criterion/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
//! A statistics-driven micro-benchmarking library written in Rust.
//!
//! This crate is a microbenchmarking library which aims to provide strong
//! statistical confidence in detecting and estimating the size of performance
//! improvements and regressions, whle also being easy to use.
//!
//! See
//! [the user guide](https://bheisler.github.io/criterion.rs/book/index.html)
//! for examples as well as details on the measurement and analysis process,
//! and the output.
//!
//! ## Features:
//! * Benchmark Rust code as well as external programs
//! * Collects detailed statistics, providing strong confidence that changes
//! to performance are real, not measurement noise
//! * Produces detailed charts, providing thorough understanding of your code's
//! performance behavior.
#![deny(missing_docs)]
#![cfg_attr(feature = "real_blackbox", feature(test))]
#![cfg_attr(not(feature = "html_reports"), allow(dead_code))]
#![cfg_attr(
feature = "cargo-clippy",
allow(
clippy::used_underscore_binding,
clippy::just_underscores_and_digits,
clippy::transmute_ptr_to_ptr
)
)]
#[cfg(test)]
#[macro_use]
extern crate approx;
#[cfg(test)]
#[macro_use]
extern crate quickcheck;
#[cfg(test)]
extern crate rand;
#[macro_use]
extern crate clap;
#[macro_use]
extern crate lazy_static;
extern crate atty;
extern crate cast;
extern crate csv;
extern crate itertools;
extern crate num_traits;
extern crate rand_core;
extern crate rand_os;
extern crate rand_xoshiro;
extern crate rayon;
extern crate serde;
extern crate serde_json;
extern crate walkdir;
#[cfg(feature = "html_reports")]
extern crate criterion_plot;
#[cfg(feature = "html_reports")]
extern crate tinytemplate;
#[cfg(feature = "real_blackbox")]
extern crate test;
#[macro_use]
extern crate serde_derive;
// Needs to be declared before other modules
// in order to be usable there.
#[macro_use]
mod macros_private;
#[macro_use]
mod analysis;
mod benchmark;
mod csv_report;
mod error;
mod estimate;
mod format;
mod fs;
mod macros;
mod program;
mod report;
mod routine;
mod stats;
#[cfg(feature = "html_reports")]
mod kde;
#[cfg(feature = "html_reports")]
mod plot;
#[cfg(feature = "html_reports")]
mod html;
use std::cell::RefCell;
use std::collections::BTreeMap;
use std::default::Default;
use std::fmt;
use std::iter::IntoIterator;
use std::process::Command;
use std::time::{Duration, Instant};
use benchmark::BenchmarkConfig;
use benchmark::NamedRoutine;
use csv_report::FileCsvReport;
use estimate::{Distributions, Estimates, Statistic};
use plotting::Plotting;
use report::{CliReport, Report, ReportContext, Reports};
use routine::Function;
#[cfg(feature = "html_reports")]
use html::Html;
pub use benchmark::{Benchmark, BenchmarkDefinition, ParameterizedBenchmark};
lazy_static! {
static ref DEBUG_ENABLED: bool = { std::env::vars().any(|(key, _)| key == "CRITERION_DEBUG") };
}
fn debug_enabled() -> bool {
*DEBUG_ENABLED
}
// Fake function which shows a deprecation warning when compiled without the html_reports feature.
#[cfg(not(feature = "html_reports"))]
#[cfg_attr(not(feature = "html_reports"), doc(hidden))]
pub fn deprecation_warning() {
#[deprecated(
since = "0.2.6",
note = "The html_reports cargo feature is deprecated. As of 0.3.0, HTML reports will no longer be optional."
)]
fn deprecation_warning_inner() {}
deprecation_warning_inner()
}
/// A function that is opaque to the optimizer, used to prevent the compiler from
/// optimizing away computations in a benchmark.
///
/// This variant is backed by the (unstable) test::black_box function.
#[cfg(feature = "real_blackbox")]
pub fn black_box<T>(dummy: T) -> T {
test::black_box(dummy)
}
/// A function that is opaque to the optimizer, used to prevent the compiler from
/// optimizing away computations in a benchmark.
///
/// This variant is stable-compatible, but it may cause some performance overhead
/// or fail to prevent code from being eliminated.
#[cfg(not(feature = "real_blackbox"))]
pub fn black_box<T>(dummy: T) -> T {
unsafe {
let ret = std::ptr::read_volatile(&dummy);
std::mem::forget(dummy);
ret
}
}
/// Representing a function to benchmark together with a name of that function.
/// Used together with `bench_functions` to represent one out of multiple functions
/// under benchmark.
pub struct Fun<I: fmt::Debug> {
f: NamedRoutine<I>,
}
impl<I> Fun<I>
where
I: fmt::Debug + 'static,
{
/// Create a new `Fun` given a name and a closure
pub fn new<F>(name: &str, f: F) -> Fun<I>
where
F: FnMut(&mut Bencher, &I) + 'static,
{
let routine = NamedRoutine {
id: name.to_owned(),
f: Box::new(RefCell::new(Function::new(f))),
};
Fun { f: routine }
}
}
/// Argument to [`Bencher::iter_batched`](struct.Bencher.html#method.iter_batched) and
/// [`Bencher::iter_batched_ref`](struct.Bencher.html#method.iter_batched_ref) which controls the
/// batch size.
