/wiki/Statistical_significance)
    /// for benchmarks run with this runner
    ///
    /// The significance level is used for
    /// [hypothesis testing](https://en.wikipedia.org/wiki/Statistical_hypothesis_testing)
    ///
    /// # Panics
    ///
    /// Panics if the significance level is set to a value outside the `(0, 1)` range
    pub fn significance_level(mut self, sl: f64) -> Criterion {
        assert!(sl > 0.0 && sl < 1.0);

        self.config.significance_level = sl;
        self
    }

    /// Enables plotting
    #[cfg(feature = "html_reports")]
    pub fn with_plots(mut self) -> Criterion {
        use criterion_plot::VersionError;
        self.plotting = match criterion_plot::version() {
            Ok(_) => {
                let mut reports: Vec<Box<Report>> = vec![];
                reports.push(Box::new(CliReport::new(false, false, false)));
                reports.push(Box::new(FileCsvReport));
                reports.push(Box::new(Html::new()));
                self.report = Box::new(Reports::new(reports));
                Plotting::Enabled
            }
            Err(e) => {
                match e {
                    VersionError::Exec(_) => println!("Gnuplot not found, disabling plotting"),
                    e => println!("Gnuplot not found or not usable, disabling plotting\n{}", e),
                }
                Plotting::NotAvailable
            }
        };

        self
    }

    /// Enables plotting
    #[cfg(not(feature = "html_reports"))]
    pub fn with_plots(self) -> Criterion {
        self
    }

    /// Disables plotting
    pub fn without_plots(mut self) -> Criterion {
        self.plotting = Plotting::Disabled;
        self
    }

    /// Return true if generation of the plots is possible.
    #[cfg(feature = "html_reports")]
    pub fn can_plot(&self) -> bool {
        match self.plotting {
            Plotting::NotAvailable => false,
            Plotting::Enabled => true,
            _ => criterion_plot::version().is_ok(),
        }
    }

    /// Return true if generation of the plots is possible.
    #[cfg(not(feature = "html_reports"))]
    pub fn can_plot(&self) -> bool {
        false
    }

    /// Names an explicit baseline and enables overwriting the previous results.
    pub fn save_baseline(mut self, baseline: String) -> Criterion {
        self.baseline_directory = baseline;
        self.baseline = Baseline::Save;
        self
    }

    /// Names an explicit baseline and disables overwriting the previous results.
    pub fn retain_baseline(mut self, baseline: String) -> Criterion {
        self.baseline_directory = baseline;
        self.baseline = Baseline::Compare;
        self
    }

    /// Filters the benchmarks. Only benchmarks with names that contain the
    /// given string will be executed.
    pub fn with_filter<S: Into<String>>(mut self, filter: S) -> Criterion {
        self.filter = Some(filter.into());

        self
    }

    /// Set the output directory (currently for testing only)
    #[doc(hidden)]
    pub fn output_directory(mut self, path: &std::path::Path) -> Criterion {
        self.output_directory = path.to_string_lossy().into_owned();

        self
    }

    /// Generate the final summary at the end of a run.
    #[doc(hidden)]
    pub fn final_summary(&self) {
        if self.profile_time.is_some() || self.test_mode {
            return;
        }

        let report_context = ReportContext {
            output_directory: self.output_directory.clone(),
            plotting: self.plotting,
            plot_config: PlotConfiguration::default(),
            test_mode: self.test_mode,
        };

        self.report.final_summary(&report_context);
    }

    /// Configure this criterion struct based on the command-line arguments to
    /// this process.
    pub fn configure_from_args(mut self) -> Criterion {
        use clap::{App, Arg};
        let matches = App::new("Criterion Benchmark")
            .arg(Arg::with_name("FILTER")
                .help("Skip benchmarks whose names do not contain FILTER.")
                .index(1))
            .arg(Arg::with_name("color")
                .short("c")
                .long("color")
                .alias("colour")
                .takes_value(true)
                .possible_values(&["auto", "always", "never"])
                .default_value("auto")
                .help("Configure coloring of output. always = always colorize output, never = never colorize output, auto = colorize output if output is a tty and compiled for unix."))
            .arg(Arg::with_name("verbose")
                .short("v")
                .long("verbose")
                .help("Print additional statistical information."))
            .arg(Arg::with_name("noplot")
                .short("n")
                .long("noplot")
                .help("Disable plot and HTML generation."))
            .arg(Arg::with_name("save-baseline")
                .short("s")
                .long("save-baseline")
                .default_value("base")
                .help("Save results under a named baseline."))
            .arg(Arg::with_name("baseline")
                .short("b")
                .long("baseline")
                .takes_value(true)
                .conflicts_with("save-baseline")
                .help("Compare to a named baseline."))
            .arg(Arg::with_name("list")
                .long("list")
                .help("List all benchmarks"))
            .arg(Arg::with_name("measure-only")
                .long("measure-only")
                .hidden(true)
                .help("Only perform measurements; do no analysis or storage of results. This is useful eg. when profiling the benchmarks, to reduce clutter in the profiling data."))
            .arg(Arg::with_name("profile-time")
                .long("profile-time")
                .takes_value(true)
                .help("Iterate each benchmark for approximately the given number of seconds, doing no analysis and without storing the results. Useful for running the benchmarks in a profiler."))
            .arg(Arg::with_name("test")
                .long("test")
                .help("Run the benchmarks once, to verify that they execute successfully, but do not measure or report the results."))
            //Ignored but always passed to benchmark executables
            .arg(Arg::with_name("bench")
                .hidden(true)
                .long("bench"))
            .arg(Arg::with_name("version")
                .hidden(true)
                .short("V")
                .long("version"))
            .after_help("
This executable is a Criterion.rs benchmark.
See https://github.com/bheisler/criterion.rs for more details.

