circuit/multi_stream.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use crate::error::{Error, Result};
use crate::{stream, Node, Quality};
use futures::channel::mpsc::{channel, Receiver, Sender, UnboundedSender};
use futures::channel::oneshot;
use futures::future::Either;
use futures::prelude::*;
use futures::StreamExt;
use std::collections::HashMap;
use std::pin::pin;
use std::sync::{Arc, Mutex as SyncMutex};
/// Status of an individual stream.
enum StreamStatus {
/// Stream is open to traffic. Incoming traffic should be delivered to the given writer.
Open(stream::Writer),
/// Stream hasn't been officially closed but the user has stopped listening for incoming data.
/// The outgoing side of the stream might still be running.
ReadClosed,
/// Stream is closed. We never reuse stream IDs so a closed stream should never reopen.
Closed,
}
/// Multiplexes multiple streams into one.
///
/// While running, this function serves a protocol on the `reader` and `writer` that multiplexes
/// multiple streams into a single stream.
///
/// The protocol is a series of variable length frames each consisting of:
/// * 4 bytes - A stream ID in little-endian.
/// * 2 bytes - a LENGTH in little-endian.
/// * LENGTH bytes - data.
///
/// To start a new stream, an endpoint simply begins sending frames with that stream ID. To close a
/// stream, an endpoint can send a zero-length frame. Once a stream is closed that stream ID should
/// never be used again.
///
/// We distinguish the two endpoints of the protocol as a client and a server. The only difference
/// between the two is in which stream IDs they may initiate; Any new streams started by the client
/// should have odd-numbered IDs, and any new streams initiated by the server should have
/// even-numbered IDs. The `is_server` argument controls this behavior.
///
/// Any new streams initiated by the other end of the connection will be returned to us via the
/// `streams_out` channel, and we may initiate a stream by sending a reader and writer to the
/// `streams_in` channel.
pub async fn multi_stream(
reader: stream::Reader,
writer: stream::Writer,
is_server: bool,
streams_out: Sender<(stream::Reader, stream::Writer, oneshot::Sender<Result<()>>)>,
streams_in: Receiver<(stream::Reader, stream::Writer)>,
stream_errors_out: UnboundedSender<Error>,
remote_name: String,
) -> Result<()> {
let (new_readers_sender, new_readers) = channel(1);
let (stream_errors_sender, stream_errors) = channel(1);
let first_stream_id = if is_server { 1 } else { 0 };
let mut stream_ids = (first_stream_id..).step_by(2);
let writer = Arc::new(SyncMutex::new(writer));
let writer_for_reader = Arc::clone(&writer);
let handle_read = async move {
let writer = writer_for_reader;
let streams = SyncMutex::new(HashMap::<u32, StreamStatus>::new());
// Creates a stream (that's Stream in the rust async sense, not in the sense of our
// protocol) which when polled will read some data from the reader and attempt to
// demultiplex it.
//
// Each time we call `.next()` on this stream one read operation is performed, and the
// stream yields a `Result` indicating if an error occurred. Therefore, to pump read-side
// IO, we simply need to pull values from this stream until one of them is an error.
let read_result_stream = futures::stream::unfold((), |_| async {
let got = reader
.read(6, |buf| {
let mut streams = streams.lock().unwrap();
let (size, new_stream) =
handle_one_chunk(&mut *streams, is_server, buf, &remote_name)?;
Ok((
new_stream.map(|(id, first_chunk_data)| {
let (reader, remote_writer) = stream::stream();
remote_writer
.write(first_chunk_data.len(), |out| {
out[..first_chunk_data.len()]
.copy_from_slice(&first_chunk_data);
Ok(first_chunk_data.len())
})
.expect("We just created this stream!");
streams.insert(id, StreamStatus::Open(remote_writer));
(id, reader)
}),
size,
))
})
.await;
let got = match got {
Ok(Some((id, reader))) => {
// We got a request to initiate a new stream. It's already
// in the streams table, just have to hand the reader over
// to the other task to be dispatched, and the writer out to
// the caller.
