starnix_sync/lock_sequence.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Tools for describing and enforcing lock acquisition order.
//!
//! To use these tools:
//! 1. A lock level must be defined for each type of lock. This can be a simple enum.
//! 2. Then a relation `LockedAfter` between these levels must be described,
//! forming a graph. This graph must be acyclic, since a cycle would indicate
//! a potential deadlock.
//! 3. Each time a lock is acquired, it must be done using an object of a `Locked<P>`
//! type, where `P` is any lock level that comes before the level `L` that is
//! associated with this lock. Doing so yields a new object of type `Locked<L>`
//! that can be used to acquire subsequent locks.
//! 3. Each place where a lock is used must be marked with the maximum lock level
//! that can be already acquired before attempting to acquire this lock. To do this,
//! it takes a special marker object `Locked<P>` where `P` is a lock level that
//! must come before the level associated in this lock in the graph. This object
//! is then used to acquire the lock, and a new object `Locked<L>` is returned, with
//! a new lock level `L` that comes after `P` in the lock ordering graph.
//!
//! ## Example
//! See also tests for this crate.
//!
//! ```
//! use std::sync::Mutex;
//! use starnix_sync::{lock_ordering, lock::LockFor, relation::LockAfter, Unlocked};
//!
//! #[derive(Default)]
//! struct HoldsLocks {
//! a: Mutex<u8>,
//! b: Mutex<u32>,
//! }
//!
//! lock_ordering! {
//! // LockA is the top of the lock hierarchy.
//! Unlocked => LevelA,
//! // LockA can be acquired before LockB.
//! LevelA => LevelB,
//! }
//!
//! impl LockFor<LockA> for HoldsLocks {
//! type Data = u8;
//! type Guard<'l> = std::sync::MutexGuard<'l, u8>
//! where Self: 'l;
//! fn lock(&self) -> Self::Guard<'_> {
//! self.a.lock().unwrap()
//! }
//! }
//!
//! impl LockFor<LockB> for HoldsLocks {
//! type Data = u32;
//! type Guard<'l> = std::sync::MutexGuard<'l, u32>
//! where Self: 'l;
//! fn lock(&self) -> Self::Guard<'_> {
//! self.b.lock().unwrap()
//! }
//! }
//!
//! // Accessing locked state looks like this:
//!
//! let state = HoldsLocks::default();
//! // Create a new lock session with the "root" lock level (empty tuple).
//! let mut locked = Unlocked::new();
//! // Access locked state.
//! let (a, mut locked_a) = locked.lock_and::<LockA, _>(&state);
//! let b = locked_a.lock::<LockB, _>(&state);
//! ```
//!
//! The [lock_ordering] macro provides definitions for lock levels and
//! implementations of [LockAfter] for all the locks that are connected
//! in the graph (one can be locked after another). It also prevents
//! accidental lock ordering inversion introduced while defining the graph
//! by detecting cycles in it.
//!
//! This won't compile:
//! ```compile_fail
//! lock_ordering!{
//! Unlocked => A,
//! A => B,
//! B => A,
//! }
//! ```
//!
//! The methods on [Locked] prevent out-of-order locking according to the
//! specified lock relationships.
//!
//! This won't compile because `LockB` does not implement `LockBefore<LockA>`:
//! ```compile_fail
//! # use std::sync::Mutex;
//! # use starnix_sync::{lock_ordering, lock::LockFor, Locked, Unlocked};
//! #
//! # #[derive(Default)]
//! # struct HoldsLocks {
//! # a: Mutex<u8>,
//! # b: Mutex<u32>,
//! # }
//! #
//! # lock_ordering! {
//! # // LockA is the top of the lock hierarchy.
//! # Unlocked => LockA,
//! # // LockA can be acquired before LockB.