To enable debug output, define the environment variable CRITERION_DEBUG.
Criterion.rs will output more debug information and will save the gnuplot
scripts alongside the generated plots.
")
            .get_matches();

        if let Some(filter) = matches.value_of("FILTER") {
            self = self.with_filter(filter);
        }

        let verbose = matches.is_present("verbose");
        let stdout_isatty = atty::is(atty::Stream::Stdout);
        let mut enable_text_overwrite = stdout_isatty && !verbose && !debug_enabled();
        let enable_text_coloring;
        match matches.value_of("color") {
            Some("always") => {
                enable_text_coloring = true;
            }
            Some("never") => {
                enable_text_coloring = false;
                enable_text_overwrite = false;
            }
            _ => enable_text_coloring = stdout_isatty,
        }

        if matches.is_present("noplot") || matches.is_present("test") {
            self = self.without_plots();
        } else {
            self = self.with_plots();
        }

        if let Some(dir) = matches.value_of("save-baseline") {
            self.baseline = Baseline::Save;
            self.baseline_directory = dir.to_owned()
        }
        if let Some(dir) = matches.value_of("baseline") {
            self.baseline = Baseline::Compare;
            self.baseline_directory = dir.to_owned();
        }

        let mut reports: Vec<Box<Report>> = vec![];
        reports.push(Box::new(CliReport::new(
            enable_text_overwrite,
            enable_text_coloring,
            verbose,
        )));
        reports.push(Box::new(FileCsvReport));

        // TODO: Remove this in 0.3.0
        if matches.is_present("measure-only") {
            println!("Warning: The '--measure-only' argument is deprecated and will be removed in Criterion.rs 0.3.0. Use '--profile-time' instead.");
            self.profile_time = Some(Duration::from_secs(5));
        }
        if matches.is_present("profile-time") {
            let num_seconds = value_t!(matches.value_of("profile-time"), u64).unwrap_or_else(|e| {
                println!("{}", e);
                std::process::exit(1)
            });

            if num_seconds < 1 {
                println!("Profile time must be at least one second.");
                std::process::exit(1);
            }

            self.profile_time = Some(Duration::from_secs(num_seconds));
        }
        self.test_mode = matches.is_present("test");
        if matches.is_present("list") {
            self.test_mode = true;
            self.list_mode = true;
        }

        #[cfg(feature = "html_reports")]
        {
            if self.profile_time.is_none() {
                reports.push(Box::new(Html::new()));
            }
        }

        self.report = Box::new(Reports::new(reports));

        self
    }

    fn filter_matches(&self, id: &str) -> bool {
        match self.filter {
            Some(ref string) => id.contains(string),
            None => true,
        }
    }

    /// Benchmarks a function
    ///
    /// # Example
    ///
    /// ```rust
    /// # #[macro_use] extern crate criterion;
    /// # use self::criterion::*;
    ///
    /// fn bench(c: &mut Criterion) {
    ///     // Setup (construct data, allocate memory, etc)
    ///     c.bench_function(
    ///         "function_name",
    ///         |b| b.iter(|| {
    ///             // Code to benchmark goes here
    ///         }),
    ///     );
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    pub fn bench_function<F>(&mut self, id: &str, f: F) -> &mut Criterion
    where
        F: FnMut(&mut Bencher) + 'static,
    {
        self.bench(id, Benchmark::new(id, f))
    }