let (remote_reader, writer) = stream::stream();
if new_readers_sender.clone().send((id, remote_reader)).await.is_err() {
Err(Error::ConnectionClosed(Some(
"New stream reader handler disappeared".to_owned(),
)))
} else {
let (sender, receiver) = oneshot::channel();
if stream_errors_sender.clone().send(receiver).await.is_ok() {
streams_out.clone().send((reader, writer, sender)).await.map_err(|_| {
Error::ConnectionClosed(Some(
"New stream handler disappeared".to_owned(),
))
})
} else {
Err(Error::ConnectionClosed(Some(
"Error reporting channel closed".to_owned(),
)))
}
}
}
Ok(None) => Ok(()),
Err(e) => Err(e),
};
Some((got, ()))
});
// Send stream errors to our error output. This functions as a stream that never returns anything
// so we can wrap it in a select with read_result_stream and thereby continuously poll it as
// we handle errors.
let stream_errors = stream_errors
.map(move |x| {
let stream_errors_out = stream_errors_out.clone();
async move {
if let Err(x) = x.await.unwrap_or_else(|_| {
Err(Error::ConnectionClosed(Some(
"Stream handler hung up without returning a status".to_owned(),
)))
}) {
let _ = stream_errors_out.unbounded_send(x);
}
}
})
// Buffer unordered all the stream errors otherwise we'll block the
// reader task.
.buffer_unordered(usize::MAX)
// Never yield anything and match the type of read_result_stream.
.filter_map(|()| futures::future::ready(None));
let read_result_stream = futures::stream::select(stream_errors, read_result_stream);
// The `futures::stream::select` function requires both of the streams you give it to be the
// same type and effectively interleaves the output of the two streams. We want to poll two
// streams at once but handle their output differently, so we wrap them in an `Either`.
let read_result_stream = read_result_stream.map(Either::Left);
// `streams_in` will yield any new streams the user wants to create. If the user hangs up
// that channel, we don't need to react, as the existing streams may still be in use. So we
// make streams_in poll forever once the user stops supplying new streams.
let streams_in = streams_in.chain(futures::stream::pending()).map(Either::Right);
let events = futures::stream::select(read_result_stream, streams_in);
let mut events = pin!(events);
let mut ret = Ok(());
while let Some(event) = events.next().await {
match event {
Either::Left(Ok(())) => (),
Either::Left(other) => {
ret = other;
break;
}
Either::Right((reader, writer)) => {
let id = stream_ids.next().expect("This iterator should be infinite!");
if new_readers_sender.clone().send((id, reader)).await.is_err() {
break;
}
streams.lock().unwrap().insert(id, StreamStatus::Open(writer));
}
}
}
if matches!(ret, Err(Error::ConnectionClosed(None))) {
let writer = writer.lock().unwrap();
if writer.is_closed() {
ret = Err(Error::ConnectionClosed(writer.closed_reason()))
}
}
let mut streams = streams.lock().unwrap();
for (_, stream) in streams.drain() {
if let StreamStatus::Open(writer) = stream {
writer.close(format!("Multi-stream terminated: {ret:?}"));
}
}
ret
};
let handle_write = new_readers.for_each_concurrent(None, move |(id, stream)| {
let writer = Arc::clone(&writer);
async move {
if let Some(reason) = write_as_chunks(id, &stream, writer).await {
stream.close(format!("Stream terminated ({reason})"));
} else {
stream.close(format!("Stream terminated"));
}
}
});
let handle_read = pin!(handle_read);
let handle_write = pin!(handle_write);
match futures::future::select(handle_read, handle_write).await {
Either::Left((res, _)) => res,
Either::Right(((), handle_read)) => handle_read.await,
}
}
/// Handles one chunk of data from the incoming stream.
///
/// The incoming stream is an interleaving of several byte streams. They are interleaved by
/// splitting them into chunks and attaching a header to each. This function assumes `buf` has been
/// filled with data from the incoming stream, and tries to parse the header for the first chunk and
/// process the data within.
///
/// If the buffer isn't long enough to contain an entire chunk, this will return `BufferTooShort`,
/// otherwise it will return the size of the chunk processed in the first element of the returned
/// tuple.
