selinux/policy/index.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
// Copyright 2024 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use super::arrays::{Context, FsContext, FsUseType};
use super::extensible_bitmap::ExtensibleBitmapSpan;
use super::metadata::HandleUnknown;
use super::parser::ParseStrategy;
use super::security_context::{CategorySpan, SecurityContext, SecurityLevel};
use super::symbols::{
Class, ClassDefault, ClassDefaultRange, Classes, CommonSymbol, CommonSymbols, MlsLevel,
Permission,
};
use super::{CategoryId, ClassId, ParsedPolicy, RoleId, TypeId};
use crate::{ClassPermission as _, NullessByteStr};
use std::collections::HashMap;
use std::num::NonZeroU32;
/// The [`SecurityContext`] and [`FsUseType`] derived from some `fs_use_*` line of the policy.
pub struct FsUseLabelAndType {
pub context: SecurityContext,
pub use_type: FsUseType,
}
/// An index for facilitating fast lookup of common abstractions inside parsed binary policy data
/// structures. Typically, data is indexed by an enum that describes a well-known value and the
/// index stores the offset of the data in the binary policy to avoid scanning a collection to find
/// an element that contains a matching string. For example, the policy contains a collection of
/// classes that are identified by string names included in each collection entry. However,
/// `policy_index.classes(ObjectClass::Process).unwrap()` yields the offset in the policy's
/// collection of classes where the "process" class resides.
#[derive(Debug)]
pub(super) struct PolicyIndex<PS: ParseStrategy> {
/// Map from well-known classes to their offsets in the associate policy's
/// [`crate::symbols::Classes`] collection.
classes: HashMap<crate::ObjectClass, usize>,
/// Map from well-known permissions to their class's associated [`crate::symbols::Permissions`]
/// collection.
permissions: HashMap<crate::Permission, PermissionIndex>,
/// The parsed binary policy.
parsed_policy: ParsedPolicy<PS>,
/// The "object_r" role used as a fallback for new file context transitions.
cached_object_r_role: RoleId,
}
impl<PS: ParseStrategy> PolicyIndex<PS> {
/// Constructs a [`PolicyIndex`] that indexes over well-known policy elements.
///
/// [`Class`]es and [`Permission`]s used by the kernel are amongst the indexed elements.
/// The policy's `handle_unknown()` configuration determines whether the policy can be loaded even
/// if it omits classes or permissions expected by the kernel, and whether to allow or deny those
/// permissions if so.
pub fn new(parsed_policy: ParsedPolicy<PS>) -> Result<Self, anyhow::Error> {
let policy_classes = parsed_policy.classes();
let common_symbols = parsed_policy.common_symbols();
// Accumulate classes indexed by `crate::ObjectClass`. If the policy defines that unknown
// classes should cause rejection then return an error describing the missing element.
let mut classes = HashMap::new();
for known_class in crate::ObjectClass::all_variants().into_iter() {
match get_class_index_by_name(policy_classes, known_class.name()) {
Some(class_index) => {
classes.insert(known_class, class_index);
}
None => {
if parsed_policy.handle_unknown() == HandleUnknown::Reject {
return Err(anyhow::anyhow!("missing object class {:?}", known_class,));
}
}
}
}
// Accumulate permissions indexed by `crate::Permission`. If the policy defines that unknown
// classes should cause rejection then return an error describing the missing element.
let mut permissions = HashMap::new();
for known_permission in crate::Permission::all_variants().into_iter() {
let object_class = known_permission.class();
if let Some(class_index) = classes.get(&object_class) {
let class = &policy_classes[*class_index];
if let Some(permission_index) =
get_permission_index_by_name(common_symbols, class, known_permission.name())
{
permissions.insert(known_permission, permission_index);
} else if parsed_policy.handle_unknown() == HandleUnknown::Reject {
return Err(anyhow::anyhow!(
"missing permission {:?}:{:?}",
object_class.name(),
known_permission.name(),
));
}
}
}
// Locate the "object_r" role.
let cached_object_r_role = parsed_policy
.role_by_name("object_r")
.ok_or_else(|| anyhow::anyhow!("missing 'object_r' role"))?