///
/// Generally speaking, almost all benchmarks should use `SmallInput`. If the input or the result
/// of the benchmark routine is large enough that `SmallInput` causes out-of-memory errors,
/// `LargeInput` can be used to reduce memory usage at the cost of increasing the measurement
/// overhead. If the input or the result is extremely large (or if it holds some
/// limited external resource like a file handle), `PerIteration` will set the number of iterations
/// per batch to exactly one. `PerIteration` can increase the measurement overhead substantially
/// and should be avoided wherever possible.
///
/// Each value lists an estimate of the measurement overhead. This is intended as a rough guide
/// to assist in choosing an option, it should not be relied upon. In particular, it is not valid
/// to subtract the listed overhead from the measurement and assume that the result represents the
/// true runtime of a function. The actual measurement overhead for your specific benchmark depends
/// on the details of the function you're benchmarking and the hardware and operating
/// system running the benchmark.
///
/// With that said, if the runtime of your function is small relative to the measurement overhead
/// it will be difficult to take accurate measurements. In this situation, the best option is to use
/// [`Bencher::iter`](struct.Bencher.html#method.iter_batched_ref) which has next-to-zero measurement
/// overhead.
#[derive(Debug, Eq, PartialEq, Copy, Hash, Clone)]
pub enum BatchSize {
/// `SmallInput` indicates that the input to the benchmark routine (the value returned from
/// the setup routine) is small enough that millions of values can be safely held in memory.
/// Always prefer `SmallInput` unless the benchmark is using too much memory.
///
/// In testing, the maximum measurement overhead from benchmarking with `SmallInput` is on the
/// order of 500 picoseconds. This is presented as a rough guide; your results may vary.
SmallInput,
/// `LargeInput` indicates that the input to the benchmark routine or the value returned from
/// that routine is large. This will reduce the memory usage but increase the measurement
/// overhead.
///
/// In testing, the maximum measurement overhead from benchmarking with `LargeInput` is on the
/// order of 750 picoseconds. This is presented as a rough guide; your results may vary.
LargeInput,
/// `PerIteration` indicates that the input to the benchmark routine or the value returned from
/// that routine is extremely large or holds some limited resource, such that holding many values
/// in memory at once is infeasible. This provides the worst measurement overhead, but the
/// lowest memory usage.
///
/// In testing, the maximum measurement overhead from benchmarking with `PerIteration` is on the
/// order of 350 nanoseconds or 350,000 picoseconds. This is presented as a rough guide; your
/// results may vary.
PerIteration,
/// `NumBatches` will attempt to divide the iterations up into a given number of batches.
/// A larger number of batches (and thus smaller batches) will reduce memory usage but increase
/// measurement overhead. This allows the user to choose their own tradeoff between memory usage
/// and measurement overhead, but care must be taken in tuning the number of batches. Most
/// benchmarks should use `SmallInput` or `LargeInput` instead.
NumBatches(u64),
/// `NumIterations` fixes the batch size to a constant number, specified by the user. This
/// allows the user to choose their own tradeoff between overhead and memory usage, but care must
/// be taken in tuning the batch size. In general, the measurement overhead of NumIterations
/// will be larger than that of `NumBatches`. Most benchmarks should use `SmallInput` or
/// `LargeInput` instead.
NumIterations(u64),
#[doc(hidden)]
__NonExhaustive,
}
impl BatchSize {
/// Convert to a number of iterations per batch.
///
/// We try to do a constant number of batches regardless of the number of iterations in this
/// sample. If the measurement overhead is roughly constant regardless of the number of
/// iterations the analysis of the results later will have an easier time separating the
/// measurement overhead from the benchmark time.
fn iters_per_batch(self, iters: u64) -> u64 {
match self {
BatchSize::SmallInput => (iters + 10 - 1) / 10,
BatchSize::LargeInput => (iters + 1000 - 1) / 1000,
BatchSize::PerIteration => 1,
BatchSize::NumBatches(batches) => (iters + batches - 1) / batches,
BatchSize::NumIterations(size) => size,
BatchSize::__NonExhaustive => panic!("__NonExhaustive is not a valid BatchSize."),
}
}
}
/// Timer struct to iterate a benchmarked function and measure the runtime.
///
/// This struct provides different timing loops as methods. Each timing loop provides a different
/// way to time a routine and each has advantages and disadvantages.
///
/// * If your routine requires no per-iteration setup and returns a value with an expensive `drop`
/// method, use `iter_with_large_drop`.
/// * If your routine requires some per-iteration setup that shouldn't be timed, use `iter_batched`
/// or `iter_batched_ref`. See [`BatchSize`](enum.BatchSize.html) for a discussion of batch sizes.
/// If the setup value implements `Drop` and you don't want to include the `drop` time in the
/// measurement, use `iter_batched_ref`, otherwise use `iter_batched`. These methods are also
/// suitable for benchmarking routines which return a value with an expensive `drop` method,
/// but are more complex than `iter_with_large_drop`.
/// * Otherwise, use `iter`.
#[derive(Clone, Copy)]
pub struct Bencher {
iterated: bool,
iters: u64,
elapsed: Duration,
}
impl Bencher {
/// Times a `routine` by executing it many times and timing the total elapsed time.