///
/// Once a chunk is parsed, the table of individual streams given with the `streams` argument will
/// be used to route the incoming data. The second element of the returned tuple will be `Some` if
/// and only if the chunk indicates a new stream is being started, in which case it will contain the
/// ID of the new stream, and the data portion of the chunk.
fn handle_one_chunk<'a>(
streams: &mut HashMap<u32, StreamStatus>,
is_server: bool,
buf: &'a [u8],
remote_name: &str,
) -> Result<(usize, Option<(u32, &'a [u8])>)> {
if buf.len() < 6 {
return Err(Error::BufferTooShort(6));
}
let id = u32::from_le_bytes(buf[..4].try_into().unwrap());
let length = u16::from_le_bytes(buf[4..6].try_into().unwrap());
let length = length as usize;
let chunk_length = length + 6;
let buf = &buf[6..];
if length == 0 {
if buf.len() < 2 {
return Err(Error::BufferTooShort(8));
}
let length = u16::from_le_bytes(buf[..2].try_into().unwrap());
let length = length as usize;
if buf.len() < length + 2 {
return Err(Error::BufferTooShort(8 + length));
}
let epitaph =
if length > 0 { Some(String::from_utf8_lossy(&buf[2..][..length])) } else { None };
if let Some(old) = streams.insert(id, StreamStatus::Closed) {
if let StreamStatus::Open(old) = old {
if let Some(epitaph) = epitaph {
old.close(format!("{remote_name} reported: {epitaph}"));
} else {
old.close(format!("{remote_name} reported no epitaph"));
}
}
Ok((length + 8, None))
} else {
Err(Error::BadStreamId)
}
} else if buf.len() < length {
Err(Error::BufferTooShort(chunk_length))
} else if let Some(stream) = streams.get(&id) {
match stream {
StreamStatus::Open(stream) => {
if stream
.write(length, |out| {
out[..length].copy_from_slice(&buf[..length]);
Ok(length)
})
.is_err()
{
// The user isn't listening for incoming data anymore. Don't
// treat that as a fatal error, and don't send a hangup in case
// the user is still sending data. Just quietly ignore it. If
// the user hangs up the other side of the connection that's
// when we can complain.
let _ = streams.insert(id, StreamStatus::ReadClosed);
}
Ok((chunk_length, None))
}
StreamStatus::ReadClosed => Ok((chunk_length, None)),
StreamStatus::Closed => Err(Error::BadStreamId),
}
} else if (id & 1 == 0) == is_server {
Ok((chunk_length, Some((id, &buf[..length]))))
} else {
Err(Error::BadStreamId)
}
}
/// Reads data from the given reader, then splits it into chunks of no more than 2^16 - 1 bytes,
/// attaches a header to each chunk containing the given `id` number and the size of the chunk, then
/// writes each chunk to the given writer.
///
/// The point, of course, is that multiple functions can do this to the same writer, and since the
/// chunks are labeled, the data can be parsed back out into separate streams on the other end.
///
/// If writing stops because the writer is closed, this will return the reported reason for closure.
async fn write_as_chunks(
id: u32,
reader: &stream::Reader,
writer: Arc<SyncMutex<stream::Writer>>,
) -> Option<String> {
loop {
// We want to handle errors with the read and errors with the write differently, so we
// return a nested result.
//
// In short, this will return Ok(Ok(())) if all is well, Ok(Err(...)) if we read data
// successfully but then failed to write it, and Err(...) if we failed to read.
let got = reader
.read(1, |buf| {
let mut total_len = 0;
while buf.len() > total_len {
let buf = &buf[total_len..];
let buf =
if buf.len() > u16::MAX as usize { &buf[..u16::MAX as usize] } else { buf };
let len: u16 = buf
.len()
.try_into()
.expect("We just truncated the length so it would fit!");
if let e @ Err(_) = writer.lock().unwrap().write(6 + buf.len(), |out_buf| {
out_buf[..4].copy_from_slice(&id.to_le_bytes());
let out_buf = &mut out_buf[4..];
out_buf[..2].copy_from_slice(&len.to_le_bytes());
out_buf[2..][..buf.len()].copy_from_slice(buf);
Ok(buf.len() + 6)
}) {
return Ok((e, total_len));
} else {
total_len += buf.len();
}
}
Ok((Ok(()), total_len))
})
.await;
match got {
Err(Error::ConnectionClosed(epitaph)) => {
let epitaph = epitaph.as_ref().map(|x| x.as_bytes()).unwrap_or(b"");
let length_u16: u16 = epitaph.len().try_into().unwrap_or(u16::MAX);
let length = length_u16 as usize;
// If the stream was closed, send a frame indicating such.
