1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Utilities for parsing and serializing sequential records.
//!
//! This module provides utilities for parsing and serializing repeated,
//! sequential records. Examples of packet formats which include such records
//! include IPv4, IPv6, TCP, NDP, and IGMP.
//!
//! The utilities in this module are very flexible and generic. The user must
//! supply a number of details about the format in order for parsing and
//! serializing to work.
//!
//! Some packet formats use a [type-length-value]-like encoding for options.
//! Examples include IPv4, TCP, and NDP options. Special support for these
//! formats is provided by the [`options`] submodule.
//!
//! [type-length-value]: https://en.wikipedia.org/wiki/Type-length-value
use core::borrow::Borrow;
use core::convert::Infallible as Never;
use core::marker::PhantomData;
use core::ops::Deref;
use zerocopy::ByteSlice;
use crate::serialize::InnerPacketBuilder;
use crate::util::{FromRaw, MaybeParsed};
use crate::{BufferView, BufferViewMut};
/// A type that encapsuates the result of a record parsing operation.
pub type RecordParseResult<T, E> = core::result::Result<ParsedRecord<T>, E>;
/// A type that encapsulates the successful result of a parsing operation.
pub enum ParsedRecord<T> {
/// A record was successfully consumed and parsed.
Parsed(T),
/// A record was consumed but not parsed for non-fatal reasons.
///
/// The caller should attempt to parse the next record to get a successfully
/// parsed record.
///
/// An example of a record that is skippable is a record used for padding.
Skipped,
/// All possible records have been already been consumed; there is nothing
/// left to parse.
///
/// The behavior is unspecified if callers attempt to parse another record.
Done,
}
impl<T> ParsedRecord<T> {
/// Does this result indicate that a record was consumed?
///
/// Returns `true` for `Parsed` and `Skipped` and `false` for `Done`.
pub fn consumed(&self) -> bool {
match self {
ParsedRecord::Parsed(_) | ParsedRecord::Skipped => true,
ParsedRecord::Done => false,
}
}
}
/// A parsed sequence of records.
///
/// `Records` represents a pre-parsed sequence of records whose structure is
/// enforced by the impl in `R`.
#[derive(Debug, PartialEq)]
pub struct Records<B, R: RecordsImplLayout> {
bytes: B,
record_count: usize,
context: R::Context,
}
/// An unchecked sequence of records.
///
/// `RecordsRaw` represents a not-yet-parsed and not-yet-validated sequence of
/// records, whose structure is enforced by the impl in `R`.
///
/// [`Records`] provides an implementation of [`FromRaw`] that can be used to
/// validate a `RecordsRaw`.
#[derive(Debug)]
pub struct RecordsRaw<B, R: RecordsImplLayout> {
bytes: B,
context: R::Context,
}
impl<B, R> RecordsRaw<B, R>
where
R: RecordsImplLayout<Context = ()>,
{
/// Creates a new `RecordsRaw` with the data in `bytes`.
pub fn new(bytes: B) -> Self {
Self { bytes, context: () }
}
}
impl<B, R> RecordsRaw<B, R>
where
R: for<'a> RecordsRawImpl<'a>,
B: ByteSlice,
{
/// Raw-parses a sequence of records with a context.
///
/// See [`RecordsRaw::parse_raw_with_mut_context`] for details on `bytes`,
/// `context`, and return value. `parse_raw_with_context` just calls
/// `parse_raw_with_mut_context` with a mutable reference to the `context`
/// which is passed by value to this function.
pub fn parse_raw_with_context<BV: BufferView<B>>(
bytes: &mut BV,
mut context: R::Context,
) -> MaybeParsed<Self, (B, R::Error)> {
Self::parse_raw_with_mut_context(bytes, &mut context)
}
/// Raw-parses a sequence of records with a mutable context.
///
/// `parse_raw_with_mut_context` shallowly parses `bytes` as a sequence of
/// records. `context` may be used by implementers to maintain state.