///
/// Prefer this timing loop when `routine` returns a value that doesn't have a destructor.
///
/// # Timing model
///
/// Note that the `Bencher` also times the time required to destroy the output of `routine()`.
/// Therefore prefer this timing loop when the runtime of `mem::drop(O)` is negligible compared
/// to the runtime of the `routine`.
///
/// ```text
/// elapsed = Instant::now + iters * (routine + mem::drop(O) + Range::next)
/// ```
///
/// # Example
///
/// ```rust
/// #[macro_use] extern crate criterion;
///
/// use criterion::*;
///
/// // The function to benchmark
/// fn foo() {
/// // ...
/// }
///
/// fn bench(c: &mut Criterion) {
/// c.bench_function("iter", move |b| {
/// b.iter(|| foo())
/// });
/// }
///
/// criterion_group!(benches, bench);
/// criterion_main!(benches);
/// ```
///
#[inline(never)]
pub fn iter<O, R>(&mut self, mut routine: R)
where
R: FnMut() -> O,
{
self.iterated = true;
let start = Instant::now();
for _ in 0..self.iters {
black_box(routine());
}
self.elapsed = start.elapsed();
}
#[doc(hidden)]
pub fn iter_with_setup<I, O, S, R>(&mut self, setup: S, routine: R)
where
S: FnMut() -> I,
R: FnMut(I) -> O,
{
self.iter_batched(setup, routine, BatchSize::PerIteration);
}
/// Times a `routine` by collecting its output on each iteration. This avoids timing the
/// destructor of the value returned by `routine`.
///
/// WARNING: This requires `O(iters * mem::size_of::<O>())` of memory, and `iters` is not under the
/// control of the caller. If this causes out-of-memory errors, use `iter_batched` instead.
///
/// # Timing model
///
/// ``` text
/// elapsed = Instant::now + iters * (routine) + Iterator::collect::<Vec<_>>
/// ```
///
/// # Example
///
/// ```rust
/// #[macro_use] extern crate criterion;
///
/// use criterion::*;
///
/// fn create_vector() -> Vec<u64> {
/// # vec![]
/// // ...
/// }
///
/// fn bench(c: &mut Criterion) {
/// c.bench_function("with_drop", move |b| {
/// // This will avoid timing the Vec::drop.
/// b.iter_with_large_drop(|| create_vector())
/// });
/// }
///
/// criterion_group!(benches, bench);
/// criterion_main!(benches);
/// ```
///
#[doc(hidden)]
pub fn iter_with_large_drop<O, R>(&mut self, mut routine: R)
where
R: FnMut() -> O,
{
self.iter_batched(|| (), |_| routine(), BatchSize::SmallInput);
}
#[doc(hidden)]
pub fn iter_with_large_setup<I, O, S, R>(&mut self, setup: S, routine: R)
where
S: FnMut() -> I,
R: FnMut(I) -> O,
{
self.iter_batched(setup, routine, BatchSize::NumBatches(1));
}
/// Times a `routine` that requires some input by generating a batch of input, then timing the
/// iteration of the benchmark over the input. See [`BatchSize`](struct.BatchSize.html) for
/// details on choosing the batch size. Use this when the routine must consume its input.
///
/// For example, use this loop to benchmark sorting algorithms, because they require unsorted
/// data on each iteration.
///
/// # Timing model
///
/// ```text
/// elapsed = (Instant::now * num_batches) + (iters * (routine + O::drop)) + Vec::extend
/// ```
///
/// # Example
///
/// ```rust
/// #[macro_use] extern crate criterion;
///
/// use criterion::*;
///
/// fn create_scrambled_data() -> Vec<u64> {
/// # vec![]
/// // ...
/// }
///
/// // The sorting algorithm to test
/// fn sort(data: &mut [u64]) {
/// // ...
/// }
///
/// fn bench(c: &mut Criterion) {
/// let data = create_scrambled_data();
///
/// c.bench_function("with_setup", move |b| {
/// // This will avoid timing the to_vec call.
/// b.iter_batched(|| data.clone(), |mut data| sort(&mut data), BatchSize::SmallInput)
/// });
/// }
///
/// criterion_group!(benches, bench);
/// criterion_main!(benches);
/// ```
///
#[inline(never)]
pub fn iter_batched<I, O, S, R>(&mut self, mut setup: S, mut routine: R, size: BatchSize)
where
S: FnMut() -> I,
R: FnMut(I) -> O,
{
self.iterated = true;
let batch_size = size.iters_per_batch(self.iters);
assert!(batch_size != 0, "Batch size must not be zero.");
self.elapsed = Duration::from_secs(0);
if batch_size == 1 {
for _ in 0..self.iters {
let mut input = black_box(setup());
let start = Instant::now();
let output = routine(input);
self.elapsed += start.elapsed();
drop(black_box(output));
}
} else {
let mut iteration_counter = 0;
while iteration_counter < self.iters {
let batch_size = ::std::cmp::min(batch_size, self.iters - iteration_counter);
let inputs = black_box((0..batch_size).map(|_| setup()).collect::<Vec<_>>());
let mut outputs = Vec::with_capacity(batch_size as usize);
let start = Instant::now();
outputs.extend(inputs.into_iter().map(&mut routine));
self.elapsed += start.elapsed();
black_box(outputs);
iteration_counter += batch_size;
}
}
}
/// Times a `routine` that requires some input by generating a batch of input, then timing the
/// iteration of the benchmark over the input. See [`BatchSize`](struct.BatchSize.html) for
/// details on choosing the batch size. Use this when the routine should accept the input by
/// mutable reference.
