storage_device/
buffer_allocator.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use crate::buffer::{round_down, round_up, Buffer};
use event_listener::{Event, EventListener};
use futures::{Future, FutureExt as _};
use std::collections::BTreeMap;
use std::ops::Range;
use std::pin::Pin;
use std::sync::Mutex;
use std::task::{Context, Poll};

#[cfg(target_os = "fuchsia")]
mod buffer_source {
    use fuchsia_runtime::vmar_root_self;
    use std::ops::Range;
    use zx::{self as zx, AsHandleRef};

    /// A buffer source backed by a VMO.
    #[derive(Debug)]
    pub struct BufferSource {
        base: *mut u8,
        size: usize,
        vmo: zx::Vmo,
    }

    // SAFETY: This is required for the *mut u8 which is just the base address of the VMO mapping
    // and doesn't stop us making BufferSource Send and Sync.
    unsafe impl Send for BufferSource {}
    unsafe impl Sync for BufferSource {}

    impl BufferSource {
        pub fn new(size: usize) -> Self {
            let vmo = zx::Vmo::create(size as u64).unwrap();
            let name = zx::Name::new("transfer-buf").unwrap();
            vmo.set_name(&name).unwrap();
            let flags = zx::VmarFlags::PERM_READ
                | zx::VmarFlags::PERM_WRITE
                | zx::VmarFlags::MAP_RANGE
                | zx::VmarFlags::REQUIRE_NON_RESIZABLE;
            let base = vmar_root_self().map(0, &vmo, 0, size, flags).unwrap() as *mut u8;
            Self { base, size, vmo }
        }

        pub fn size(&self) -> usize {
            self.size
        }

        pub fn vmo(&self) -> &zx::Vmo {
            &self.vmo
        }

        #[allow(clippy::mut_from_ref)]
        pub(super) unsafe fn sub_slice(&self, range: &Range<usize>) -> &mut [u8] {
            assert!(range.start < self.size && range.end <= self.size);
            std::slice::from_raw_parts_mut(self.base.add(range.start), range.end - range.start)
        }

        /// Commits the range in memory to avoid future page faults.
        pub fn commit_range(&self, range: Range<usize>) -> Result<(), zx::Status> {
            self.vmo.op_range(zx::VmoOp::COMMIT, range.start as u64, range.len() as u64)
        }
    }

    impl Drop for BufferSource {
        fn drop(&mut self) {
            // SAFETY: This balances the `map` in `new` above.
            unsafe {
                let _ = vmar_root_self().unmap(self.base as usize, self.size);
            }
        }
    }
}

#[cfg(not(target_os = "fuchsia"))]
mod buffer_source {
    use std::cell::UnsafeCell;
    use std::ops::Range;
    use std::pin::Pin;

    /// A basic heap-backed buffer source.
    #[derive(Debug)]
    pub struct BufferSource {
        // We use an UnsafeCell here because we need interior mutability of the buffer (to hand out
        // mutable slices to it in |buffer()|), but don't want to pay the cost of wrapping the
        // buffer in a Mutex. We must guarantee that the Buffer objects we hand out don't overlap,
        // but that is already a requirement for correctness.
        data: UnsafeCell<Pin<Vec<u8>>>,
    }

    // Safe because none of the fields in BufferSource are modified, except the contents of |data|,
    // but that is managed by the BufferAllocator.
    unsafe impl Sync for BufferSource {}

    impl BufferSource {
        pub fn new(size: usize) -> Self {
            Self { data: UnsafeCell::new(Pin::new(vec![0 as u8; size])) }
        }

        pub fn size(&self) -> usize {
            // Safe because the reference goes out of scope as soon as we use it.
            unsafe { (&*self.data.get()).len() }
        }

        #[allow(clippy::mut_from_ref)]
        pub(super) unsafe fn sub_slice(&self, range: &Range<usize>) -> &mut [u8] {
            assert!(range.start < self.size() && range.end <= self.size());
            &mut (&mut *self.data.get())[range.start..range.end]
        }
    }
}

pub use buffer_source::BufferSource;