///
/// `parse_raw_with_mut_context` performs a single pass over all of the
/// records to be able to find the end of the records list and update
/// `bytes` accordingly. Upon return with [`MaybeParsed::Complete`],
/// `bytes` will include only those bytes which are not part of the records
/// list. Upon return with [`MaybeParsed::Incomplete`], `bytes` will still
/// contain the bytes which could not be parsed, and all subsequent bytes.
pub fn parse_raw_with_mut_context<BV: BufferView<B>>(
bytes: &mut BV,
context: &mut R::Context,
) -> MaybeParsed<Self, (B, R::Error)> {
let c = context.clone();
let mut b = LongLivedBuff::new(bytes.as_ref());
let r = loop {
match R::parse_raw_with_context(&mut b, context) {
Ok(true) => {} // continue consuming from data
Ok(false) => {
break None;
}
Err(e) => {
break Some(e);
}
}
};
// When we get here, we know that whatever is left in `b` is not needed
// so we only take the amount of bytes we actually need from `bytes`,
// leaving the rest alone for the caller to continue parsing with.
let bytes_len = bytes.len();
let b_len = b.len();
let taken = bytes.take_front(bytes_len - b_len).unwrap();
match r {
Some(error) => MaybeParsed::Incomplete((taken, error)),
None => MaybeParsed::Complete(RecordsRaw { bytes: taken, context: c }),
}
}
}
impl<B, R> RecordsRaw<B, R>
where
R: for<'a> RecordsRawImpl<'a> + RecordsImplLayout<Context = ()>,
B: ByteSlice,
{
/// Raw-parses a sequence of records.
///
/// Equivalent to calling [`RecordsRaw::parse_raw_with_context`] with
/// `context = ()`.
pub fn parse_raw<BV: BufferView<B>>(bytes: &mut BV) -> MaybeParsed<Self, (B, R::Error)> {
Self::parse_raw_with_context(bytes, ())
}
}
impl<B, R> Deref for RecordsRaw<B, R>
where
B: ByteSlice,
R: RecordsImplLayout,
{
type Target = [u8];
fn deref(&self) -> &[u8] {
self.bytes.deref()
}
}
impl<B: Deref<Target = [u8]>, R: RecordsImplLayout> RecordsRaw<B, R> {
/// Gets the underlying bytes.
///
/// `bytes` returns a reference to the byte slice backing this `RecordsRaw`.
pub fn bytes(&self) -> &[u8] {
&self.bytes
}
}
/// An iterator over the records contained inside a [`Records`] instance.
#[derive(Copy, Clone, Debug)]
pub struct RecordsIter<'a, R: RecordsImpl<'a>> {
bytes: &'a [u8],
records_left: usize,
context: R::Context,
}
/// The error returned when fewer records were found than expected.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct TooFewRecordsErr;
/// A counter used to keep track of how many records are remaining to be parsed.
///
/// Some record sequence formats include an indication of how many records
/// should be expected. For example, the [IGMPv3 Membership Report Message]
/// includes a "Number of Group Records" field in its header which indicates how
/// many Group Records are present following the header. A `RecordsCounter` is a
/// type used by these protocols to keep track of how many records are remaining
/// to be parsed. It is implemented for all unsigned numeric primitive types
/// (`usize`, `u8`, `u16`, `u32`, `u64`, and `u128`). A no-op implementation
/// which does not track the number of remaining records is provided for `()`.
///
/// [IGMPv3 Membership Report Message]: https://www.rfc-editor.org/rfc/rfc3376#section-4.2
pub trait RecordsCounter: Sized {
/// The error returned from [`result_for_end_of_records`] when fewer records
/// were found than expected.
///
/// Some formats which store the number of records out-of-band consider it
/// an error to provide fewer records than this out-of-band value.
/// `TooFewRecordsErr` is the error returned by
/// [`result_for_end_of_records`] when this condition is encountered. If the
/// number of records is not tracked (usually, when `Self = ()`) or if it is
/// not an error to provide fewer records than expected, it is recommended
/// that `TooFewRecordsErr` be set to an uninhabited type like [`Never`].
///
/// [`result_for_end_of_records`]: RecordsCounter::result_for_end_of_records
type TooFewRecordsErr;
/// Gets the next lowest value unless the counter is already at 0.
///
/// During parsing, this value will be queried prior to parsing a record. If
/// the counter has already reached zero (`next_lowest_value` returns
/// `None`), parsing will be terminated. If the counter has not yet reached
/// zero and a record is successfully parsed, the previous counter value
/// will be overwritten with the one provided by `next_lowest_value`. In
/// other words, the parsing logic will look something like the following
/// pseudocode:
///
/// ```rust,ignore
/// let next = counter.next_lowest_value()?;
/// let record = parse()?;
/// *counter = next;
/// ```
///
/// If `Self` is a type which does not impose a limit on the number of
/// records parsed (usually, `()`), `next_lowest_value` must always return
/// `Some`. The value contained in the `Some` is irrelevant - it will just
/// be written back verbatim after a record is successfully parsed.
fn next_lowest_value(&self) -> Option<Self>;
/// Gets a result which can be used to determine whether it is an error that
/// there are no more records left to parse.