///
/// For example, use this loop to benchmark sorting algorithms, because they require unsorted
/// data on each iteration.
///
/// # Timing model
///
/// ```text
/// elapsed = (Instant::now * num_batches) + (iters * routine) + Vec::extend
/// ```
///
/// # Example
///
/// ```rust
/// #[macro_use] extern crate criterion;
///
/// use criterion::*;
///
/// fn create_scrambled_data() -> Vec<u64> {
/// # vec![]
/// // ...
/// }
///
/// // The sorting algorithm to test
/// fn sort(data: &mut [u64]) {
/// // ...
/// }
///
/// fn bench(c: &mut Criterion) {
/// let data = create_scrambled_data();
///
/// c.bench_function("with_setup", move |b| {
/// // This will avoid timing the to_vec call.
/// b.iter_batched(|| data.clone(), |mut data| sort(&mut data), BatchSize::SmallInput)
/// });
/// }
///
/// criterion_group!(benches, bench);
/// criterion_main!(benches);
/// ```
///
#[inline(never)]
pub fn iter_batched_ref<I, O, S, R>(&mut self, mut setup: S, mut routine: R, size: BatchSize)
where
S: FnMut() -> I,
R: FnMut(&mut I) -> O,
{
self.iterated = true;
let batch_size = size.iters_per_batch(self.iters);
assert!(batch_size != 0, "Batch size must not be zero.");
self.elapsed = Duration::from_secs(0);
if batch_size == 1 {
for _ in 0..self.iters {
let mut input = black_box(setup());
let start = Instant::now();
let output = routine(&mut input);
self.elapsed += start.elapsed();
drop(black_box(output));
drop(black_box(input));
}
} else {
let mut iteration_counter = 0;
while iteration_counter < self.iters {
let batch_size = ::std::cmp::min(batch_size, self.iters - iteration_counter);
let mut inputs = black_box((0..batch_size).map(|_| setup()).collect::<Vec<_>>());
let mut outputs = Vec::with_capacity(batch_size as usize);
let start = Instant::now();
outputs.extend(inputs.iter_mut().map(&mut routine));
self.elapsed += start.elapsed();
black_box(outputs);
iteration_counter += batch_size;
}
}
}
// Benchmarks must actually call one of the iter methods. This causes benchmarks to fail loudly
// if they don't.
fn assert_iterated(&mut self) {
if !self.iterated {
panic!("Benchmark function must call Bencher::iter or related method.");
}
self.iterated = false;
}
}
/// Baseline describes how the baseline_directory is handled.
pub enum Baseline {
/// Compare ensures a previous saved version of the baseline
/// exists and runs comparison against that.
Compare,
/// Save writes the benchmark results to the baseline directory,
/// overwriting any results that were previously there.
Save,
}
/// The benchmark manager
///
/// `Criterion` lets you configure and execute benchmarks
///
/// Each benchmark consists of four phases:
///
/// - **Warm-up**: The routine is repeatedly executed, to let the CPU/OS/JIT/interpreter adapt to
/// the new load
/// - **Measurement**: The routine is repeatedly executed, and timing information is collected into
/// a sample
/// - **Analysis**: The sample is analyzed and distiled into meaningful statistics that get
/// reported to stdout, stored in files, and plotted
/// - **Comparison**: The current sample is compared with the sample obtained in the previous
/// benchmark.
pub struct Criterion {
config: BenchmarkConfig,
plotting: Plotting,
filter: Option<String>,
report: Box<Report>,
output_directory: String,
baseline_directory: String,
baseline: Baseline,
profile_time: Option<Duration>,
test_mode: bool,
list_mode: bool,
}
impl Default for Criterion {
/// Creates a benchmark manager with the following default settings:
///
/// - Sample size: 100 measurements
/// - Warm-up time: 3 s
/// - Measurement time: 5 s
/// - Bootstrap size: 100 000 resamples
/// - Noise threshold: 0.01 (1%)
/// - Confidence level: 0.95
/// - Significance level: 0.05
/// - Plotting: enabled (if gnuplot is available)
/// - No filter
fn default() -> Criterion {
#[allow(unused_mut, unused_assignments)]
let mut plotting = Plotting::Unset;
let mut reports: Vec<Box<Report>> = vec![];
reports.push(Box::new(CliReport::new(false, false, false)));
reports.push(Box::new(FileCsvReport));
let output_directory =
match std::env::vars().find(|&(ref key, _)| key == "CARGO_TARGET_DIR") {
Some((_, value)) => format!("{}/criterion", value),
None => "target/criterion".to_owned(),
};
Criterion {
config: BenchmarkConfig {
confidence_level: 0.95,
measurement_time: Duration::new(5, 0),
noise_threshold: 0.01,
nresamples: 100_000,
sample_size: 100,
significance_level: 0.05,
warm_up_time: Duration::new(3, 0),
},
plotting,
filter: None,
report: Box::new(Reports::new(reports)),
baseline_directory: "base".to_owned(),
baseline: Baseline::Save,
profile_time: None,
test_mode: false,
list_mode: false,
output_directory,
}
}
}
impl Criterion {
/// Changes the default size of the sample for benchmarks run with this runner.