.id();
let index = Self { classes, permissions, parsed_policy, cached_object_r_role };
// Verify that the initial Security Contexts are all defined, and valid.
for id in crate::InitialSid::all_variants() {
index.resolve_initial_context(id);
}
// Validate the contexts used in fs_use statements.
for fs_use in index.parsed_policy.fs_uses() {
index.security_context_from_policy_context(fs_use.context());
}
Ok(index)
}
pub fn class<'a>(&'a self, object_class: &crate::ObjectClass) -> Option<&'a Class<PS>> {
self.classes.get(object_class).map(|offset| &self.parsed_policy.classes()[*offset])
}
pub fn permission<'a>(&'a self, permission: &crate::Permission) -> Option<&'a Permission<PS>> {
let target_class = self.class(&permission.class())?;
self.permissions.get(permission).map(|p| match p {
PermissionIndex::Class { permission_index } => {
&target_class.permissions()[*permission_index]
}
PermissionIndex::Common { common_symbol_index, permission_index } => {
let common_symbol = &self.parsed_policy().common_symbols()[*common_symbol_index];
&common_symbol.permissions()[*permission_index]
}
})
}
/// Returns the [`SecurityContext`] with which to label a new file of the specified `class`,
/// based on the supplied `source` and `target` contexts and the policy-defined transition
/// rules. This is equivalent to calling `new_security_context()` directly, with the appropriate
/// "default" values specified for the role, type and security levels.
/// If `name` is non-empty then matching filename-dependent type transitions will be used, if
/// available, in preference to non-named ones.
pub fn new_file_security_context(
&self,
source: &SecurityContext,
target: &SecurityContext,
class: &crate::FileClass,
name: Option<NullessByteStr<'_>>,
) -> SecurityContext {
let object_class = crate::ObjectClass::from(class.clone());
self.new_security_context(
source,
target,
&object_class,
name,
// The SELinux notebook states the role component defaults to the object_r role.
self.cached_object_r_role,
// The SELinux notebook states the type component defaults to the type of the parent
// directory.
target.type_(),
// The SELinux notebook states the range/level component defaults to the low/current
// level of the creating process.
source.low_level(),
None,
)
}
/// Calculates a new security context, as follows:
///
/// - user: the `source` user, unless the policy contains a default_user statement for `class`.
/// - role:
/// - if the policy contains a role_transition from the `source` role to the `target` type,
/// use the transition role
/// - otherwise, if the policy contains a default_role for `class`, use that default role
/// - lastly, if the policy does not contain either, use `default_role`.
/// - type:
/// - if the policy contains a type_transition from the `source` type to the `target` type,
/// use the transition type
/// - otherwise, if the policy contains a default_type for `class`, use that default type
/// - lastly, if the policy does not contain either, use `default_type`.
/// - range
/// - if the policy contains a range_transition from the `source` type to the `target` type,
/// use the transition range
/// - otherwise, if the policy contains a default_range for `class`, use that default range
/// - lastly, if the policy does not contain either, use the `default_low_level` -
/// `default_high_level` range.
///
/// For file-like `class`es a non-empty `name` may be included, in which case `type_transition`
/// rules dependent on the target name will be taken into account.
pub fn new_security_context(
&self,
source: &SecurityContext,
target: &SecurityContext,
class: &crate::ObjectClass,
name: Option<NullessByteStr<'_>>,
default_role: RoleId,
default_type: TypeId,
default_low_level: &SecurityLevel,
default_high_level: Option<&SecurityLevel>,
) -> SecurityContext {
let (user, role, type_, low_level, high_level) = if let Some(policy_class) =
self.class(&class)
{
let class_defaults = policy_class.defaults();
let user = match class_defaults.user() {
ClassDefault::Source => source.user(),
ClassDefault::Target => target.user(),
_ => source.user(),
};
let role =
match self.role_transition_new_role(source.role(), target.type_(), policy_class) {
Some(new_role) => new_role,
None => match class_defaults.role() {
ClassDefault::Source => source.role(),
ClassDefault::Target => target.role(),
_ => default_role,
},
};
// If a `name` was specified for the new object then check for a matching name-dependent
// type-transition rule in the policy.