let write_result = writer.lock().unwrap().write(8 + length, |out_buf| {
out_buf[..4].copy_from_slice(&id.to_le_bytes());
let out_buf = &mut out_buf[4..];
out_buf[..2].copy_from_slice(&0u16.to_le_bytes());
let out_buf = &mut out_buf[2..];
out_buf[..2].copy_from_slice(&length_u16.to_le_bytes());
let out_buf = &mut out_buf[2..];
out_buf[..length].copy_from_slice(&epitaph[..length]);
Ok(8 + length)
});
match write_result {
Ok(()) | Err(Error::ConnectionClosed(None)) => break None,
Err(Error::ConnectionClosed(Some(s))) => break Some(format!("write: {s}")),
other => unreachable!("Unexpected write error: {other:?}"),
}
}
Ok(Ok(())) => (),
Ok(Err(Error::ConnectionClosed(None))) => break None,
Ok(Err(Error::ConnectionClosed(Some(s)))) => break Some(format!("read: {s}")),
Ok(other) => unreachable!("Unexpected write error: {other:?}"),
other => unreachable!("Unexpected read error: {other:?}"),
}
}
}
/// Creates a new connection to a circuit node, and merges all streams produced and consumed by that
/// connection into a multi-stream. In this way you can service a connection between nodes with a
/// single stream of bytes.
///
/// The `is_server` boolean should be `true` at one end of the connection and `false` at the other.
/// Usually it will be `true` for the node receiving a connection and `false` for the node
/// initiating one.
///
/// Traffic will be written to, and read from, the given `reader` and `writer`.
///
/// The `quality` will be used to make routing decisions when establishing streams across multiple
/// nodes.
pub fn multi_stream_node_connection(
node: &Node,
reader: stream::Reader,
writer: stream::Writer,
is_server: bool,
quality: Quality,
stream_errors_out: UnboundedSender<Error>,
remote_name: String,
) -> impl Future<Output = Result<()>> + Send {
let (mut new_stream_sender, streams_in) = channel(1);
let (streams_out, new_stream_receiver) = channel(1);
let control_stream = if is_server {
let (control_reader, control_writer_remote) = stream::stream();
let (control_reader_remote, control_writer) = stream::stream();
new_stream_sender
.try_send((control_reader_remote, control_writer_remote))
.expect("We just created this channel!");
Some((control_reader, control_writer))
} else {
None
};
let stream_fut = multi_stream(
reader,
writer,
is_server,
streams_out,
streams_in,
stream_errors_out,
remote_name,
);
let node_fut = node.link_node(control_stream, new_stream_sender, new_stream_receiver, quality);
async move {
let node_fut = pin!(node_fut);
let stream_fut = pin!(stream_fut);
// If either the node connection or the multi stream dies we assume the other will also die
// shortly after, so we always await both futures to completion.
match futures::future::select(node_fut, stream_fut).await {
Either::Left((res, stream_fut)) => res.and(stream_fut.await),
Either::Right((res, node_fut)) => res.and(node_fut.await),
}
}
}
/// Same as `multi_stream_node_connection` but reads and writes to and from implementors of the
/// standard `AsyncRead` and `AsyncWrite` traits rather than circuit streams.
pub async fn multi_stream_node_connection_to_async(
node: &Node,
rx: &mut (dyn AsyncRead + Unpin + Send),
tx: &mut (dyn AsyncWrite + Unpin + Send),
is_server: bool,
quality: Quality,
stream_errors_out: UnboundedSender<Error>,
remote_name: String,
) -> Result<()> {
let (reader, remote_writer) = stream::stream();
let (remote_reader, writer) = stream::stream();
let conn_fut = multi_stream_node_connection(
node,
remote_reader,
remote_writer,
is_server,
quality,
stream_errors_out,
remote_name.clone(),
);
let remote_name = &remote_name;
let read_fut = async move {
let mut buf = [0u8; 4096];
loop {
let n = match rx.read(&mut buf).await {
Ok(0) => {
writer
.close(format!("connection closed (either by transport or {remote_name})"));
break Ok(());
}
Ok(n) => n,
Err(e) => {
writer.close(format!("{remote_name} connection failed (read): {e:?}"));
return Err(Error::from(e));
}
};
writer.write(n, |write_buf| {
write_buf[..n].copy_from_slice(&buf[..n]);
Ok(n)
})?