//! # LockA => LockB,
//! # }
//! #
//! # impl LockFor<LockA> for HoldsLocks {
//! # type Data = u8;
//! # type Guard<'l> = std::sync::MutexGuard<'l, u8>
//! # where Self: 'l;
//! # fn lock(&self) -> Self::Guard<'_> {
//! # self.a.lock().unwrap()
//! # }
//! # }
//! #
//! # impl LockFor<LockB> for HoldsLocks {
//! # type Data = u32;
//! # type Guard<'l> = std::sync::MutexGuard<'l, u32>
//! # where Self: 'l;
//! # fn lock(&self) -> Self::Guard<'_> {
//! # self.b.lock().unwrap()
//! # }
//! # }
//! #
//!
//! let state = HoldsLocks::default();
//! let mut locked = Unlocked::new();
//!
//! // Locking B without A is fine, but locking A after B is not.
//! let (b, mut locked_b) = locked.lock_and::<LockB, _>(&state);
//! // compile error: LockB does not implement LockBefore<LockA>
//! let a = locked_b.lock::<LockA, _>(&state);
//! ```
//!
//! Even if the lock guard goes out of scope, the new `Locked` instance returned
//! by [Locked::lock_and] will prevent the original one from being used to
//! access state. This doesn't work:
//!
//! ```compile_fail
//! # use std::sync::Mutex;
//! # use starnix_sync::{lock_ordering, lock::LockFor, Locked, Unlocked};
//! #
//! # #[derive(Default)]
//! # struct HoldsLocks {
//! # a: Mutex<u8>,
//! # b: Mutex<u32>,
//! # }
//! #
//! # lock_ordering! {
//! # // LockA is the top of the lock hierarchy.
//! # Unlocked => LockA,
//! # // LockA can be acquired before LockB.
//! # LockA => LockB,
//! # }
//! #
//! # impl LockFor<LockA> for HoldsLocks {
//! # type Data = u8;
//! # type Guard<'l> = std::sync::MutexGuard<'l, u8>
//! # where Self: 'l;
//! # fn lock(&self) -> Self::Guard<'_> {
//! # self.a.lock().unwrap()
//! # }
//! # }
//! #
//! # impl LockFor<LockB> for HoldsLocks {
//! # type Data = u32;
//! # type Guard<'l> = std::sync::MutexGuard<'l, u32>
//! # where Self: 'l;
//! # fn lock(&self) -> Self::Guard<'_> {
//! # self.b.lock().unwrap()
//! # }
//! # }
//!
//! let state = HoldsLocks::default();
//! let mut locked = Unlocked::new();
//!
//! let (b, mut locked_b) = locked.lock_and::<LockB, _>();
//! drop(b);
//! let b = locked_b.lock::<LockB, _>(&state);
//! // Won't work; `locked` is mutably borrowed by `locked_b`.
//! let a = locked.lock::<LockA, _>(&state);
//! ```
use core::marker::PhantomData;
use static_assertions::const_assert_eq;
pub use crate::{LockBefore, LockEqualOrBefore, LockFor, RwLockFor};
/// Enforcement mechanism for lock ordering.
///
/// `Locked` is a context that holds the lock level marker. Any state that
/// requires a lock to access should acquire this lock by calling `lock_and`
/// on a `Locked` object that is of an appropriate lock level. Acquiring
/// a lock in this way produces the guard and a new `Locked` instance
/// (with a different lock level) that mutably borrows from the original
/// instance. This means the original instance can't be used to acquire
/// new locks until the new instance leaves scope.
pub struct Locked<'a, L>(PhantomData<&'a L>);
/// "Highest" lock level
///
/// The lock level for the thing returned by `Locked::new`. Users of this crate
/// should implement `LockAfter<Unlocked>` for the root of any lock ordering
/// trees.
pub enum Unlocked {}
const_assert_eq!(std::mem::size_of::<Locked<'static, Unlocked>>(), 0);
impl Unlocked {
/// Entry point for locked access.
///
/// `Unlocked` is the "root" lock level and can be acquired before any lock.
///
/// # Safety
/// `Unlocked` should only be used before any lock in the program has been acquired.
#[inline(always)]
pub unsafe fn new() -> Locked<'static, Unlocked> {
Locked::<'static, Unlocked>(Default::default())
}
}
impl LockEqualOrBefore<Unlocked> for Unlocked {}
// It's important that the lifetime on `Locked` here be anonymous. That means
// that the lifetimes in the returned `Locked` objects below are inferred to
// be the lifetimes of the references to self (mutable or immutable).
impl<L> Locked<'_, L> {
/// Acquire the given lock.