let type_with_name = name.and_then(|name| {
self.type_transition_new_type_with_name(
source.type_(),
target.type_(),
policy_class,
name,
)
});
// If no `name` was supplied, or no rule matched it, then search the access vector for
// matching (name-independent) type-transition rules.
let type_ = type_with_name.unwrap_or_else(|| {
match self.type_transition_new_type(source.type_(), target.type_(), policy_class) {
Some(new_type) => new_type,
None => match class_defaults.type_() {
ClassDefault::Source => source.type_(),
ClassDefault::Target => target.type_(),
_ => default_type,
},
}
});
let (low_level, high_level) =
match self.range_transition_new_range(source.type_(), target.type_(), policy_class)
{
Some((low_level, high_level)) => (low_level, high_level),
None => match class_defaults.range() {
ClassDefaultRange::SourceLow => (source.low_level().clone(), None),
ClassDefaultRange::SourceHigh => (
source.high_level().unwrap_or_else(|| source.low_level()).clone(),
None,
),
ClassDefaultRange::SourceLowHigh => {
(source.low_level().clone(), source.high_level().map(Clone::clone))
}
ClassDefaultRange::TargetLow => (target.low_level().clone(), None),
ClassDefaultRange::TargetHigh => (
target.high_level().unwrap_or_else(|| target.low_level()).clone(),
None,
),
ClassDefaultRange::TargetLowHigh => {
(target.low_level().clone(), target.high_level().map(Clone::clone))
}
_ => (default_low_level.clone(), default_high_level.map(Clone::clone)),
},
};
(user, role, type_, low_level, high_level)
} else {
// If the class is not defined in the policy then there can be no transitions, nor class-defined choice of
// defaults, so the caller-supplied defaults (effectively "unspecified") should be used.
(
source.user(),
default_role,
default_type,
default_low_level.clone(),
default_high_level.map(Clone::clone),
)
};
// `new()` may fail if the resulting combination of user, role etc is not permitted by the policy.
SecurityContext::new(user, role, type_, low_level, high_level)
// TODO(http://b/334968228): Validate domain & role transitions are allowed?
}
/// Returns the Id of the "object_r" role within the `parsed_policy`, for use when validating
/// Security Context fields.
pub(super) fn object_role(&self) -> RoleId {
self.cached_object_r_role
}
pub(super) fn parsed_policy(&self) -> &ParsedPolicy<PS> {
&self.parsed_policy
}
/// Returns the [`SecurityContext`] defined by this policy for the specified
/// well-known (or "initial") Id.
pub(super) fn initial_context(&self, id: crate::InitialSid) -> SecurityContext {
// All [`InitialSid`] have already been verified as resolvable, by `new()`.
self.resolve_initial_context(id)
}
/// If there is an fs_use statement for the given filesystem type, returns the associated
/// [`SecurityContext`] and [`FsUseType`].
pub(super) fn fs_use_label_and_type(
&self,
fs_type: NullessByteStr<'_>,
) -> Option<FsUseLabelAndType> {
self.parsed_policy
.fs_uses()
.iter()
.find(|fs_use| fs_use.fs_type() == fs_type.as_bytes())
.map(|fs_use| FsUseLabelAndType {
context: self.security_context_from_policy_context(fs_use.context()),
use_type: fs_use.behavior(),
})
}
/// If there is a genfscon statement for the given filesystem type, returns the associated
/// [`SecurityContext`], taking the `node_path` into account. `class_id` defines the type
/// of the file in the given `node_path`. It can only be omitted when looking up the filesystem
/// label.
pub(super) fn genfscon_label_for_fs_and_path(
&self,
fs_type: NullessByteStr<'_>,
node_path: NullessByteStr<'_>,
class_id: Option<ClassId>,
) -> Option<SecurityContext> {
// All contexts listed in the policy for the file system type.
let fs_contexts = self
.parsed_policy
.generic_fs_contexts()
.iter()
.find(|genfscon| genfscon.fs_type() == fs_type.as_bytes())?
.contexts();
// The correct match is the closest parent among the ones given in the policy file.
