1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use anyhow::{ensure, Context as _, Error};
use serde_derive::Deserialize;
use std::collections::{HashMap, HashSet};
use std::fs::File;
use std::io::Read as _;
use std::path::Path;
/// This library is used to parse a thermal configuration JSON file into a data structure which also
/// implements some convenience methods for accessing and consuming the data.
///
/// The intended usage is that `ThermalConfig::read()` is called with a thermal configuration JSON
/// file path. If successful, the function returns a ThermalConfig instance containing the parsed
/// config data.
///
/// The parser expects a JSON5 file of the following format:
/// {
/// clients: {
/// audio: [
/// {
/// state: 1,
/// trip_points: [
/// {
/// sensor_name: 'CPU thermal',
/// activate_at: 75,
/// deactivate_below: 71,
/// },
/// ],
/// },
/// {
/// state: 2,
/// trip_points: [
/// {
/// sensor_name: 'CPU thermal',
/// activate_at: 86,
/// deactivate_below: 82,
/// },
/// ],
/// },
/// ],
/// },
/// }
/// Represents the top level of a thermal configuration structure.
#[derive(Deserialize, Debug)]
pub struct ThermalConfig {
/// Maps the name of a client (e.g., "audio") to its corresponding configuration.
clients: HashMap<String, ClientConfig>,
}
/// Defines the configuration for a single client (made up of a vector of `StateConfig` instances).
#[derive(Deserialize, Debug)]
pub struct ClientConfig(Vec<StateConfig>);
/// Defines the configuration for a single thermal state. Together with other `StateConfig`
/// instances, this makes up a client's `ClientConfig`.
#[derive(Deserialize, Debug)]
pub struct StateConfig {
/// Thermal state number.
pub state: u32,
/// Vector of trip points that will activate this state.
pub trip_points: Vec<TripPoint>,
}
/// Defines a trip point with hysteresis for a specific temperature sensor.
#[derive(Deserialize, Debug, Clone)]
pub struct TripPoint {
/// Name of the temperature sensor.
pub sensor_name: String,
/// Temperature at which this trip point becomes active.
pub activate_at: u32,
/// Temperature below which this trip point becomes inactive.
pub deactivate_below: u32,
}
impl TripPoint {
/// Creates a new trip point.
///
/// Note: this is only intended for use in tests. However, it isn't marked as cfg(test) so that
/// code outside of the library can use it in their tests as well.
pub fn new(sensor: &str, deactivate_below: u32, activate_at: u32) -> Self {
Self { sensor_name: sensor.into(), deactivate_below, activate_at }
}
}
impl ThermalConfig {
/// Creates a new, empty ThermalConfig instance.
///
/// An empty ThermalConfig instance corresponds to the case where no client has specified a
/// thermal trip point configuration.
///
/// Note: this is only intended for use in tests. However, it isn't marked as cfg(test) so that
/// code outside of the library can use it in their tests as well.
pub fn new() -> Self {
Self { clients: HashMap::new() }
}
/// Read the supplied JSON file path and parse into a ThermalConfig instance.
///
/// Attempts to open, read, and parse the supplied JSON file into a valid ThermalConfig
/// instance. If a ThermalConfig instance could be created with the JSON configuration, then it
/// is also tested for validity. If a ThermalConfig instance could not be created, or validation
/// fails, then an error is returned.
pub fn read(json_file_path: &Path) -> Result<ThermalConfig, Error> {
let mut buffer = String::new();
File::open(&json_file_path)?.read_to_string(&mut buffer)?;
let config = serde_json5::from_str::<ThermalConfig>(&buffer)?;
config.validate()?;
Ok(config)
}
/// Validates the thermal configuration.
pub fn validate(&self) -> Result<(), Error> {
// Iterate and validate each underlying ClientConfig instance
for (client_name, client_config) in self.clients.iter() {
client_config
.validate()
.context(format!("Validation failed for client {}", client_name))?;
}
Ok(())
}
/// Adds a configuration entry for the specified client.