///
/// This requires that `M` can be locked after `L`.
#[inline(always)]
pub fn lock<'a, M, S>(&'a mut self, source: &'a S) -> S::Guard<'a>
where
M: 'a,
S: LockFor<M>,
L: LockBefore<M>,
{
let (data, _) = self.lock_and::<M, S>(source);
data
}
/// Acquire the given lock and a new locked context.
///
/// This requires that `M` can be locked after `L`.
#[inline(always)]
pub fn lock_and<'a, M, S>(&'a mut self, source: &'a S) -> (S::Guard<'a>, Locked<'a, M>)
where
M: 'a,
S: LockFor<M>,
L: LockBefore<M>,
{
let data = S::lock(source);
(data, Locked::<'a, M>(PhantomData::default()))
}
/// Acquire two locks that are on the same level, in a consistent order (sorted by memory address) and return both guards
/// as well as the new locked context.
///
/// This requires that `M` can be locked after `L`.
#[inline(always)]
pub fn lock_both_and<'a, M, S>(
&'a mut self,
source1: &'a S,
source2: &'a S,
) -> (S::Guard<'a>, S::Guard<'a>, Locked<'a, M>)
where
M: 'a,
S: LockFor<M>,
L: LockBefore<M>,
{
let ptr1: *const S = source1;
let ptr2: *const S = source2;
if ptr1 < ptr2 {
let data1 = S::lock(source1);
let data2 = S::lock(source2);
(data1, data2, Locked::<'a, M>(PhantomData::default()))
} else {
let data2 = S::lock(source2);
let data1 = S::lock(source1);
(data1, data2, Locked::<'a, M>(PhantomData::default()))
}
}
/// Acquire two locks that are on the same level, in a consistent order (sorted by memory address) and return both guards.
///
/// This requires that `M` can be locked after `L`.
#[inline(always)]
pub fn lock_both<'a, M, S>(
&'a mut self,
source1: &'a S,
source2: &'a S,
) -> (S::Guard<'a>, S::Guard<'a>)
where
M: 'a,
S: LockFor<M>,
L: LockBefore<M>,
{
let (data1, data2, _) = self.lock_both_and(source1, source2);
(data1, data2)
}
/// Attempt to acquire the given read lock and a new locked context.
///
/// For accessing state via reader/writer locks. This requires that `M` can
/// be locked after `L`.
#[inline(always)]
pub fn read_lock_and<'a, M, S>(&'a mut self, source: &'a S) -> (S::ReadGuard<'a>, Locked<'a, M>)
where
M: 'a,
S: RwLockFor<M>,
L: LockBefore<M>,
{
let data = S::read_lock(source);
(data, Locked::<'a, M>(PhantomData::default()))
}
/// Attempt to acquire the given read lock.
///
/// For accessing state via reader/writer locks. This requires that `M` can
/// be locked after `L`.
#[inline(always)]
pub fn read_lock<'a, M, S>(&'a mut self, source: &'a S) -> S::ReadGuard<'a>
where
M: 'a,
S: RwLockFor<M>,
L: LockBefore<M>,
{
let (data, _) = self.read_lock_and::<M, S>(source);
data
}
/// Attempt to acquire the given write lock and a new locked context.
///
/// For accessing state via reader/writer locks. This requires that `M` can
/// be locked after `L`.
#[inline(always)]
pub fn write_lock_and<'a, M, S>(
&'a mut self,
source: &'a S,
) -> (S::WriteGuard<'a>, Locked<'a, M>)
where
M: 'a,
S: RwLockFor<M>,
L: LockBefore<M>,
{
let data = S::write_lock(source);
(data, Locked::<'a, M>(PhantomData::default()))
}
/// Attempt to acquire the given write lock.
///
/// For accessing state via reader/writer locks. This requires that `M` can
/// be locked after `L`.