// E.g. if in the policy we have
// genfscon foofs "/" label1
// genfscon foofs "/abc/" label2
// genfscon foofs "/abc/def" label3
//
// The correct label for a file "/abc/def/g/h/i" is label3, as "/abc/def" is the closest parent
// among those defined.
//
// Partial paths are prefix-matched, so that "/abc/default" would also be assigned label3.
//
// TODO(372212126): Optimize the algorithm.
let mut result: Option<&FsContext<PS>> = None;
for fs_context in fs_contexts {
if node_path.0.starts_with(fs_context.partial_path()) {
if result.is_none()
|| result.unwrap().partial_path().len() < fs_context.partial_path().len()
{
if class_id.is_none()
|| fs_context
.class()
.map(|other| other == class_id.unwrap())
.unwrap_or(true)
{
result = Some(fs_context);
}
}
}
}
// The returned SecurityContext must be valid with respect to the policy, since otherwise
// we'd have rejected the policy load.
result.and_then(|fs_context| {
Some(self.security_context_from_policy_context(fs_context.context()))
})
}
/// Helper used to construct and validate well-known [`SecurityContext`] values.
fn resolve_initial_context(&self, id: crate::InitialSid) -> SecurityContext {
self.security_context_from_policy_context(self.parsed_policy().initial_context(id))
}
/// Returns a [`SecurityContext`] based on the supplied policy-defined `context`.
fn security_context_from_policy_context(&self, context: &Context<PS>) -> SecurityContext {
let low_level = self.security_level(context.low_level());
let high_level = context.high_level().as_ref().map(|x| self.security_level(x));
// Creation of the new [`SecurityContext`] will fail if the fields are inconsistent
// with the policy-defined constraints (e.g. on user roles, etc).
SecurityContext::new(
context.user_id(),
context.role_id(),
context.type_id(),
low_level,
high_level,
)
}
/// Helper used by `initial_context()` to create a [`crate::SecurityLevel`] instance from
/// the policy fields.
fn security_level(&self, level: &MlsLevel<PS>) -> SecurityLevel {
SecurityLevel::new(
level.sensitivity(),
level.categories().spans().map(|span| self.security_context_category(span)).collect(),
)
}
/// Helper used by `security_level()` to create a `CategorySpan` instance from policy fields.
fn security_context_category(&self, span: ExtensibleBitmapSpan) -> CategorySpan {
// Spans describe zero-based bit indexes, corresponding to 1-based category Ids.
CategorySpan::new(
CategoryId(NonZeroU32::new(span.low + 1).unwrap()),
CategoryId(NonZeroU32::new(span.high + 1).unwrap()),
)
}
fn role_transition_new_role(
&self,
current_role: RoleId,
type_: TypeId,
class: &Class<PS>,
) -> Option<RoleId> {
self.parsed_policy
.role_transitions()
.iter()
.find(|role_transition| {
role_transition.current_role() == current_role
&& role_transition.type_() == type_
&& role_transition.class() == class.id()
})
.map(|x| x.new_role())
}
#[allow(dead_code)]
// TODO(http://b/334968228): fn to be used again when checking role allow rules separately from
// SID calculation.
fn role_transition_is_explicitly_allowed(&self, source_role: RoleId, new_role: RoleId) -> bool {
self.parsed_policy
.role_allowlist()
.iter()
.find(|role_allow| {
role_allow.source_role() == source_role && role_allow.new_role() == new_role
})
.is_some()
}
fn type_transition_new_type(
&self,
source_type: TypeId,
target_type: TypeId,
class: &Class<PS>,
) -> Option<TypeId> {
// Return first match. The `checkpolicy` tool will not compile a policy that has
// multiple matches, so behavior on multiple matches is undefined.