///
/// A bigger sample should yield more accurate results if paired with a sufficiently large
/// measurement time.
///
/// Sample size must be at least 2.
///
/// # Panics
///
/// Panics if set to zero or one
pub fn sample_size(mut self, n: usize) -> Criterion {
assert!(n >= 2);
if n < 10 {
println!("Warning: Sample sizes < 10 will be disallowed in Criterion.rs 0.3.0.");
}
self.config.sample_size = n;
self
}
/// Changes the default warm up time for benchmarks run with this runner.
///
/// # Panics
///
/// Panics if the input duration is zero
pub fn warm_up_time(mut self, dur: Duration) -> Criterion {
assert!(dur.to_nanos() > 0);
self.config.warm_up_time = dur;
self
}
/// Changes the default measurement time for benchmarks run with this runner.
///
/// With a longer time, the measurement will become more resilient to transitory peak loads
/// caused by external programs
///
/// **Note**: If the measurement time is too "low", Criterion will automatically increase it
///
/// # Panics
///
/// Panics if the input duration in zero
pub fn measurement_time(mut self, dur: Duration) -> Criterion {
assert!(dur.to_nanos() > 0);
self.config.measurement_time = dur;
self
}
/// Changes the default number of resamples for benchmarks run with this runner.
///
/// Number of resamples to use for the
/// [bootstrap](http://en.wikipedia.org/wiki/Bootstrapping_(statistics)#Case_resampling)
///
/// A larger number of resamples reduces the random sampling errors, which are inherent to the
/// bootstrap method, but also increases the analysis time
///
/// # Panics
///
/// Panics if the number of resamples is set to zero
pub fn nresamples(mut self, n: usize) -> Criterion {
assert!(n > 0);
self.config.nresamples = n;
self
}
/// Changes the default noise threshold for benchmarks run with this runner.
///
/// This threshold is used to decide if an increase of `X%` in the execution time is considered
/// significant or should be flagged as noise
///
/// *Note:* A value of `0.02` is equivalent to `2%`
///
/// # Panics
///
/// Panics is the threshold is set to a negative value
pub fn noise_threshold(mut self, threshold: f64) -> Criterion {
assert!(threshold >= 0.0);
self.config.noise_threshold = threshold;
self
}
/// Changes the default confidence level for benchmarks run with this runner
///
/// The confidence level is used to calculate the
/// [confidence intervals](https://en.wikipedia.org/wiki/Confidence_interval) of the estimated
/// statistics
///
/// # Panics
///
/// Panics if the confidence level is set to a value outside the `(0, 1)` range
pub fn confidence_level(mut self, cl: f64) -> Criterion {
assert!(cl > 0.0 && cl < 1.0);
self.config.confidence_level = cl;
self
}
/// Changes the default [significance level](https://en.wikipedia.org/wiki/Statistical_significance)
/// for benchmarks run with this runner
///
/// The significance level is used for
/// [hypothesis testing](https://en.wikipedia.org/wiki/Statistical_hypothesis_testing)
///
/// # Panics
///
/// Panics if the significance level is set to a value outside the `(0, 1)` range
pub fn significance_level(mut self, sl: f64) -> Criterion {
assert!(sl > 0.0 && sl < 1.0);
self.config.significance_level = sl;
self
}
/// Enables plotting
#[cfg(feature = "html_reports")]
pub fn with_plots(mut self) -> Criterion {
use criterion_plot::VersionError;
self.plotting = match criterion_plot::version() {
Ok(_) => {
let mut reports: Vec<Box<Report>> = vec![];
reports.push(Box::new(CliReport::new(false, false, false)));
reports.push(Box::new(FileCsvReport));
reports.push(Box::new(Html::new()));
self.report = Box::new(Reports::new(reports));
Plotting::Enabled
}
Err(e) => {
match e {
VersionError::Exec(_) => println!("Gnuplot not found, disabling plotting"),
e => println!("Gnuplot not found or not usable, disabling plotting\n{}", e),
}
Plotting::NotAvailable
}
};
self
}
/// Enables plotting
#[cfg(not(feature = "html_reports"))]
pub fn with_plots(self) -> Criterion {
self
}
/// Disables plotting
pub fn without_plots(mut self) -> Criterion {
self.plotting = Plotting::Disabled;
self
}
/// Return true if generation of the plots is possible.
#[cfg(feature = "html_reports")]
pub fn can_plot(&self) -> bool {
match self.plotting {
Plotting::NotAvailable => false,
Plotting::Enabled => true,
_ => criterion_plot::version().is_ok(),
}
}
/// Return true if generation of the plots is possible.