}
};
let write_fut = async move {
loop {
let mut buf = [0u8; 4096];
let len = reader
.read(1, |read_buf| {
let read_buf = &read_buf[..std::cmp::min(buf.len(), read_buf.len())];
buf[..read_buf.len()].copy_from_slice(read_buf);
Ok((read_buf.len(), read_buf.len()))
})
.await?;
let write_res = async {
tx.write_all(&buf[..len]).await?;
tx.flush().await?;
Result::<_, Error>::Ok(())
}
.await;
if let Err(e) = write_res {
reader.close(format!("{remote_name} connection failed (write): {e:?}"));
return Err(e.into());
}
}
};
let read_write = futures::future::try_join(read_fut, write_fut);
let conn_fut = pin!(conn_fut);
let cleanup = {
// We must pin read_write to this scope so the streams are dropped when
// we leave this scope and conn_fut can run to completion. If it's
// pinned to the stack alongside conn_fut then the streams aren't
// dropped and conn_fut doesn't observe the closed status.
let read_write = pin!(read_write);
match futures::future::select(conn_fut, read_write).await {
Either::Left((res, _)) => {
return res;
}
Either::Right((read_write_result, conn_fut)) => {
conn_fut.map(move |conn_fut_result| match (conn_fut_result, read_write_result) {
(Ok(()), Ok(((), ()))) => Ok(()),
// Report back any errors, preferring the one from the
// connection future.
(Ok(()), Err(e)) | (Err(e), _) => Err(e),
})
}
}
};
// If the read/write future finished first, we need to wait for the
// connection future to run to completion to ensure cleanup happens.
cleanup.await
}
#[cfg(test)]
mod test {
use super::*;
use fuchsia_async as fasync;
use futures::channel::mpsc::unbounded;
#[fuchsia::test]
async fn one_stream() {
let (a_reader, b_writer) = stream::stream();
let (b_reader, a_writer) = stream::stream();
let (mut create_stream_a, a_streams_in) = channel(1);
let (_create_stream_b, b_streams_in) = channel(1);
let (a_streams_out, _get_stream_a) = channel(100);
let (b_streams_out, mut get_stream_b) = channel(1);
// Connection closure errors are very timing-dependent so we'll tend to be flaky if we
// observe them in a test.
let (errors_sink_a, _black_hole) = unbounded();
let errors_sink_b = errors_sink_a.clone();
let _a = fasync::Task::spawn(async move {
assert!(matches!(
multi_stream(
a_reader,
a_writer,
true,
a_streams_out,
a_streams_in,
errors_sink_a,
"b".to_owned()
)
.await,
Ok(()) | Err(Error::ConnectionClosed(None))
))
});
let _b = fasync::Task::spawn(async move {
assert!(matches!(
multi_stream(
b_reader,
b_writer,
false,
b_streams_out,
b_streams_in,
errors_sink_b,
"a".to_owned()
)
.await,
Ok(()) | Err(Error::ConnectionClosed(None))
))
});
let (ab_reader_a, ab_reader_write) = stream::stream();
let (ab_writer_read, ab_writer_a) = stream::stream();
create_stream_a.send((ab_writer_read, ab_reader_write)).await.unwrap();
ab_writer_a
.write(8, |buf| {
buf[..8].copy_from_slice(&[1, 2, 3, 4, 5, 6, 7, 8]);
Ok(8)
})
.unwrap();
let (ab_reader_b, ab_writer_b, err) = get_stream_b.next().await.unwrap();
err.send(Ok(())).unwrap();
ab_writer_b
.write(8, |buf| {
buf[..8].copy_from_slice(&[9, 10, 11, 12, 13, 14, 15, 16]);
Ok(8)
})
.unwrap();
ab_reader_b
.read(8, |buf| {
assert_eq!(&buf[..8], &[1, 2, 3, 4, 5, 6, 7, 8]);
Ok(((), 8))
})
.await
.unwrap();
ab_reader_a
.read(8, |buf| {
assert_eq!(&buf[..8], &[9, 10, 11, 12, 13, 14, 15, 16]);
Ok(((), 8))
})
.await
.unwrap();
std::mem::drop(ab_writer_b);
assert!(matches!(
ab_reader_a.read::<_, ()>(1, |_| unreachable!()).await,
Err(Error::ConnectionClosed(_))
));
std::mem::drop(ab_reader_b);
ab_writer_a
.write(8, |buf| {
buf[..8].copy_from_slice(&[1, 2, 3, 4, 5, 6, 7, 8]);
Ok(8)
})
.unwrap();
}
#[fuchsia::test]
async fn fallible_stream() {
let (a_reader, b_writer) = stream::stream();
let (b_reader, a_writer) = stream::stream();
let (mut create_stream_a, a_streams_in) = channel(1);
let (_create_stream_b, b_streams_in) = channel(1);
let (a_streams_out, _get_stream_a) = channel(100);
let (b_streams_out, mut get_stream_b) = channel(1);
let (errors_sink_a, _black_hole) = unbounded();
// Connection closure errors are very timing-dependent so we'll tend to be flaky if we
// observe them in a test.