// Stores a list of offsets into a BufferSource. The size of the free ranges is determined by which
// FreeList we are looking at.
// FreeLists are sorted.
type FreeList = Vec<usize>;

#[derive(Debug)]
struct Inner {
    // The index corresponds to the order of free memory blocks in the free list.
    free_lists: Vec<FreeList>,
    // Maps offsets to allocated length (the actual length, not the size requested by the client).
    allocation_map: BTreeMap<usize, usize>,
}

/// BufferAllocator creates Buffer objects to be used for block device I/O requests.
///
/// This is implemented through a simple buddy allocation scheme.
#[derive(Debug)]
pub struct BufferAllocator {
    block_size: usize,
    source: BufferSource,
    inner: Mutex<Inner>,
    event: Event,
}

// Returns the smallest order which is at least |size| bytes.
fn order(size: usize, block_size: usize) -> usize {
    if size <= block_size {
        return 0;
    }
    let nblocks = round_up(size, block_size) / block_size;
    nblocks.next_power_of_two().trailing_zeros() as usize
}

// Returns the largest order which is no more than |size| bytes.
fn order_fit(size: usize, block_size: usize) -> usize {
    assert!(size >= block_size);
    let nblocks = round_up(size, block_size) / block_size;
    if nblocks.is_power_of_two() {
        nblocks.trailing_zeros() as usize
    } else {
        nblocks.next_power_of_two().trailing_zeros() as usize - 1
    }
}

fn size_for_order(order: usize, block_size: usize) -> usize {
    block_size * (1 << (order as u32))
}

fn initial_free_lists(size: usize, block_size: usize) -> Vec<FreeList> {
    let size = round_down(size, block_size);
    assert!(block_size <= size);
    assert!(block_size.is_power_of_two());
    let max_order = order_fit(size, block_size);
    let mut free_lists = Vec::new();
    for _ in 0..max_order + 1 {
        free_lists.push(FreeList::new())
    }
    let mut offset = 0;
    while offset < size {
        let order = order_fit(size - offset, block_size);
        let size = size_for_order(order, block_size);
        free_lists[order].push(offset);
        offset += size;
    }
    free_lists
}

/// A future which will resolve to an allocated [`Buffer`].
pub struct BufferFuture<'a> {
    allocator: &'a BufferAllocator,
    size: usize,
    listener: Option<EventListener>,
}

impl<'a> Future for BufferFuture<'a> {
    type Output = Buffer<'a>;

    fn poll(mut self: Pin<&mut Self>, context: &mut Context<'_>) -> Poll<Self::Output> {
        if let Some(listener) = self.listener.as_mut() {
            futures::ready!(listener.poll_unpin(context));
        }
        // Loop because we need to deal with the case where `listener` is ready immediately upon
        // creation, in which case we ought to retry the allocation.
        loop {
            match self.allocator.try_allocate_buffer(self.size) {
                Ok(buffer) => return Poll::Ready(buffer),
                Err(mut listener) => {
                    if listener.poll_unpin(context).is_pending() {
                        self.listener = Some(listener);
                        return Poll::Pending;
                    }
                }
            }
        }
    }
}

impl BufferAllocator {
    pub fn new(block_size: usize, source: BufferSource) -> Self {
        let free_lists = initial_free_lists(source.size(), block_size);
        Self {
            block_size,
            source,
            inner: Mutex::new(Inner { free_lists, allocation_map: BTreeMap::new() }),
            event: Event::new(),
        }
    }

    pub fn block_size(&self) -> usize {
        self.block_size
    }

    pub fn buffer_source(&self) -> &BufferSource {
        &self.source
    }

    /// Takes the buffer source from the allocator and consumes the allocator.
    pub fn take_buffer_source(self) -> BufferSource {
        self.source
    }