self.parsed_policy
.access_vectors()
.iter()
.find(|access_vector| {
access_vector.is_type_transition()
&& access_vector.source_type() == source_type
&& access_vector.target_type() == target_type
&& access_vector.target_class() == class.id()
})
.map(|x| x.new_type().unwrap())
}
fn type_transition_new_type_with_name(
&self,
source_type: TypeId,
target_type: TypeId,
class: &Class<PS>,
name: NullessByteStr<'_>,
) -> Option<TypeId> {
let entry = self.parsed_policy.filename_transitions().iter().find(|transition| {
transition.target_type() == target_type
&& transition.target_class() == class.id()
&& transition.name_bytes() == name.as_bytes()
})?;
entry
.outputs()
.iter()
.find(|entry| entry.has_source_type(source_type))
.map(|x| x.out_type())
}
fn range_transition_new_range(
&self,
source_type: TypeId,
target_type: TypeId,
class: &Class<PS>,
) -> Option<(SecurityLevel, Option<SecurityLevel>)> {
for range_transition in self.parsed_policy.range_transitions() {
if range_transition.source_type() == source_type
&& range_transition.target_type() == target_type
&& range_transition.target_class() == class.id()
{
let mls_range = range_transition.mls_range();
let low_level = self.security_level(mls_range.low());
let high_level =
mls_range.high().as_ref().map(|high_level| self.security_level(high_level));
return Some((low_level, high_level));
}
}
None
}
}
/// Permissions may be stored in their associated [`Class`], or on the class's associated
/// [`CommonSymbol`]. This is a consequence of a limited form of inheritance supported for SELinux
/// policy classes. Classes may inherit from zero or one `common`. For example:
///
/// ```config
/// common file { ioctl read write create [...] }
/// class file inherits file { execute_no_trans entrypoint }
/// ```
///
/// In the above example, the "ioctl" permission for the "file" `class` is stored as a permission
/// on the "file" `common`, whereas the permission "execute_no_trans" is stored as a permission on
/// the "file" `class`.
#[derive(Debug)]
enum PermissionIndex {
/// Permission is located at `Class::permissions()[permission_index]`.
Class { permission_index: usize },
/// Permission is located at
/// `ParsedPolicy::common_symbols()[common_symbol_index].permissions()[permission_index]`.
Common { common_symbol_index: usize, permission_index: usize },
}
fn get_class_index_by_name<'a, PS: ParseStrategy>(
classes: &'a Classes<PS>,
name: &str,
) -> Option<usize> {
let name_bytes = name.as_bytes();
for i in 0..classes.len() {
if classes[i].name_bytes() == name_bytes {
return Some(i);
}
}
None
}
fn get_common_symbol_index_by_name_bytes<'a, PS: ParseStrategy>(
common_symbols: &'a CommonSymbols<PS>,
name_bytes: &[u8],
) -> Option<usize> {
for i in 0..common_symbols.len() {
if common_symbols[i].name_bytes() == name_bytes {
return Some(i);
}
}
None
}
fn get_permission_index_by_name<'a, PS: ParseStrategy>(
common_symbols: &'a CommonSymbols<PS>,
class: &'a Class<PS>,
name: &str,
) -> Option<PermissionIndex> {
if let Some(permission_index) = get_class_permission_index_by_name(class, name) {
Some(PermissionIndex::Class { permission_index })
} else if let Some(common_symbol_index) =
get_common_symbol_index_by_name_bytes(common_symbols, class.common_name_bytes())
{
let common_symbol = &common_symbols[common_symbol_index];
if let Some(permission_index) = get_common_permission_index_by_name(common_symbol, name) {
Some(PermissionIndex::Common { common_symbol_index, permission_index })
} else {
None
}
} else {
None
}
}
fn get_class_permission_index_by_name<'a, PS: ParseStrategy>(
class: &'a Class<PS>,
name: &str,
) -> Option<usize> {
let name_bytes = name.as_bytes();
let permissions = class.permissions();
for i in 0..permissions.len() {
if permissions[i].name_bytes() == name_bytes {
return Some(i);
}
}
None
}
fn get_common_permission_index_by_name<'a, PS: ParseStrategy>(
common_symbol: &'a CommonSymbol<PS>,
name: &str,
) -> Option<usize> {
let name_bytes = name.as_bytes();
let permissions = common_symbol.permissions();
for i in 0..permissions.len() {
if permissions[i].name_bytes() == name_bytes {
return Some(i);
}
}
None
}