///
/// Some formats which store the number of records out-of-band consider it
/// an error to provide fewer records than this out-of-band value.
/// `result_for_end_of_records` is called when there are no more records
/// left to parse. If the counter is still at a non-zero value, and the
/// protocol considers this to be an error, `result_for_end_of_records`
/// should return an appropriate error. Otherwise, it should return
/// `Ok(())`.
fn result_for_end_of_records(&self) -> Result<(), Self::TooFewRecordsErr> {
Ok(())
}
}
/// The context kept while performing records parsing.
///
/// Types which implement `RecordsContext` can be used as the long-lived context
/// which is kept during records parsing. This context allows parsers to keep
/// running computations over the span of multiple records.
pub trait RecordsContext: Sized + Clone {
/// A counter used to keep track of how many records are left to parse.
///
/// See the documentation on [`RecordsCounter`] for more details.
type Counter: RecordsCounter;
/// Clones a context for iterator purposes.
///
/// `clone_for_iter` is useful for cloning a context to be used by
/// [`RecordsIter`]. Since [`Records::parse_with_context`] will do a full
/// pass over all the records to check for errors, a `RecordsIter` should
/// never error. Therefore, instead of doing checks when iterating (if a
/// context was used for checks), a clone of a context can be made
/// specifically for iterator purposes that does not do checks (which may be
/// expensive).
///
/// The default implementation of this method is equivalent to
/// [`Clone::clone`].
fn clone_for_iter(&self) -> Self {
self.clone()
}
/// Gets the counter mutably.
fn counter_mut(&mut self) -> &mut Self::Counter;
}
macro_rules! impl_records_counter_and_context_for_uxxx {
($ty:ty) => {
impl RecordsCounter for $ty {
type TooFewRecordsErr = TooFewRecordsErr;
fn next_lowest_value(&self) -> Option<Self> {
self.checked_sub(1)
}
fn result_for_end_of_records(&self) -> Result<(), TooFewRecordsErr> {
if *self == 0 {
Ok(())
} else {
Err(TooFewRecordsErr)
}
}
}
impl RecordsContext for $ty {
type Counter = $ty;
fn counter_mut(&mut self) -> &mut $ty {
self
}
}
};
}
impl_records_counter_and_context_for_uxxx!(usize);
impl_records_counter_and_context_for_uxxx!(u128);
impl_records_counter_and_context_for_uxxx!(u64);
impl_records_counter_and_context_for_uxxx!(u32);
impl_records_counter_and_context_for_uxxx!(u16);
impl_records_counter_and_context_for_uxxx!(u8);
impl RecordsCounter for () {
type TooFewRecordsErr = Never;
fn next_lowest_value(&self) -> Option<()> {
Some(())
}
}
impl RecordsContext for () {
type Counter = ();
fn counter_mut(&mut self) -> &mut () {
self
}
}
/// Basic associated types used by a [`RecordsImpl`].
///
/// This trait is kept separate from `RecordsImpl` so that the associated types
/// do not depend on the lifetime parameter to `RecordsImpl`.
pub trait RecordsImplLayout {
// TODO(https://github.com/rust-lang/rust/issues/29661): Give the `Context`
// type a default of `()`.
/// A context type that can be used to maintain state while parsing multiple
/// records.
type Context: RecordsContext;
/// The type of errors that may be returned by a call to
/// [`RecordsImpl::parse_with_context`].
type Error: From<
<<Self::Context as RecordsContext>::Counter as RecordsCounter>::TooFewRecordsErr,
>;
}
/// An implementation of a records parser.
///
/// `RecordsImpl` provides functions to parse sequential records. It is required
/// in order to construct a [`Records`] or [`RecordsIter`].
pub trait RecordsImpl<'a>: RecordsImplLayout {
/// The type of a single record; the output from the [`parse_with_context`]
/// function.
///
/// For long or variable-length data, implementers are advised to make
/// `Record` a reference into the bytes passed to `parse_with_context`. Such
/// a reference will need to carry the lifetime `'a`, which is the same
/// lifetime that is passed to `parse_with_context`, and is also the
/// lifetime parameter to this trait.