#[cfg(not(feature = "html_reports"))]
pub fn can_plot(&self) -> bool {
false
}
/// Names an explicit baseline and enables overwriting the previous results.
pub fn save_baseline(mut self, baseline: String) -> Criterion {
self.baseline_directory = baseline;
self.baseline = Baseline::Save;
self
}
/// Names an explicit baseline and disables overwriting the previous results.
pub fn retain_baseline(mut self, baseline: String) -> Criterion {
self.baseline_directory = baseline;
self.baseline = Baseline::Compare;
self
}
/// Filters the benchmarks. Only benchmarks with names that contain the
/// given string will be executed.
pub fn with_filter<S: Into<String>>(mut self, filter: S) -> Criterion {
self.filter = Some(filter.into());
self
}
/// Set the output directory (currently for testing only)
#[doc(hidden)]
pub fn output_directory(mut self, path: &std::path::Path) -> Criterion {
self.output_directory = path.to_string_lossy().into_owned();
self
}
/// Generate the final summary at the end of a run.
#[doc(hidden)]
pub fn final_summary(&self) {
if self.profile_time.is_some() || self.test_mode {
return;
}
let report_context = ReportContext {
output_directory: self.output_directory.clone(),
plotting: self.plotting,
plot_config: PlotConfiguration::default(),
test_mode: self.test_mode,
};
self.report.final_summary(&report_context);
}
/// Configure this criterion struct based on the command-line arguments to
/// this process.
pub fn configure_from_args(mut self) -> Criterion {
use clap::{App, Arg};
let matches = App::new("Criterion Benchmark")
.arg(Arg::with_name("FILTER")
.help("Skip benchmarks whose names do not contain FILTER.")
.index(1))
.arg(Arg::with_name("color")
.short("c")
.long("color")
.alias("colour")
.takes_value(true)
.possible_values(&["auto", "always", "never"])
.default_value("auto")
.help("Configure coloring of output. always = always colorize output, never = never colorize output, auto = colorize output if output is a tty and compiled for unix."))
.arg(Arg::with_name("verbose")
.short("v")
.long("verbose")
.help("Print additional statistical information."))
.arg(Arg::with_name("noplot")
.short("n")
.long("noplot")
.help("Disable plot and HTML generation."))
.arg(Arg::with_name("save-baseline")
.short("s")
.long("save-baseline")
.default_value("base")
.help("Save results under a named baseline."))
.arg(Arg::with_name("baseline")
.short("b")
.long("baseline")
.takes_value(true)
.conflicts_with("save-baseline")
.help("Compare to a named baseline."))
.arg(Arg::with_name("list")
.long("list")
.help("List all benchmarks"))
.arg(Arg::with_name("measure-only")
.long("measure-only")
.hidden(true)
.help("Only perform measurements; do no analysis or storage of results. This is useful eg. when profiling the benchmarks, to reduce clutter in the profiling data."))
.arg(Arg::with_name("profile-time")
.long("profile-time")
.takes_value(true)
.help("Iterate each benchmark for approximately the given number of seconds, doing no analysis and without storing the results. Useful for running the benchmarks in a profiler."))
.arg(Arg::with_name("test")
.long("test")
.help("Run the benchmarks once, to verify that they execute successfully, but do not measure or report the results."))
//Ignored but always passed to benchmark executables
.arg(Arg::with_name("bench")
.hidden(true)
.long("bench"))
.arg(Arg::with_name("version")
.hidden(true)
.short("V")
.long("version"))
.after_help("
This executable is a Criterion.rs benchmark.
See https://github.com/bheisler/criterion.rs for more details.
To enable debug output, define the environment variable CRITERION_DEBUG.
Criterion.rs will output more debug information and will save the gnuplot
scripts alongside the generated plots.
")
.get_matches();
if let Some(filter) = matches.value_of("FILTER") {
self = self.with_filter(filter);
}
let verbose = matches.is_present("verbose");
let stdout_isatty = atty::is(atty::Stream::Stdout);
let mut enable_text_overwrite = stdout_isatty && !verbose && !debug_enabled();
let enable_text_coloring;
match matches.value_of("color") {
Some("always") => {
enable_text_coloring = true;
}
Some("never") => {
enable_text_coloring = false;
enable_text_overwrite = false;
}
_ => enable_text_coloring = stdout_isatty,
}
if matches.is_present("noplot") || matches.is_present("test") {
self = self.without_plots();
} else {
self = self.with_plots();
}
if let Some(dir) = matches.value_of("save-baseline") {
self.baseline = Baseline::Save;
self.baseline_directory = dir.to_owned()
}
if let Some(dir) = matches.value_of("baseline") {
self.baseline = Baseline::Compare;
self.baseline_directory = dir.to_owned();
}
let mut reports: Vec<Box<Report>> = vec![];
reports.push(Box::new(CliReport::new(
enable_text_overwrite,
enable_text_coloring,
verbose,
)));
reports.push(Box::new(FileCsvReport));
// TODO: Remove this in 0.3.0
if matches.is_present("measure-only") {
println!("Warning: The '--measure-only' argument is deprecated and will be removed in Criterion.rs 0.3.0. Use '--profile-time' instead.");
self.profile_time = Some(Duration::from_secs(5));
}
if matches.is_present("profile-time") {
let num_seconds = value_t!(matches.value_of("profile-time"), u64).unwrap_or_else(|e| {
println!("{}", e);
std::process::exit(1)
});
if num_seconds < 1 {
println!("Profile time must be at least one second.");
std::process::exit(1);
}
self.profile_time = Some(Duration::from_secs(num_seconds));
}
self.test_mode = matches.is_present("test");
if matches.is_present("list") {
self.test_mode = true;
self.list_mode = true;
}
#[cfg(feature = "html_reports")]
{
if self.profile_time.is_none() {
reports.push(Box::new(Html::new()));
}
}
self.report = Box::new(Reports::new(reports));
self
}
fn filter_matches(&self, id: &str) -> bool {
match self.filter {
Some(ref string) => id.contains(string),
None => true,
}
}
/// Benchmarks a function
///
/// # Example
///
/// ```rust
/// # #[macro_use] extern crate criterion;
/// # use self::criterion::*;
///
/// fn bench(c: &mut Criterion) {
/// // Setup (construct data, allocate memory, etc)
/// c.bench_function(
/// "function_name",
/// |b| b.iter(|| {
/// // Code to benchmark goes here
/// }),
/// );
/// }
///
/// criterion_group!(benches, bench);
/// criterion_main!(benches);
/// ```
pub fn bench_function<F>(&mut self, id: &str, f: F) -> &mut Criterion
where
F: FnMut(&mut Bencher) + 'static,
{
self.bench(id, Benchmark::new(id, f))
}
/// Benchmarks multiple functions
///
/// All functions get the same input and are compared with the other implementations.