    /// Benchmarks multiple functions
    ///
    /// All functions get the same input and are compared with the other implementations.
    /// Works similar to `bench_function`, but with multiple functions.
    ///
    /// # Example
    ///
    /// ``` rust
    /// # #[macro_use] extern crate criterion;
    /// # use self::criterion::*;
    /// # fn seq_fib(i: &u32) {}
    /// # fn par_fib(i: &u32) {}
    ///
    /// fn bench_seq_fib(b: &mut Bencher, i: &u32) {
    ///     b.iter(|| {
    ///         seq_fib(i);
    ///     });
    /// }
    ///
    /// fn bench_par_fib(b: &mut Bencher, i: &u32) {
    ///     b.iter(|| {
    ///         par_fib(i);
    ///     });
    /// }
    ///
    /// fn bench(c: &mut Criterion) {
    ///     let sequential_fib = Fun::new("Sequential", bench_seq_fib);
    ///     let parallel_fib = Fun::new("Parallel", bench_par_fib);
    ///     let funs = vec![sequential_fib, parallel_fib];
    ///
    ///     c.bench_functions("Fibonacci", funs, 14);
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    pub fn bench_functions<I>(&mut self, id: &str, funs: Vec<Fun<I>>, input: I) -> &mut Criterion
    where
        I: fmt::Debug + 'static,
    {
        let benchmark = ParameterizedBenchmark::with_functions(
            funs.into_iter().map(|fun| fun.f).collect(),
            vec![input],
        );

        self.bench(id, benchmark)
    }

    /// Benchmarks a function under various inputs
    ///
    /// This is a convenience method to execute several related benchmarks. Each benchmark will
    /// receive the id: `${id}/${input}`.
    ///
    /// # Example
    ///
    /// ```rust
    /// # #[macro_use] extern crate criterion;
    /// # use self::criterion::*;
    ///
    /// fn bench(c: &mut Criterion) {
    ///     c.bench_function_over_inputs("from_elem",
    ///         |b: &mut Bencher, size: &usize| {
    ///             b.iter(|| vec![0u8; *size]);
    ///         },
    ///         vec![1024, 2048, 4096]
    ///     );
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    pub fn bench_function_over_inputs<I, F>(&mut self, id: &str, f: F, inputs: I) -> &mut Criterion
    where
        I: IntoIterator,
        I::Item: fmt::Debug + 'static,
        F: FnMut(&mut Bencher, &I::Item) + 'static,
    {
        self.bench(id, ParameterizedBenchmark::new(id, f, inputs))
    }

    /// Benchmarks an external program
    ///
    /// The external program must:
    ///
    /// * Read the number of iterations from stdin
    /// * Execute the routine to benchmark that many times
    /// * Print the elapsed time (in nanoseconds) to stdout
    ///
    /// ```rust,no_run
    /// # use std::io::{self, BufRead};
    /// # use std::time::Instant;
    /// # use std::time::Duration;
    /// # trait DurationExt { fn to_nanos(&self) -> u64 { 0 } }
    /// # impl DurationExt for Duration {}
    /// // Example of an external program that implements this protocol
    ///
    /// fn main() {
    ///     let stdin = io::stdin();
    ///     let ref mut stdin = stdin.lock();
    ///
    ///     // For each line in stdin
    ///     for line in stdin.lines() {
    ///         // Parse line as the number of iterations
    ///         let iters: u64 = line.unwrap().trim().parse().unwrap();
    ///
    ///         // Setup
    ///
    ///         // Benchmark
    ///         let start = Instant::now();
    ///         // Execute the routine "iters" times
    ///         for _ in 0..iters {
    ///             // Code to benchmark goes here
    ///         }
    ///         let elapsed = start.elapsed();
    ///
    ///         // Teardown
    ///
    ///         // Report elapsed time in nanoseconds to stdout
    ///         println!("{}", elapsed.to_nanos());
    ///     }
    /// }
    /// ```
    #[deprecated(
        since = "0.2.6",
        note = "External program benchmarks were rarely used and are awkward to maintain, so they are scheduled for deletion in 0.3.0"
    )]
    #[allow(deprecated)]
    pub fn bench_program(&mut self, id: &str, program: Command) -> &mut Criterion {
        self.bench(id, Benchmark::new_external(id, program))
    }

    /// Benchmarks an external program under various inputs
    ///
    /// This is a convenience method to execute several related benchmarks. Each benchmark will
    /// receive the id: `${id}/${input}`.
    #[deprecated(
        since = "0.2.6",
        note = "External program benchmarks were rarely used and are awkward to maintain, so they are scheduled for deletion in 0.3.0"
    )]
    #[allow(deprecated)]
    pub fn bench_program_over_inputs<I, F>(
        &mut self,
        id: &str,
        mut program: F,
        inputs: I,
    ) -> &mut Criterion
    where
        F: FnMut() -> Command + 'static,
        I: IntoIterator,
        I::Item: fmt::Debug + 'static,
    {
        self.bench(
            id,
            ParameterizedBenchmark::new_external(
                id,
                move |i| {
                    let mut command = program();
                    command.arg(format!("{:?}", i));
                    command
                },
                inputs,
            ),
        )
    }