    /// Allocates a Buffer with capacity for |size| bytes. Panics if the allocation exceeds the pool
    /// size.  Blocks until there are enough bytes available to satisfy the request.
    ///
    /// The allocated buffer will be block-aligned and the padding up to block alignment can also
    /// be used by the buffer.
    ///
    /// Allocation is O(lg(N) + M), where N = size and M = number of allocations.
    pub fn allocate_buffer(&self, size: usize) -> BufferFuture<'_> {
        BufferFuture { allocator: self, size, listener: None }
    }

    /// Like |allocate_buffer|, but returns an EventListener if the allocation cannot be satisfied.
    /// The listener will signal when the caller should try again.
    pub fn try_allocate_buffer(&self, size: usize) -> Result<Buffer<'_>, EventListener> {
        if size > self.source.size() {
            panic!("Allocation of {} bytes would exceed limit {}", size, self.source.size());
        }
        let mut inner = self.inner.lock().unwrap();
        let requested_order = order(size, self.block_size());
        assert!(requested_order < inner.free_lists.len());
        // Pick the smallest possible order with a free entry.
        let mut order = {
            let mut idx = requested_order;
            loop {
                if idx >= inner.free_lists.len() {
                    return Err(self.event.listen());
                }
                if !inner.free_lists[idx].is_empty() {
                    break idx;
                }
                idx += 1;
            }
        };

        // Split the free region until it's the right size.
        let offset = inner.free_lists[order].pop().unwrap();
        while order > requested_order {
            order -= 1;
            assert!(inner.free_lists[order].is_empty());
            inner.free_lists[order].push(offset + self.size_for_order(order));
        }

        inner.allocation_map.insert(offset, self.size_for_order(order));
        let range = offset..offset + size;
        log::debug!(range:?, bytes_used = self.size_for_order(order); "Allocated");

        // Safety is ensured by the allocator not double-allocating any regions.
        Ok(Buffer::new(unsafe { self.source.sub_slice(&range) }, range, &self))
    }

    /// Deallocation is O(lg(N) + M), where N = size and M = number of allocations.
    #[doc(hidden)]
    pub(super) fn free_buffer(&self, range: Range<usize>) {
        let mut inner = self.inner.lock().unwrap();
        let mut offset = range.start;
        let size = inner
            .allocation_map
            .remove(&offset)
            .unwrap_or_else(|| panic!("No allocation record found for {:?}", range));
        assert!(range.end - range.start <= size);
        log::debug!(range:?, bytes_used = size; "Freeing");

        // Merge as many free slots as we can.
        let mut order = order(size, self.block_size());
        while order < inner.free_lists.len() - 1 {
            let buddy = self.find_buddy(offset, order);
            let idx = if let Ok(idx) = inner.free_lists[order].binary_search(&buddy) {
                idx
            } else {
                break;
            };
            inner.free_lists[order].remove(idx);
            offset = std::cmp::min(offset, buddy);
            order += 1;
        }

        let idx = inner.free_lists[order]
            .binary_search(&offset)
            .expect_err(&format!("Unexpectedly found {} in free list {}", offset, order));
        inner.free_lists[order].insert(idx, offset);

        // Notify all stuck tasks.  This might be inefficient, but it's simple and correct.
        self.event.notify(usize::MAX);
    }

    fn size_for_order(&self, order: usize) -> usize {
        size_for_order(order, self.block_size)
    }

    fn find_buddy(&self, offset: usize, order: usize) -> usize {
        offset ^ self.size_for_order(order)
    }
}

#[cfg(test)]
mod tests {
    use crate::buffer_allocator::{order, BufferAllocator, BufferSource};
    use fuchsia_async as fasync;
    use futures::future::join_all;
    use futures::pin_mut;
    use rand::prelude::SliceRandom;
    use rand::{thread_rng, Rng};
    use std::sync::atomic::{AtomicBool, Ordering};
    use std::sync::Arc;