let (errors_sink_b, mut b_errors) = unbounded();
let _a = fasync::Task::spawn(async move {
assert!(matches!(
multi_stream(
a_reader,
a_writer,
true,
a_streams_out,
a_streams_in,
errors_sink_a,
"b".to_owned()
)
.await,
Ok(()) | Err(Error::ConnectionClosed(None))
))
});
let _b = fasync::Task::spawn(async move {
assert!(matches!(
multi_stream(
b_reader,
b_writer,
false,
b_streams_out,
b_streams_in,
errors_sink_b,
"a".to_owned()
)
.await,
Ok(()) | Err(Error::ConnectionClosed(None))
))
});
// The first stream fails to be created.
let (fail_reader, fail_reader_write) = stream::stream();
let (_ignore, fail_writer) = stream::stream();
create_stream_a.send((fail_reader, fail_writer)).await.unwrap();
// There's a laziness to stream creation in the protocol so we need to send a little data to
// actually create the stream.
fail_reader_write
.write(8, |buf| {
buf[..8].copy_from_slice(&[1, 2, 3, 4, 5, 6, 7, 8]);
Ok(8)
})
.unwrap();
let (_, _, err) = get_stream_b.next().await.unwrap();
err.send(Err(Error::ConnectionClosed(Some("Testing".to_owned())))).unwrap();
loop {
if let Some(Error::ConnectionClosed(Some(s))) = b_errors.next().await {
if s == "Testing" {
break;
}
} else {
panic!("Error stream closed without reporting our error.");
}
}
let (ab_reader_a, ab_reader_write) = stream::stream();
let (ab_writer_read, ab_writer_a) = stream::stream();
create_stream_a.send((ab_writer_read, ab_reader_write)).await.unwrap();
ab_writer_a
.write(8, |buf| {
buf[..8].copy_from_slice(&[1, 2, 3, 4, 5, 6, 7, 8]);
Ok(8)
})
.unwrap();
let (ab_reader_b, ab_writer_b, err) = get_stream_b.next().await.unwrap();
err.send(Ok(())).unwrap();
ab_writer_b
.write(8, |buf| {
buf[..8].copy_from_slice(&[9, 10, 11, 12, 13, 14, 15, 16]);
Ok(8)
})
.unwrap();
ab_reader_b
.read(8, |buf| {
assert_eq!(&buf[..8], &[1, 2, 3, 4, 5, 6, 7, 8]);
Ok(((), 8))
})
.await
.unwrap();
ab_reader_a
.read(8, |buf| {
assert_eq!(&buf[..8], &[9, 10, 11, 12, 13, 14, 15, 16]);
Ok(((), 8))
})
.await
.unwrap();
std::mem::drop(ab_writer_b);
assert!(matches!(
ab_reader_a.read::<_, ()>(1, |_| unreachable!()).await,
Err(Error::ConnectionClosed(_))
));
std::mem::drop(ab_reader_b);
ab_writer_a
.write(8, |buf| {
buf[..8].copy_from_slice(&[1, 2, 3, 4, 5, 6, 7, 8]);
Ok(8)
})
.unwrap();
}
#[fuchsia::test]
async fn two_streams() {
let (a_reader, b_writer) = stream::stream();
let (b_reader, a_writer) = stream::stream();
let (mut create_stream_a, a_streams_in) = channel(1);
let (mut create_stream_b, b_streams_in) = channel(1);
let (a_streams_out, mut get_stream_a) = channel(1);
let (b_streams_out, mut get_stream_b) = channel(1);
// Connection closure errors are very timing-dependent so we'll tend to be flaky if we
// observe them in a test.