#[inline(always)]
pub fn write_lock<'a, M, S>(&'a mut self, source: &'a S) -> S::WriteGuard<'a>
where
M: 'a,
S: RwLockFor<M>,
L: LockBefore<M>,
{
let (data, _) = self.write_lock_and::<M, S>(source);
data
}
/// Restrict locking as if a lock was acquired.
///
/// Like `lock_and` but doesn't actually acquire the lock `M`. This is
/// safe because any locks that could be acquired with the lock `M` held can
/// also be acquired without `M` being held.
#[inline(always)]
pub fn cast_locked<'a, M>(&'a mut self) -> Locked<'a, M>
where
M: 'a,
L: LockEqualOrBefore<M>,
{
Locked::<'a, M>(PhantomData::default())
}
#[inline(always)]
pub fn cast_locked_by_value<'a, M>(_locked: Locked<'a, L>) -> Locked<'a, M>
where
M: 'a,
L: LockEqualOrBefore<M>,
{
Locked::<'a, M>(PhantomData::default())
}
}
#[cfg(test)]
mod test {
use std::sync::{Mutex, MutexGuard, RwLock, RwLockReadGuard, RwLockWriteGuard};
#[test]
fn example() {
use crate::{lock_ordering, Unlocked};
#[derive(Default)]
pub struct HoldsLocks {
a: Mutex<u8>,
b: Mutex<u32>,
}
lock_ordering! {
// LockA is the top of the lock hierarchy.
Unlocked => LockA,
// LockA can be acquired before LockB.
LockA => LockB,
}
impl LockFor<LockA> for HoldsLocks {
type Data = u8;
type Guard<'l>
= std::sync::MutexGuard<'l, u8>
where
Self: 'l;
fn lock(&self) -> Self::Guard<'_> {
self.a.lock().unwrap()
}
}
impl LockFor<LockB> for HoldsLocks {
type Data = u32;
type Guard<'l>
= std::sync::MutexGuard<'l, u32>
where
Self: 'l;
fn lock(&self) -> Self::Guard<'_> {
self.b.lock().unwrap()
}
}
// Accessing locked state looks like this:
let state = HoldsLocks::default();
// Create a new lock session with the "root" lock level (empty tuple).
let mut locked = unsafe { Unlocked::new() };
// Access locked state.
let (_a, mut locked_a) = locked.lock_and::<LockA, _>(&state);
let _b = locked_a.lock::<LockB, _>(&state);
}
mod lock_levels {
use crate::Unlocked;
use lock_ordering_macro::lock_ordering;
// Lock ordering tree:
// A -> B -> {C, D, E -> F, G -> H}
lock_ordering! {
Unlocked => A,
A => B,
B => C,
B => D,
B => E,
E => F,
B => G,
G => H,
}
}
use crate::{LockFor, RwLockFor, Unlocked};
use lock_levels::{A, B, C, D, E, F, G, H};
/// Data type with multiple locked fields.
#[derive(Default)]
pub struct Data {
a: Mutex<u8>,
b: Mutex<u16>,
c: Mutex<u64>,
d: RwLock<u128>,
e: Mutex<Mutex<u8>>,
g: Mutex<Vec<Mutex<u8>>>,
u: usize,
}
impl LockFor<A> for Data {
type Data = u8;
type Guard<'l> = MutexGuard<'l, u8>;
fn lock(&self) -> Self::Guard<'_> {
self.a.lock().unwrap()
}
}
impl LockFor<B> for Data {
type Data = u16;
type Guard<'l> = MutexGuard<'l, u16>;
fn lock(&self) -> Self::Guard<'_> {
self.b.lock().unwrap()
}
}
impl LockFor<C> for Data {
type Data = u64;
type Guard<'l> = MutexGuard<'l, u64>;
fn lock(&self) -> Self::Guard<'_> {
self.c.lock().unwrap()
}
}
impl RwLockFor<D> for Data {
type Data = u128;
type ReadGuard<'l> = RwLockReadGuard<'l, u128>;
type WriteGuard<'l> = RwLockWriteGuard<'l, u128>;
fn read_lock(&self) -> Self::ReadGuard<'_> {