    /// Executes the given benchmark. Use this variant to execute benchmarks
    /// with complex configuration. This can be used to compare multiple
    /// functions, execute benchmarks with custom configuration settings and
    /// more. See the Benchmark and ParameterizedBenchmark structs for more
    /// information.
    ///
    /// ```rust
    /// # #[macro_use] extern crate criterion;
    /// # use criterion::*;
    /// # fn routine_1() {}
    /// # fn routine_2() {}
    ///
    /// fn bench(c: &mut Criterion) {
    ///     // Setup (construct data, allocate memory, etc)
    ///     c.bench(
    ///         "routines",
    ///         Benchmark::new("routine_1", |b| b.iter(|| routine_1()))
    ///             .with_function("routine_2", |b| b.iter(|| routine_2()))
    ///             .sample_size(50)
    ///     );
    /// }
    ///
    /// criterion_group!(benches, bench);
    /// criterion_main!(benches);
    /// ```
    pub fn bench<B: BenchmarkDefinition>(
        &mut self,
        group_id: &str,
        benchmark: B,
    ) -> &mut Criterion {
        benchmark.run(group_id, self);
        self
    }
}

mod plotting {
    #[derive(Debug, Clone, Copy)]
    pub enum Plotting {
        Unset,
        Disabled,
        Enabled,
        NotAvailable,
    }

    impl Plotting {
        pub fn is_enabled(self) -> bool {
            match self {
                Plotting::Enabled => true,
                _ => false,
            }
        }
    }
}

trait DurationExt {
    fn to_nanos(&self) -> u64;
}

const NANOS_PER_SEC: u64 = 1_000_000_000;

impl DurationExt for Duration {
    fn to_nanos(&self) -> u64 {
        self.as_secs() * NANOS_PER_SEC + u64::from(self.subsec_nanos())
    }
}

#[derive(Clone, Copy, PartialEq, Deserialize, Serialize, Debug)]
struct ConfidenceInterval {
    confidence_level: f64,
    lower_bound: f64,
    upper_bound: f64,
}

#[derive(Clone, Copy, PartialEq, Deserialize, Serialize, Debug)]
struct Estimate {
    /// The confidence interval for this estimate
    confidence_interval: ConfidenceInterval,
    ///
    point_estimate: f64,
    /// The standard error of this estimate
    standard_error: f64,
}

fn build_estimates(
    distributions: &Distributions,
    points: &BTreeMap<Statistic, f64>,
    cl: f64,
) -> Estimates {
    distributions
        .iter()
        .map(|(&statistic, distribution)| {
            let point_estimate = points[&statistic];
            let (lb, ub) = distribution.confidence_interval(cl);

            (
                statistic,
                Estimate {
                    confidence_interval: ConfidenceInterval {
                        confidence_level: cl,
                        lower_bound: lb,
                        upper_bound: ub,
                    },
                    point_estimate,
                    standard_error: distribution.std_dev(None),
                },
            )
        })
        .collect()
}

/// Enum representing different ways of measuring the throughput of benchmarked code.
/// If the throughput setting is configured for a benchmark then the estimated throughput will
/// be reported as well as the time per iteration.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum Throughput {
    /// Measure throughput in terms of bytes/second. The value should be the number of bytes
    /// processed by one iteration of the benchmarked code. Typically, this would be the length of
    /// an input string or `&[u8]`.
    Bytes(u32),

    /// Measure throughput in terms of elements/second. The value should be the number of elements
    /// processed by one iteration of the benchmarked code. Typically, this would be the size of a
    /// collection, but could also be the number of lines of input text or the number of values to
    /// parse.
    Elements(u32),
}

/// Axis scaling type
#[derive(Debug, Clone, Copy)]
pub enum AxisScale {
    /// Axes scale linearly
    Linear,

    /// Axes scale logarithmically
    Logarithmic,
}

/// Contains the configuration options for the plots generated by a particular benchmark
/// or benchmark group.
///
/// ```rust
/// use self::criterion::{Bencher, Criterion, Benchmark, PlotConfiguration, AxisScale};
///
/// let plot_config = PlotConfiguration::default()
///     .summary_scale(AxisScale::Logarithmic);
///
/// Benchmark::new("test", |b| b.iter(|| 10))
///     .plot_config(plot_config);
/// ```
#[derive(Debug, Clone)]
pub struct PlotConfiguration {
    summary_scale: AxisScale,
}

impl Default for PlotConfiguration {
    fn default() -> PlotConfiguration {
        PlotConfiguration {
            summary_scale: AxisScale::Linear,
        }
    }
}

impl PlotConfiguration {
    /// Set the axis scale (linear or logarithmic) for the summary plots. Typically, you would
    /// set this to logarithmic if benchmarking over a range of inputs which scale exponentially.
    /// Defaults to linear.
    pub fn summary_scale(mut self, new_scale: AxisScale) -> PlotConfiguration {
        self.summary_scale = new_scale;
        self
    }
}