///
/// [`parse_with_context`]: RecordsImpl::parse_with_context
type Record;
/// Parses a record with some context.
///
/// `parse_with_context` takes a variable-length `data` and a `context` to
/// maintain state.
///
/// `data` may be empty. It is up to the implementer to handle an exhausted
/// `data`.
///
/// When returning `Ok(ParsedRecord::Skipped)`, it's the implementer's
/// responsibility to consume the bytes of the record from `data`. If this
/// doesn't happen, then `parse_with_context` will be called repeatedly on
/// the same `data`, and the program will be stuck in an infinite loop. If
/// the implementation is unable to determine how many bytes to consume from
/// `data` in order to skip the record, `parse_with_context` must return
/// `Err`.
///
/// `parse_with_context` must be deterministic, or else
/// [`Records::parse_with_context`] cannot guarantee that future iterations
/// will not produce errors (and thus panic).
fn parse_with_context<BV: BufferView<&'a [u8]>>(
data: &mut BV,
context: &mut Self::Context,
) -> RecordParseResult<Self::Record, Self::Error>;
}
/// An implementation of a raw records parser.
///
/// `RecordsRawImpl` provides functions to raw-parse sequential records. It is
/// required to construct a partially-parsed [`RecordsRaw`].
///
/// `RecordsRawImpl` is meant to perform little or no validation on each record
/// it consumes. It is primarily used to be able to walk record sequences with
/// unknown lengths.
pub trait RecordsRawImpl<'a>: RecordsImplLayout {
/// Raw-parses a single record with some context.
///
/// `parse_raw_with_context` takes a variable length `data` and a `context`
/// to maintain state, and returns `Ok(true)` if a record is successfully
/// consumed, `Ok(false)` if it is unable to parse more records, and
/// `Err(err)` if the `data` is malformed in any way.
///
/// `data` may be empty. It is up to the implementer to handle an exhausted
/// `data`.
///
/// It's the implementer's responsibility to consume exactly one record from
/// `data` when returning `Ok(_)`.
fn parse_raw_with_context<BV: BufferView<&'a [u8]>>(
data: &mut BV,
context: &mut Self::Context,
) -> Result<bool, Self::Error>;
}
/// A builder capable of serializing a record.
///
/// Given `R: RecordBuilder`, an iterator of `R` can be used with a
/// [`RecordSequenceBuilder`] to serialize a sequence of records.
pub trait RecordBuilder {
/// Provides the serialized length of a record.
///
/// Returns the total length, in bytes, of the serialized encoding of
/// `self`.
fn serialized_len(&self) -> usize;
/// Serializes `self` into a buffer.
///
/// `data` will be exactly `self.serialized_len()` bytes long.
///
/// # Panics
///
/// May panic if `data` is not exactly `self.serialized_len()` bytes long.
fn serialize_into(&self, data: &mut [u8]);
}
/// A builder capable of serializing a record with an alignment requirement.
///
/// Given `R: AlignedRecordBuilder`, an iterator of `R` can be used with an
/// [`AlignedRecordSequenceBuilder`] to serialize a sequence of aligned records.
pub trait AlignedRecordBuilder: RecordBuilder {
/// Returns the alignment requirement of `self`.
///
/// The alignment requirement is returned as `(x, y)`, which means that the
/// record must be aligned at `x * n + y` bytes from the beginning of the
/// records sequence for some non-negative `n`.
///
/// It is guaranteed that `x > 0` and that `x > y`.
fn alignment_requirement(&self) -> (usize, usize);
/// Serializes the padding between subsequent aligned records.
///
/// Some formats require that padding bytes have particular content. This
/// function serializes padding bytes as required by the format.
fn serialize_padding(buf: &mut [u8], length: usize);
}
/// A builder capable of serializing a sequence of records.
///
/// A `RecordSequenceBuilder` is instantiated with an [`Iterator`] that provides
/// [`RecordBuilder`]s to be serialized. The item produced by the iterator can
/// be any type which implements `Borrow<R>` for `R: RecordBuilder`.
///
/// `RecordSequenceBuilder` implements [`InnerPacketBuilder`].
#[derive(Debug, Clone)]
pub struct RecordSequenceBuilder<R, I> {
records: I,
_marker: PhantomData<R>,
}
impl<R, I> RecordSequenceBuilder<R, I> {
/// Creates a new `RecordSequenceBuilder` with the given `records`.