    #[fuchsia::test]
    async fn test_odd_sized_buffer_source() {
        let source = BufferSource::new(123);
        let allocator = BufferAllocator::new(2, source);

        // 123 == 64 + 32 + 16 + 8 + 2 + 1. (The last byte is unusable.)
        let sizes = vec![64, 32, 16, 8, 2];
        let mut bufs = vec![];
        for size in sizes.iter() {
            bufs.push(allocator.allocate_buffer(*size).await);
        }
        for (expected_size, buf) in sizes.iter().zip(bufs.iter()) {
            assert_eq!(*expected_size, buf.len());
        }
        assert!(allocator.try_allocate_buffer(2).is_err());
    }

    #[fuchsia::test]
    async fn test_allocate_buffer_read_write() {
        let source = BufferSource::new(1024 * 1024);
        let allocator = BufferAllocator::new(8192, source);

        let mut buf = allocator.allocate_buffer(8192).await;
        buf.as_mut_slice().fill(0xaa as u8);
        let mut vec = vec![0 as u8; 8192];
        vec.copy_from_slice(buf.as_slice());
        assert_eq!(vec, vec![0xaa as u8; 8192]);
    }

    #[fuchsia::test]
    async fn test_allocate_buffer_consecutive_calls_do_not_overlap() {
        let source = BufferSource::new(1024 * 1024);
        let allocator = BufferAllocator::new(8192, source);

        let buf1 = allocator.allocate_buffer(8192).await;
        let buf2 = allocator.allocate_buffer(8192).await;
        assert!(buf1.range().end <= buf2.range().start || buf2.range().end <= buf1.range().start);
    }

    #[fuchsia::test]
    async fn test_allocate_many_buffers() {
        let source = BufferSource::new(1024 * 1024);
        let allocator = BufferAllocator::new(8192, source);

        for _ in 0..10 {
            let _ = allocator.allocate_buffer(8192).await;
        }
    }

    #[fuchsia::test]
    async fn test_allocate_small_buffers_dont_overlap() {
        let source = BufferSource::new(1024 * 1024);
        let allocator = BufferAllocator::new(8192, source);

        let buf1 = allocator.allocate_buffer(1).await;
        let buf2 = allocator.allocate_buffer(1).await;
        assert!(buf1.range().end <= buf2.range().start || buf2.range().end <= buf1.range().start);
    }

    #[fuchsia::test]
    async fn test_allocate_large_buffer() {
        let source = BufferSource::new(1024 * 1024);
        let allocator = BufferAllocator::new(8192, source);

        let mut buf = allocator.allocate_buffer(1024 * 1024).await;
        assert_eq!(buf.len(), 1024 * 1024);
        buf.as_mut_slice().fill(0xaa as u8);
        let mut vec = vec![0 as u8; 1024 * 1024];
        vec.copy_from_slice(buf.as_slice());
        assert_eq!(vec, vec![0xaa as u8; 1024 * 1024]);
    }

    #[fuchsia::test]
    async fn test_allocate_large_buffer_after_smaller_buffers() {
        let source = BufferSource::new(1024 * 1024);
        let allocator = BufferAllocator::new(8192, source);

        {
            let mut buffers = vec![];
            while let Ok(buffer) = allocator.try_allocate_buffer(8192) {
                buffers.push(buffer);
            }
        }
        let buf = allocator.allocate_buffer(1024 * 1024).await;
        assert_eq!(buf.len(), 1024 * 1024);
    }

    #[fuchsia::test]
    async fn test_allocate_at_limits() {
        let source = BufferSource::new(1024 * 1024);
        let allocator = BufferAllocator::new(8192, source);

        let mut buffers = vec![];
        while let Ok(buffer) = allocator.try_allocate_buffer(8192) {
            buffers.push(buffer);
        }
        // Deallocate a single buffer, and reallocate a single one back.
        buffers.pop();
        let buf = allocator.allocate_buffer(8192).await;
        assert_eq!(buf.len(), 8192);
    }