///
/// Note: this is only intended for use in tests. However, it isn't marked as cfg(test) so that
/// code outside of the library can use it in their tests as well.
pub fn add_client_config(mut self, client: &str, config: ClientConfig) -> Self {
self.clients.insert(client.to_string(), config);
self
}
/// Gets the ClientConfig instance for the specified client.
pub fn get_client_config(&self, client: &String) -> Option<&ClientConfig> {
self.clients.get(client)
}
pub fn into_iter(self) -> impl Iterator<Item = (String, ClientConfig)> {
self.clients.into_iter()
}
}
impl ClientConfig {
/// Creates a new empty ClientConfig.
///
/// Note: this is only intended for use in tests. However, it isn't marked as cfg(test) so that
/// code outside of the library can use it in their tests as well.
pub fn new() -> Self {
Self(vec![])
}
/// Adds a new thermal state (defined by the supplied trip points) to the client config.
///
/// This will create a new thermal state using the supplied trip points, assigning it a valid
/// thermal state number (which is equal to the number of existing thermal states plus one).
///
/// Note: this is only intended for use in tests. However, it isn't marked as cfg(test) so that
/// code outside of the library can use it in their tests as well.
pub fn add_thermal_state(mut self, trip_points: Vec<TripPoint>) -> Self {
self.0.push(StateConfig { state: self.0.len() as u32 + 1, trip_points });
self
}
/// Validates the client config.
///
/// Performs a series of validations to check if the configuration defined by this
/// `ClientConfig` instance is valid. The instance is valid if:
/// 1) thermal state numbers are monotonically increasing starting at 1
/// 2) trip points are well-formed (`deactivate_below` <= `activate_at`)
/// 3) for a given sensor, the [`deactivate_below`..=`activate_at`] range is strictly
/// increasing and non-overlapping for successive trip points
/// 4) the same sensor is not referenced by multiple trip points in the same thermal state
fn validate(&self) -> Result<(), Error> {
// Ensure state numbers are monotonically increasing starting at 1
{
let state_numbers: Vec<_> = self.0.iter().map(|s| s.state).collect();
let expected_state_numbers: Vec<_> = (1..self.0.len() as u32 + 1).collect();
ensure!(
state_numbers == expected_state_numbers,
"State numbers must increase monotonically starting at 1 \
(got invalid state numbers: {:?})",
state_numbers
);
}
// Ensure:
// 1) trip points are well-formed (`deactivate_below` <= `activate_at`)
// 2) for a given sensor, the [`deactivate_below`..=`activate_at`] range is strictly
// increasing and non-overlapping for successive trip points
// 3) the same sensor is not referenced by multiple trip points in the same thermal state
{
// This map will be used to keep track of the highest encountered `activate_at` value
// for each sensor as we iterate through the trip points. This will let us detect if any
// trip points are overlapping or not increasing.
let mut highest_activate_value: HashMap<String, u32> = HashMap::new();
for state_config in self.0.iter() {
// This set will be used to determine which sensors have already had trip points
// added for a given thermal state. This will let us detect if a sensor is
// referenced by multiple trip points in the same thermal state.
let mut sensors_configured_for_state = HashSet::new();
for tp in state_config.trip_points.iter() {
ensure!(
sensors_configured_for_state.insert(&tp.sensor_name) == true,
"A sensor cannot be referenced by multiple trip points in the same thermal \
state (violated by sensor {} in state {})",
tp.sensor_name,
state_config.state
);
ensure!(
tp.activate_at >= tp.deactivate_below,
"activate_at must be greater or equal to deactivate_below \
(invalid for state {}: activate_at={}; deactivate_below={}",
state_config.state,
tp.activate_at,
tp.deactivate_below
);
// If we've already encountered a trip point for this sensor, make sure the new
// trip point has a `deactivate_below` value that is greater than the previously
// observed highest activate_at value. Otherwise, the new trip point will be
// overlapping (or otherwise non-increasing) with a previously observed trip
// point.