///
/// `records` must produce the same sequence of values from every iteration,
/// even if cloned. Serialization is typically performed with two passes on
/// `records`: one to calculate the total length in bytes (`serialized_len`)
/// and another one to serialize to a buffer (`serialize_into`). Violating
/// this rule may result in panics or malformed serialized record sequences.
pub fn new(records: I) -> Self {
Self { records, _marker: PhantomData }
}
}
impl<R, I> RecordSequenceBuilder<R, I>
where
R: RecordBuilder,
I: Iterator + Clone,
I::Item: Borrow<R>,
{
/// Returns the total length, in bytes, of the serialized encoding of the
/// records contained within `self`.
pub fn serialized_len(&self) -> usize {
self.records.clone().map(|r| r.borrow().serialized_len()).sum()
}
/// Serializes all the records contained within `self` into the given
/// buffer.
///
/// # Panics
///
/// `serialize_into` expects that `buffer` has enough bytes to serialize the
/// contained records (as obtained from `serialized_len`), otherwise it's
/// considered a violation of the API contract and the call may panic.
pub fn serialize_into(&self, buffer: &mut [u8]) {
let mut b = &mut &mut buffer[..];
for r in self.records.clone() {
// SECURITY: Take a zeroed buffer from b to prevent leaking
// information from packets previously stored in this buffer.
r.borrow().serialize_into(b.take_front_zero(r.borrow().serialized_len()).unwrap());
}
}
/// Returns a reference to the inner records of this builder.
pub fn records(&self) -> &I {
&self.records
}
}
impl<R, I> InnerPacketBuilder for RecordSequenceBuilder<R, I>
where
R: RecordBuilder,
I: Iterator + Clone,
I::Item: Borrow<R>,
{
fn bytes_len(&self) -> usize {
self.serialized_len()
}
fn serialize(&self, buffer: &mut [u8]) {
self.serialize_into(buffer)
}
}
/// A builder capable of serializing a sequence of aligned records.
///
/// An `AlignedRecordSequenceBuilder` is instantiated with an [`Iterator`] that
/// provides [`AlignedRecordBuilder`]s to be serialized. The item produced by
/// the iterator can be any type which implements `Borrow<R>` for `R:
/// AlignedRecordBuilder`.
///
/// `AlignedRecordSequenceBuilder` implements [`InnerPacketBuilder`].
#[derive(Debug, Clone)]
pub struct AlignedRecordSequenceBuilder<R, I> {
start_pos: usize,
records: I,
_marker: PhantomData<R>,
}
impl<R, I> AlignedRecordSequenceBuilder<R, I> {
/// Creates a new `AlignedRecordSequenceBuilder` with given `records` and
/// `start_pos`.
///
/// `records` must produce the same sequence of values from every iteration,
/// even if cloned. See [`RecordSequenceBuilder`] for more details.
///
/// Alignment is calculated relative to the beginning of a virtual space of
/// bytes. If non-zero, `start_pos` instructs the serializer to consider the
/// buffer passed to [`serialize_into`] to start at the byte `start_pos`
/// within this virtual space, and to calculate alignment and padding
/// accordingly. For example, in the IPv6 Hop-by-Hop extension header, a
/// fixed header of two bytes precedes that extension header's options, but
/// alignment is calculated relative to the beginning of the extension
/// header, not relative to the beginning of the options. Thus, when
/// constructing an `AlignedRecordSequenceBuilder` to serialize those
/// options, `start_pos` would be 2.
///
/// [`serialize_into`]: AlignedRecordSequenceBuilder::serialize_into
pub fn new(start_pos: usize, records: I) -> Self {
Self { start_pos, records, _marker: PhantomData }
}
}
impl<R, I> AlignedRecordSequenceBuilder<R, I>
where
R: AlignedRecordBuilder,
I: Iterator + Clone,
I::Item: Borrow<R>,
{
/// Returns the total length, in bytes, of the serialized records contained
/// within `self`.
///
/// Note that this length includes all padding required to ensure that all
/// records satisfy their alignment requirements.
pub fn serialized_len(&self) -> usize {
let mut pos = self.start_pos;
self.records
.clone()
.map(|r| {
let (x, y) = r.borrow().alignment_requirement();
let new_pos = align_up_to(pos, x, y) + r.borrow().serialized_len();
let result = new_pos - pos;
pos = new_pos;
result
})
.sum()
}
/// Serializes all the records contained within `self` into the given
/// buffer.