    #[fuchsia::test(threads = 10)]
    async fn test_random_allocs_deallocs() {
        let source = BufferSource::new(16 * 1024 * 1024);
        let bs = 512;
        let allocator = Arc::new(BufferAllocator::new(bs, source));

        join_all((0..10).map(|_| {
            let allocator = allocator.clone();
            fasync::Task::spawn(async move {
                let mut rng = thread_rng();
                enum Op {
                    Alloc,
                    Dealloc,
                }
                let ops = vec![Op::Alloc, Op::Dealloc];
                let mut buffers = vec![];
                for _ in 0..1000 {
                    match ops.choose(&mut rng).unwrap() {
                        Op::Alloc => {
                            // Rather than a uniform distribution 1..64K, first pick an order and
                            // then pick a size within that. For example, we might pick order 3,
                            // which would give us 8 * 512..16 * 512 as our possible range.
                            // This way we don't bias towards larger allocations too much.
                            let order: usize = rng.gen_range(order(1, bs)..order(65536 + 1, bs));
                            let size: usize = rng.gen_range(
                                bs * 2_usize.pow(order as u32)..bs * 2_usize.pow(order as u32 + 1),
                            );
                            if let Ok(mut buf) = allocator.try_allocate_buffer(size) {
                                let val = rng.gen::<u8>();
                                buf.as_mut_slice().fill(val);
                                for v in buf.as_slice() {
                                    assert_eq!(v, &val);
                                }
                                buffers.push(buf);
                            }
                        }
                        Op::Dealloc if !buffers.is_empty() => {
                            let idx = rng.gen_range(0..buffers.len());
                            buffers.remove(idx);
                        }
                        _ => {}
                    };
                }
            })
        }))
        .await;
    }

    #[fuchsia::test]
    async fn test_buffer_refs() {
        let source = BufferSource::new(1024 * 1024);
        let allocator = BufferAllocator::new(512, source);

        // Allocate one buffer first so that |buf| is not starting at offset 0. This helps catch
        // bugs.
        let _buf = allocator.allocate_buffer(512).await;
        let mut buf = allocator.allocate_buffer(4096).await;
        let base = buf.range().start;
        {
            let mut bref = buf.subslice_mut(1000..2000);
            assert_eq!(bref.len(), 1000);
            assert_eq!(bref.range(), base + 1000..base + 2000);
            bref.as_mut_slice().fill(0xbb);
            {
                let mut bref2 = bref.reborrow().subslice_mut(0..100);
                assert_eq!(bref2.len(), 100);
                assert_eq!(bref2.range(), base + 1000..base + 1100);
                bref2.as_mut_slice().fill(0xaa);
            }
            {
                let mut bref2 = bref.reborrow().subslice_mut(900..1000);
                assert_eq!(bref2.len(), 100);
                assert_eq!(bref2.range(), base + 1900..base + 2000);
                bref2.as_mut_slice().fill(0xcc);
            }
            assert_eq!(bref.as_slice()[..100], vec![0xaa; 100]);
            assert_eq!(bref.as_slice()[100..900], vec![0xbb; 800]);

            let bref = bref.subslice_mut(900..);
            assert_eq!(bref.len(), 100);
            assert_eq!(bref.as_slice(), vec![0xcc; 100]);
        }
        {
            let bref = buf.as_ref();
            assert_eq!(bref.len(), 4096);
            assert_eq!(bref.range(), base..base + 4096);
            assert_eq!(bref.as_slice()[0..1000], vec![0x00; 1000]);
            {
                let bref2 = bref.subslice(1000..2000);
                assert_eq!(bref2.len(), 1000);
                assert_eq!(bref2.range(), base + 1000..base + 2000);
                assert_eq!(bref2.as_slice()[..100], vec![0xaa; 100]);
                assert_eq!(bref2.as_slice()[100..900], vec![0xbb; 800]);
                assert_eq!(bref2.as_slice()[900..1000], vec![0xcc; 100]);
            }

            let bref = bref.subslice(2048..);
            assert_eq!(bref.len(), 2048);
            assert_eq!(bref.as_slice(), vec![0x00; 2048]);
        }
    }