self.d.read().unwrap()
}
fn write_lock(&self) -> Self::WriteGuard<'_> {
self.d.write().unwrap()
}
}
impl LockFor<E> for Data {
type Data = Mutex<u8>;
type Guard<'l> = MutexGuard<'l, Mutex<u8>>;
fn lock(&self) -> Self::Guard<'_> {
self.e.lock().unwrap()
}
}
impl LockFor<F> for Mutex<u8> {
type Data = u8;
type Guard<'l> = MutexGuard<'l, u8>;
fn lock(&self) -> Self::Guard<'_> {
self.lock().unwrap()
}
}
impl LockFor<G> for Data {
type Data = Vec<Mutex<u8>>;
type Guard<'l> = MutexGuard<'l, Vec<Mutex<u8>>>;
fn lock(&self) -> Self::Guard<'_> {
self.g.lock().unwrap()
}
}
impl LockFor<H> for Mutex<u8> {
type Data = u8;
type Guard<'l> = MutexGuard<'l, u8>;
fn lock(&self) -> Self::Guard<'_> {
self.lock().unwrap()
}
}
#[derive(Debug)]
#[allow(dead_code)]
struct NotPresent;
#[test]
fn lock_a_then_c() {
let data = Data::default();
let mut w = unsafe { Unlocked::new() };
let (_a, mut wa) = w.lock_and::<A, _>(&data);
let (_c, _wc) = wa.lock_and::<C, _>(&data);
// This won't compile!
// let _b = _wc.lock::<B, _>(&data);
}
#[test]
fn cast_a_then_c() {
let data = Data::default();
let mut w = unsafe { Unlocked::new() };
let mut wa = w.cast_locked::<A>();
let (_c, _wc) = wa.lock_and::<C, _>(&data);
// This should not compile:
// let _b = w.lock::<B, _>(&data);
}
#[test]
fn unlocked_access_does_not_prevent_locking() {
let data = Data { a: Mutex::new(15), u: 34, ..Data::default() };
let mut locked = unsafe { Unlocked::new() };
let u = &data.u;
// Prove that `u` does not prevent locked state from being accessed.
let a = locked.lock::<A, _>(&data);
assert_eq!(u, &34);
assert_eq!(&*a, &15);
}
#[test]
fn nested_locks() {
let data = Data { e: Mutex::new(Mutex::new(1)), ..Data::default() };
let mut locked = unsafe { Unlocked::new() };
let (e, mut next_locked) = locked.lock_and::<E, _>(&data);
let v = next_locked.lock::<F, _>(&*e);
assert_eq!(*v, 1);
}
#[test]
fn rw_lock() {
let data = Data { d: RwLock::new(1), ..Data::default() };
let mut locked = unsafe { Unlocked::new() };
{
let mut d = locked.write_lock::<D, _>(&data);
*d = 10;
}
let d = locked.read_lock::<D, _>(&data);
assert_eq!(*d, 10);
}
#[test]
fn collections() {
let data = Data { g: Mutex::new(vec![Mutex::new(0), Mutex::new(1)]), ..Data::default() };
let mut locked = unsafe { Unlocked::new() };
let (g, mut next_locked) = locked.lock_and::<G, _>(&data);
let v = next_locked.lock::<H, _>(&g[1]);
assert_eq!(*v, 1);
}
#[test]
fn lock_same_level() {
let data1 = Data { a: Mutex::new(5), b: Mutex::new(15), ..Data::default() };
let data2 = Data { a: Mutex::new(10), b: Mutex::new(20), ..Data::default() };
let mut locked = unsafe { Unlocked::new() };
{
let (a1, a2, mut new_locked) = locked.lock_both_and::<A, _>(&data1, &data2);
assert_eq!(*a1, 5);
assert_eq!(*a2, 10);
let (b1, b2) = new_locked.lock_both::<B, _>(&data1, &data2);
assert_eq!(*b1, 15);
assert_eq!(*b2, 20);
}
{
let (a2, a1) = locked.lock_both::<A, _>(&data2, &data1);
assert_eq!(*a1, 5);
assert_eq!(*a2, 10);
}
}
}