let (errors_sink, _black_hole) = unbounded();
let _a = fasync::Task::spawn(multi_stream(
a_reader,
a_writer,
true,
a_streams_out,
a_streams_in,
errors_sink.clone(),
"b".to_owned(),
));
let _b = fasync::Task::spawn(multi_stream(
b_reader,
b_writer,
false,
b_streams_out,
b_streams_in,
errors_sink.clone(),
"a".to_owned(),
));
let (ab_reader_a, ab_reader_write) = stream::stream();
let (ab_writer_read, ab_writer_a) = stream::stream();
let (ba_reader_b, ba_reader_write) = stream::stream();
let (ba_writer_read, ba_writer_b) = stream::stream();
create_stream_a.send((ab_writer_read, ab_reader_write)).await.unwrap();
create_stream_b.send((ba_writer_read, ba_reader_write)).await.unwrap();
ab_writer_a
.write(8, |buf| {
buf[..8].copy_from_slice(&[1, 2, 3, 4, 5, 6, 7, 8]);
Ok(8)
})
.unwrap();
ba_writer_b
.write(8, |buf| {
buf[..8].copy_from_slice(&[25, 26, 27, 28, 29, 30, 31, 32]);
Ok(8)
})
.unwrap();
let (ab_reader_b, ab_writer_b, err_ab) = get_stream_b.next().await.unwrap();
let (ba_reader_a, ba_writer_a, err_ba) = get_stream_a.next().await.unwrap();
err_ab.send(Ok(())).unwrap();
err_ba.send(Ok(())).unwrap();
ab_writer_b
.write(8, |buf| {
buf[..8].copy_from_slice(&[9, 10, 11, 12, 13, 14, 15, 16]);
Ok(8)
})
.unwrap();
ba_writer_a
.write(8, |buf| {
buf[..8].copy_from_slice(&[17, 18, 19, 20, 21, 22, 23, 24]);
Ok(8)
})
.unwrap();
ab_reader_b
.read(8, |buf| {
assert_eq!(&buf[..8], &[1, 2, 3, 4, 5, 6, 7, 8]);
Ok(((), 8))
})
.await
.unwrap();
ab_reader_a
.read(8, |buf| {
assert_eq!(&buf[..8], &[9, 10, 11, 12, 13, 14, 15, 16]);
Ok(((), 8))
})
.await
.unwrap();
ba_reader_b
.read(8, |buf| {
assert_eq!(&buf[..8], &[17, 18, 19, 20, 21, 22, 23, 24]);
Ok(((), 8))
})
.await
.unwrap();
ba_reader_a
.read(8, |buf| {
assert_eq!(&buf[..8], &[25, 26, 27, 28, 29, 30, 31, 32]);
Ok(((), 8))
})
.await
.unwrap();
}
#[fuchsia::test]
async fn node_connect() {
let (new_peer_sender_a, mut new_peers) = channel(1);
let (new_peer_sender_b, _new_peers_b) = channel(100);
let (incoming_streams_sender_a, _streams_a) = channel(100);
let (incoming_streams_sender_b, mut streams) = channel(1);
let a = Node::new("a", "test", new_peer_sender_a, incoming_streams_sender_a).unwrap();
let b = Node::new("b", "test", new_peer_sender_b, incoming_streams_sender_b).unwrap();
// Connection closure errors are very timing-dependent so we'll tend to be flaky if we
// observe them in a test.
let (errors_sink, _black_hole) = unbounded();
let (ab_reader, ab_writer) = stream::stream();
let (ba_reader, ba_writer) = stream::stream();
let _a_conn = fasync::Task::spawn(multi_stream_node_connection(
&a,
ba_reader,
ab_writer,
true,
Quality::IN_PROCESS,
errors_sink.clone(),
"b".to_owned(),
));
let _b_conn = fasync::Task::spawn(multi_stream_node_connection(
&b,
ab_reader,
ba_writer,
false,
Quality::IN_PROCESS,
errors_sink.clone(),
"a".to_owned(),
));
let new_peer = new_peers.next().await.unwrap();
assert_eq!("b", &new_peer);
let (_reader, peer_writer) = stream::stream();
let (peer_reader, writer) = stream::stream();
a.connect_to_peer(peer_reader, peer_writer, "b").await.unwrap();
writer
.write(8, |buf| {
buf[..8].copy_from_slice(&[1, 2, 3, 4, 5, 6, 7, 8]);
Ok(8)
})
.unwrap();
let (reader, _writer, from) = streams.next().await.unwrap();
assert_eq!("a", &from);
reader
.read(8, |buf| {
assert_eq!(&[1, 2, 3, 4, 5, 6, 7, 8], &buf);
Ok(((), 8))
})
.await
.unwrap();
}
}