///
/// # Panics
///
/// `serialize_into` expects that `buffer` has enough bytes to serialize the
/// contained records (as obtained from `serialized_len`), otherwise it's
/// considered a violation of the API contract and the call may panic.
pub fn serialize_into(&self, buffer: &mut [u8]) {
let mut b = &mut &mut buffer[..];
let mut pos = self.start_pos;
for r in self.records.clone() {
let (x, y) = r.borrow().alignment_requirement();
let aligned = align_up_to(pos, x, y);
let pad_len = aligned - pos;
let pad = b.take_front_zero(pad_len).unwrap();
R::serialize_padding(pad, pad_len);
pos = aligned;
// SECURITY: Take a zeroed buffer from b to prevent leaking
// information from packets previously stored in this buffer.
r.borrow().serialize_into(b.take_front_zero(r.borrow().serialized_len()).unwrap());
pos += r.borrow().serialized_len();
}
// we have to pad the containing header to 8-octet boundary.
let padding = b.take_rest_front_zero();
R::serialize_padding(padding, padding.len());
}
}
/// Returns the aligned offset which is at `x * n + y`.
///
/// # Panics
///
/// Panics if `x == 0` or `y >= x`.
fn align_up_to(offset: usize, x: usize, y: usize) -> usize {
assert!(x != 0 && y < x);
// first add `x` to prevent overflow.
(offset + x - 1 - y) / x * x + y
}
impl<B, R> Records<B, R>
where
B: ByteSlice,
R: for<'a> RecordsImpl<'a>,
{
/// Parses a sequence of records with a context.
///
/// See [`parse_with_mut_context`] for details on `bytes`, `context`, and
/// return value. `parse_with_context` just calls `parse_with_mut_context`
/// with a mutable reference to the `context` which is passed by value to
/// this function.
///
/// [`parse_with_mut_context`]: Records::parse_with_mut_context
pub fn parse_with_context(
bytes: B,
mut context: R::Context,
) -> Result<Records<B, R>, R::Error> {
Self::parse_with_mut_context(bytes, &mut context)
}
/// Parses a sequence of records with a mutable context.
///
/// `context` may be used by implementers to maintain state while parsing
/// multiple records.
///
/// `parse_with_mut_context` performs a single pass over all of the records
/// to verify that they are well-formed. Once `parse_with_context` returns
/// successfully, the resulting `Records` can be used to construct
/// infallible iterators.
pub fn parse_with_mut_context(
bytes: B,
context: &mut R::Context,
) -> Result<Records<B, R>, R::Error> {
// First, do a single pass over the bytes to detect any errors up front.
// Once this is done, since we have a reference to `bytes`, these bytes
// can't change out from under us, and so we can treat any iterator over
// these bytes as infallible. This makes a few assumptions, but none of
// them are that big of a deal. In all cases, breaking these assumptions
// would at worst result in a runtime panic.
// - B could return different bytes each time
// - R::parse could be non-deterministic
let c = context.clone();
let mut b = LongLivedBuff::new(bytes.deref());
let mut record_count = 0;
while next::<_, R>(&mut b, context)?.is_some() {
record_count += 1;
}
Ok(Records { bytes, record_count, context: c })
}
}
impl<B, R> Records<B, R>
where
B: ByteSlice,
R: for<'a> RecordsImpl<'a, Context = ()>,
{
/// Parses a sequence of records.
///
/// Equivalent to calling [`parse_with_context`] with `context = ()`.
///
/// [`parse_with_context`]: Records::parse_with_context
pub fn parse(bytes: B) -> Result<Records<B, R>, R::Error> {
Self::parse_with_context(bytes, ())
}
}
impl<B, R> FromRaw<RecordsRaw<B, R>, ()> for Records<B, R>
where
for<'a> R: RecordsImpl<'a>,
B: ByteSlice,
{
type Error = R::Error;
fn try_from_raw_with(raw: RecordsRaw<B, R>, _args: ()) -> Result<Self, R::Error> {
Records::<B, R>::parse_with_context(raw.bytes, raw.context)
}
}
impl<B: Deref<Target = [u8]>, R> Records<B, R>
where
R: for<'a> RecordsImpl<'a>,
{
/// Gets the underlying bytes.