    #[fuchsia::test]
    async fn test_buffer_split() {
        let source = BufferSource::new(1024 * 1024);
        let allocator = BufferAllocator::new(512, source);

        // Allocate one buffer first so that |buf| is not starting at offset 0. This helps catch
        // bugs.
        let _buf = allocator.allocate_buffer(512).await;
        let mut buf = allocator.allocate_buffer(4096).await;
        let base = buf.range().start;
        {
            let bref = buf.as_mut();
            let (mut s1, mut s2) = bref.split_at_mut(2048);
            assert_eq!(s1.len(), 2048);
            assert_eq!(s1.range(), base..base + 2048);
            s1.as_mut_slice().fill(0xaa);
            assert_eq!(s2.len(), 2048);
            assert_eq!(s2.range(), base + 2048..base + 4096);
            s2.as_mut_slice().fill(0xbb);
        }
        {
            let bref = buf.as_ref();
            let (s1, s2) = bref.split_at(1);
            let (s2, s3) = s2.split_at(2047);
            let (s3, s4) = s3.split_at(0);
            assert_eq!(s1.len(), 1);
            assert_eq!(s1.range(), base..base + 1);
            assert_eq!(s2.len(), 2047);
            assert_eq!(s2.range(), base + 1..base + 2048);
            assert_eq!(s3.len(), 0);
            assert_eq!(s3.range(), base + 2048..base + 2048);
            assert_eq!(s4.len(), 2048);
            assert_eq!(s4.range(), base + 2048..base + 4096);
            assert_eq!(s1.as_slice(), vec![0xaa; 1]);
            assert_eq!(s2.as_slice(), vec![0xaa; 2047]);
            assert_eq!(s3.as_slice(), vec![]);
            assert_eq!(s4.as_slice(), vec![0xbb; 2048]);
        }
    }

    #[fuchsia::test]
    async fn test_blocking_allocation() {
        let source = BufferSource::new(1024 * 1024);
        let allocator = Arc::new(BufferAllocator::new(512, source));

        let buf1 = allocator.allocate_buffer(512 * 1024).await;
        let buf2 = allocator.allocate_buffer(512 * 1024).await;
        let bufs_dropped = Arc::new(AtomicBool::new(false));

        // buf3_fut should block until both buf1 and buf2 are done.
        let allocator_clone = allocator.clone();
        let bufs_dropped_clone = bufs_dropped.clone();
        let buf3_fut = async move {
            allocator_clone.allocate_buffer(1024 * 1024).await;
            assert!(bufs_dropped_clone.load(Ordering::Relaxed), "Allocation finished early");
        };
        pin_mut!(buf3_fut);

        // Each of buf_futs should block until buf3_fut is done, and they should proceed in order.
        let mut buf_futs = vec![];
        for _ in 0..16 {
            let allocator_clone = allocator.clone();
            let bufs_dropped_clone = bufs_dropped.clone();
            let fut = async move {
                allocator_clone.allocate_buffer(64 * 1024).await;
                // We can't say with certainty that buf3 proceeded first, nor can we ensure these
                // allocations proceed in order, but we can make sure that at least buf1/buf2 were
                // done (since they exhausted the pool).
                assert!(bufs_dropped_clone.load(Ordering::Relaxed), "Allocation finished early");
            };
            buf_futs.push(fut);
        }

        futures::join!(buf3_fut, join_all(buf_futs), async move {
            std::mem::drop(buf1);
            std::mem::drop(buf2);
            bufs_dropped.store(true, Ordering::Relaxed);
        });
    }
}