/// Works similar to `bench_function`, but with multiple functions.
///
/// # Example
///
/// ``` rust
/// # #[macro_use] extern crate criterion;
/// # use self::criterion::*;
/// # fn seq_fib(i: &u32) {}
/// # fn par_fib(i: &u32) {}
///
/// fn bench_seq_fib(b: &mut Bencher, i: &u32) {
/// b.iter(|| {
/// seq_fib(i);
/// });
/// }
///
/// fn bench_par_fib(b: &mut Bencher, i: &u32) {
/// b.iter(|| {
/// par_fib(i);
/// });
/// }
///
/// fn bench(c: &mut Criterion) {
/// let sequential_fib = Fun::new("Sequential", bench_seq_fib);
/// let parallel_fib = Fun::new("Parallel", bench_par_fib);
/// let funs = vec![sequential_fib, parallel_fib];
///
/// c.bench_functions("Fibonacci", funs, 14);
/// }
///
/// criterion_group!(benches, bench);
/// criterion_main!(benches);
/// ```
pub fn bench_functions<I>(&mut self, id: &str, funs: Vec<Fun<I>>, input: I) -> &mut Criterion
where
I: fmt::Debug + 'static,
{
let benchmark = ParameterizedBenchmark::with_functions(
funs.into_iter().map(|fun| fun.f).collect(),
vec![input],
);
self.bench(id, benchmark)
}
/// Benchmarks a function under various inputs
///
/// This is a convenience method to execute several related benchmarks. Each benchmark will
/// receive the id: `${id}/${input}`.
///
/// # Example
///
/// ```rust
/// # #[macro_use] extern crate criterion;
/// # use self::criterion::*;
///
/// fn bench(c: &mut Criterion) {
/// c.bench_function_over_inputs("from_elem",
/// |b: &mut Bencher, size: &usize| {
/// b.iter(|| vec![0u8; *size]);
/// },
/// vec![1024, 2048, 4096]
/// );
/// }
///
/// criterion_group!(benches, bench);
/// criterion_main!(benches);
/// ```
pub fn bench_function_over_inputs<I, F>(&mut self, id: &str, f: F, inputs: I) -> &mut Criterion
where
I: IntoIterator,
I::Item: fmt::Debug + 'static,
F: FnMut(&mut Bencher, &I::Item) + 'static,
{
self.bench(id, ParameterizedBenchmark::new(id, f, inputs))
}
/// Benchmarks an external program
///
/// The external program must:
///
/// * Read the number of iterations from stdin
/// * Execute the routine to benchmark that many times
/// * Print the elapsed time (in nanoseconds) to stdout
///
/// ```rust,no_run
/// # use std::io::{self, BufRead};
/// # use std::time::Instant;
/// # use std::time::Duration;
/// # trait DurationExt { fn to_nanos(&self) -> u64 { 0 } }
/// # impl DurationExt for Duration {}
/// // Example of an external program that implements this protocol
///
/// fn main() {
/// let stdin = io::stdin();
/// let ref mut stdin = stdin.lock();
///
/// // For each line in stdin
/// for line in stdin.lines() {
/// // Parse line as the number of iterations
/// let iters: u64 = line.unwrap().trim().parse().unwrap();
///
/// // Setup
///
/// // Benchmark
/// let start = Instant::now();
/// // Execute the routine "iters" times
/// for _ in 0..iters {
/// // Code to benchmark goes here
/// }
/// let elapsed = start.elapsed();
///
/// // Teardown
///
/// // Report elapsed time in nanoseconds to stdout
/// println!("{}", elapsed.to_nanos());
/// }
/// }
/// ```
#[deprecated(
since = "0.2.6",
note = "External program benchmarks were rarely used and are awkward to maintain, so they are scheduled for deletion in 0.3.0"
)]
#[allow(deprecated)]
pub fn bench_program(&mut self, id: &str, program: Command) -> &mut Criterion {
self.bench(id, Benchmark::new_external(id, program))
}
/// Benchmarks an external program under various inputs
///
/// This is a convenience method to execute several related benchmarks. Each benchmark will
/// receive the id: `${id}/${input}`.