///
/// `bytes` returns a reference to the byte slice backing this `Records`.
pub fn bytes(&self) -> &[u8] {
&self.bytes
}
}
impl<'a, B, R> Records<B, R>
where
B: 'a + ByteSlice,
R: RecordsImpl<'a>,
{
/// Iterates over options.
///
/// Since the records were validated in [`parse`], then so long as
/// [`R::parse_with_context`] is deterministic, the iterator is infallible.
///
/// [`parse`]: Records::parse
/// [`R::parse_with_context`]: RecordsImpl::parse_with_context
pub fn iter(&'a self) -> RecordsIter<'a, R> {
RecordsIter {
bytes: &self.bytes,
records_left: self.record_count,
context: self.context.clone_for_iter(),
}
}
}
impl<'a, R> RecordsIter<'a, R>
where
R: RecordsImpl<'a>,
{
/// Gets a reference to the context.
pub fn context(&self) -> &R::Context {
&self.context
}
}
impl<'a, R> Iterator for RecordsIter<'a, R>
where
R: RecordsImpl<'a>,
{
type Item = R::Record;
fn next(&mut self) -> Option<R::Record> {
let mut bytes = LongLivedBuff::new(self.bytes);
// use match rather than expect because expect requires that Err: Debug
#[allow(clippy::match_wild_err_arm)]
let result = match next::<_, R>(&mut bytes, &mut self.context) {
Ok(o) => o,
Err(_) => panic!("already-validated options should not fail to parse"),
};
if result.is_some() {
self.records_left -= 1;
}
self.bytes = bytes.into_rest();
result
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.records_left, Some(self.records_left))
}
}
impl<'a, R> ExactSizeIterator for RecordsIter<'a, R>
where
R: RecordsImpl<'a>,
{
fn len(&self) -> usize {
self.records_left
}
}
/// Gets the next entry for a set of sequential records in `bytes`.
///
/// On return, `bytes` will be pointing to the start of where a next record
/// would be.
fn next<'a, BV, R>(bytes: &mut BV, context: &mut R::Context) -> Result<Option<R::Record>, R::Error>
where
R: RecordsImpl<'a>,
BV: BufferView<&'a [u8]>,
{
loop {
// If we're already at 0, don't attempt to parse any more records.
let next_lowest_counter_val = match context.counter_mut().next_lowest_value() {
Some(val) => val,
None => return Ok(None),
};
match R::parse_with_context(bytes, context)? {
ParsedRecord::Done => {
return context
.counter_mut()
.result_for_end_of_records()
.map_err(Into::into)
.map(|()| None);
}
ParsedRecord::Skipped => {}
ParsedRecord::Parsed(o) => {
*context.counter_mut() = next_lowest_counter_val;
return Ok(Some(o));
}
}
}
}
/// A wrapper around the implementation of `BufferView` for slices.
///
/// `LongLivedBuff` is a thin wrapper around `&[u8]` meant to provide an
/// implementation of `BufferView` that returns slices tied to the same lifetime
/// as the slice that `LongLivedBuff` was created with. This is in contrast to
/// the more widely used `&'b mut &'a [u8]` `BufferView` implementer that
/// returns slice references tied to lifetime `b`.
struct LongLivedBuff<'a>(&'a [u8]);
impl<'a> LongLivedBuff<'a> {
/// Creates a new `LongLivedBuff` around a slice reference with lifetime
/// `'a`.
///
/// All slices returned by the `BufferView` impl of `LongLivedBuff` are
/// guaranteed to return slice references tied to the same lifetime `'a`.
fn new(data: &'a [u8]) -> LongLivedBuff<'a> {
LongLivedBuff::<'a>(data)
}
}
impl<'a> AsRef<[u8]> for LongLivedBuff<'a> {
fn as_ref(&self) -> &[u8] {
self.0
}
}
impl<'a> BufferView<&'a [u8]> for LongLivedBuff<'a> {
fn take_front(&mut self, n: usize) -> Option<&'a [u8]> {
if self.0.len() >= n {
let (prefix, rest) = core::mem::replace(&mut self.0, &[]).split_at(n);
self.0 = rest;
Some(prefix)
} else {
None
}
}
fn take_back(&mut self, n: usize) -> Option<&'a [u8]> {
if self.0.len() >= n {
let (rest, suffix) = core::mem::replace(&mut self.0, &[]).split_at(n);
self.0 = rest;
Some(suffix)
} else {
None
}
}
fn into_rest(self) -> &'a [u8] {
self.0
}
}
#[cfg(test)]
mod tests {
use test_case::test_case;
use zerocopy::{AsBytes, FromBytes, FromZeros, NoCell, Ref, Unaligned};
use super::*;
const DUMMY_BYTES: [u8; 16] = [
0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03,
0x04,
];
fn get_empty_tuple_mut_ref<'a>() -> &'a mut () {
// This is a hack since `&mut ()` is invalid.