if let Some(activate_value) = highest_activate_value.get_mut(&tp.sensor_name) {
ensure!(
tp.deactivate_below > *activate_value,
"Trip point ranges must not overlap (range for state {} ({} - {}) \
overlaps with previously specified range for sensor {})",
state_config.state,
tp.deactivate_below,
tp.activate_at,
tp.sensor_name
);
*activate_value = tp.activate_at;
} else {
highest_activate_value.insert(tp.sensor_name.clone(), tp.activate_at);
}
}
}
}
Ok(())
}
/// Gets the thermal states that make up this client configuration.
pub fn into_thermal_states(self) -> Vec<StateConfig> {
self.0
}
}
#[cfg(test)]
mod tests {
use crate::*;
use assert_matches::assert_matches;
/// Tests that valid ThermalConfig instances pass the validation.
#[test]
fn test_thermal_config_validation_success() {
// Basic, empty thermal config
let thermal_config = ThermalConfig::new();
assert_matches!(thermal_config.validate(), Ok(()));
// Multiple clients, each with multiple thermal states consisting of multiple trip points
let thermal_config = ThermalConfig::new()
.add_client_config(
"client1",
ClientConfig::new()
.add_thermal_state(vec![
TripPoint::new("sensor1", 1, 1),
TripPoint::new("sensor2", 1, 1),
])
.add_thermal_state(vec![
TripPoint::new("sensor1", 2, 2),
TripPoint::new("sensor2", 2, 2),
]),
)
.add_client_config(
"client2",
ClientConfig::new()
.add_thermal_state(vec![
TripPoint::new("sensor1", 1, 1),
TripPoint::new("sensor2", 1, 1),
])
.add_thermal_state(vec![
TripPoint::new("sensor1", 2, 2),
TripPoint::new("sensor2", 2, 2),
]),
);
assert_matches!(thermal_config.validate(), Ok(()));
}
/// Tests that invalid ClientConfig instances fail the validation.
#[test]
fn test_thermal_config_validation_failures() {
// Decreasing thermal state numbers
let thermal_config = ThermalConfig::new().add_client_config(
"client1",
ClientConfig(vec![
StateConfig { state: 2, trip_points: vec![] },
StateConfig { state: 1, trip_points: vec![] },
]),
);
assert_matches!(thermal_config.validate(), Err(_));
// Repeated thermal state numbers
let thermal_config = ThermalConfig::new().add_client_config(
"client1",
ClientConfig(vec![
StateConfig { state: 1, trip_points: vec![] },
StateConfig { state: 1, trip_points: vec![] },
]),
);
assert_matches!(thermal_config.validate(), Err(_));
// Thermal state numbers below 1
let thermal_config = ThermalConfig::new().add_client_config(
"client1",
ClientConfig(vec![
StateConfig { state: 0, trip_points: vec![] },
StateConfig { state: 1, trip_points: vec![] },
]),
);
assert_matches!(thermal_config.validate(), Err(_));
// Trip point with deactivate_below > activate_at
let thermal_config = ThermalConfig::new().add_client_config(
"client1",
ClientConfig::new().add_thermal_state(vec![TripPoint::new("sensor1", 10, 8)]),
);
assert_matches!(thermal_config.validate(), Err(_));
// Repeated sensor for a given thermal state
let thermal_config = ThermalConfig::new().add_client_config(
"client1",
ClientConfig::new().add_thermal_state(vec![
TripPoint::new("sensor1", 5, 6),
TripPoint::new("sensor1", 4, 5),
]),
);
assert_matches!(thermal_config.validate(), Err(_));
// Thermal states with overlapping trip points
let thermal_config = ThermalConfig::new().add_client_config(
"client1",
ClientConfig::new()
.add_thermal_state(vec![TripPoint::new("sensor1", 1, 2)])
.add_thermal_state(vec![TripPoint::new("sensor1", 2, 3)]),
);
assert_matches!(thermal_config.validate(), Err(_));
}
}