#[deprecated(
since = "0.2.6",
note = "External program benchmarks were rarely used and are awkward to maintain, so they are scheduled for deletion in 0.3.0"
)]
#[allow(deprecated)]
pub fn bench_program_over_inputs<I, F>(
&mut self,
id: &str,
mut program: F,
inputs: I,
) -> &mut Criterion
where
F: FnMut() -> Command + 'static,
I: IntoIterator,
I::Item: fmt::Debug + 'static,
{
self.bench(
id,
ParameterizedBenchmark::new_external(
id,
move |i| {
let mut command = program();
command.arg(format!("{:?}", i));
command
},
inputs,
),
)
}
/// Executes the given benchmark. Use this variant to execute benchmarks
/// with complex configuration. This can be used to compare multiple
/// functions, execute benchmarks with custom configuration settings and
/// more. See the Benchmark and ParameterizedBenchmark structs for more
/// information.
///
/// ```rust
/// # #[macro_use] extern crate criterion;
/// # use criterion::*;
/// # fn routine_1() {}
/// # fn routine_2() {}
///
/// fn bench(c: &mut Criterion) {
/// // Setup (construct data, allocate memory, etc)
/// c.bench(
/// "routines",
/// Benchmark::new("routine_1", |b| b.iter(|| routine_1()))
/// .with_function("routine_2", |b| b.iter(|| routine_2()))
/// .sample_size(50)
/// );
/// }
///
/// criterion_group!(benches, bench);
/// criterion_main!(benches);
/// ```
pub fn bench<B: BenchmarkDefinition>(
&mut self,
group_id: &str,
benchmark: B,
) -> &mut Criterion {
benchmark.run(group_id, self);
self
}
}
mod plotting {
#[derive(Debug, Clone, Copy)]
pub enum Plotting {
Unset,
Disabled,
Enabled,
NotAvailable,
}
impl Plotting {
pub fn is_enabled(self) -> bool {
match self {
Plotting::Enabled => true,
_ => false,
}
}
}
}
trait DurationExt {
fn to_nanos(&self) -> u64;
}
const NANOS_PER_SEC: u64 = 1_000_000_000;
impl DurationExt for Duration {
fn to_nanos(&self) -> u64 {
self.as_secs() * NANOS_PER_SEC + u64::from(self.subsec_nanos())
}
}
#[derive(Clone, Copy, PartialEq, Deserialize, Serialize, Debug)]
struct ConfidenceInterval {
confidence_level: f64,
lower_bound: f64,
upper_bound: f64,
}
#[derive(Clone, Copy, PartialEq, Deserialize, Serialize, Debug)]
struct Estimate {
/// The confidence interval for this estimate
confidence_interval: ConfidenceInterval,
///
point_estimate: f64,
/// The standard error of this estimate
standard_error: f64,
}
fn build_estimates(
distributions: &Distributions,
points: &BTreeMap<Statistic, f64>,
cl: f64,
) -> Estimates {
distributions
.iter()
.map(|(&statistic, distribution)| {
let point_estimate = points[&statistic];
let (lb, ub) = distribution.confidence_interval(cl);
(
statistic,
Estimate {
confidence_interval: ConfidenceInterval {
confidence_level: cl,
lower_bound: lb,
upper_bound: ub,
},
point_estimate,
standard_error: distribution.std_dev(None),
},
)
})
.collect()
}
/// Enum representing different ways of measuring the throughput of benchmarked code.
/// If the throughput setting is configured for a benchmark then the estimated throughput will
/// be reported as well as the time per iteration.
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum Throughput {
/// Measure throughput in terms of bytes/second. The value should be the number of bytes
/// processed by one iteration of the benchmarked code. Typically, this would be the length of
/// an input string or `&[u8]`.
Bytes(u32),
/// Measure throughput in terms of elements/second. The value should be the number of elements
/// processed by one iteration of the benchmarked code. Typically, this would be the size of a
/// collection, but could also be the number of lines of input text or the number of values to
/// parse.
Elements(u32),
}
/// Axis scaling type
#[derive(Debug, Clone, Copy)]
pub enum AxisScale {
/// Axes scale linearly
Linear,
/// Axes scale logarithmically
Logarithmic,
}
/// Contains the configuration options for the plots generated by a particular benchmark
/// or benchmark group.
///
/// ```rust
/// use self::criterion::{Bencher, Criterion, Benchmark, PlotConfiguration, AxisScale};
///
/// let plot_config = PlotConfiguration::default()
/// .summary_scale(AxisScale::Logarithmic);
///
/// Benchmark::new("test", |b| b.iter(|| 10))
/// .plot_config(plot_config);
/// ```
#[derive(Debug, Clone)]
pub struct PlotConfiguration {
summary_scale: AxisScale,
}
impl Default for PlotConfiguration {
fn default() -> PlotConfiguration {
PlotConfiguration {
summary_scale: AxisScale::Linear,
}
}
}
impl PlotConfiguration {
/// Set the axis scale (linear or logarithmic) for the summary plots. Typically, you would
/// set this to logarithmic if benchmarking over a range of inputs which scale exponentially.
/// Defaults to linear.
pub fn summary_scale(mut self, new_scale: AxisScale) -> PlotConfiguration {
self.summary_scale = new_scale;
self
}
}