let bytes: &mut [u8] = &mut [];
zerocopy::Ref::<_, ()>::new_unaligned(bytes).unwrap().into_mut()
}
#[derive(Debug, AsBytes, FromZeros, FromBytes, NoCell, Unaligned)]
#[repr(C)]
struct DummyRecord {
a: [u8; 2],
b: u8,
c: u8,
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum DummyRecordErr {
Parse,
TooFewRecords,
}
impl From<Never> for DummyRecordErr {
fn from(err: Never) -> DummyRecordErr {
match err {}
}
}
impl From<TooFewRecordsErr> for DummyRecordErr {
fn from(_: TooFewRecordsErr) -> DummyRecordErr {
DummyRecordErr::TooFewRecords
}
}
fn parse_dummy_rec<'a, BV>(
data: &mut BV,
) -> RecordParseResult<Ref<&'a [u8], DummyRecord>, DummyRecordErr>
where
BV: BufferView<&'a [u8]>,
{
if data.is_empty() {
return Ok(ParsedRecord::Done);
}
match data.take_obj_front::<DummyRecord>() {
Some(res) => Ok(ParsedRecord::Parsed(res)),
None => Err(DummyRecordErr::Parse),
}
}
//
// Context-less records
//
#[derive(Debug)]
struct ContextlessRecordImpl;
impl RecordsImplLayout for ContextlessRecordImpl {
type Context = ();
type Error = DummyRecordErr;
}
impl<'a> RecordsImpl<'a> for ContextlessRecordImpl {
type Record = Ref<&'a [u8], DummyRecord>;
fn parse_with_context<BV: BufferView<&'a [u8]>>(
data: &mut BV,
_context: &mut Self::Context,
) -> RecordParseResult<Self::Record, Self::Error> {
parse_dummy_rec(data)
}
}
//
// Limit context records
//
#[derive(Debug)]
struct LimitContextRecordImpl;
impl RecordsImplLayout for LimitContextRecordImpl {
type Context = usize;
type Error = DummyRecordErr;
}
impl<'a> RecordsImpl<'a> for LimitContextRecordImpl {
type Record = Ref<&'a [u8], DummyRecord>;
fn parse_with_context<BV: BufferView<&'a [u8]>>(
data: &mut BV,
_context: &mut usize,
) -> RecordParseResult<Self::Record, Self::Error> {
parse_dummy_rec(data)
}
}
//
// Filter context records
//
#[derive(Debug)]
struct FilterContextRecordImpl;
#[derive(Clone)]
struct FilterContext {
pub disallowed: [bool; 256],
}
impl RecordsContext for FilterContext {
type Counter = ();
fn counter_mut(&mut self) -> &mut () {
get_empty_tuple_mut_ref()
}
}
impl RecordsImplLayout for FilterContextRecordImpl {
type Context = FilterContext;
type Error = DummyRecordErr;
}
impl core::fmt::Debug for FilterContext {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "FilterContext{{disallowed:{:?}}}", &self.disallowed[..])
}
}
impl<'a> RecordsImpl<'a> for FilterContextRecordImpl {
type Record = Ref<&'a [u8], DummyRecord>;
fn parse_with_context<BV: BufferView<&'a [u8]>>(
bytes: &mut BV,
context: &mut Self::Context,
) -> RecordParseResult<Self::Record, Self::Error> {
if bytes.len() < core::mem::size_of::<DummyRecord>() {
Ok(ParsedRecord::Done)
} else if bytes.as_ref()[0..core::mem::size_of::<DummyRecord>()]
.iter()
.any(|x| context.disallowed[*x as usize])
{
Err(DummyRecordErr::Parse)
} else {
parse_dummy_rec(bytes)
}
}
}
//
// Stateful context records
//
#[derive(Debug)]
struct StatefulContextRecordImpl;
#[derive(Clone, Debug)]
struct StatefulContext {
pub pre_parse_counter: usize,
pub parse_counter: usize,
pub post_parse_counter: usize,
pub iter: bool,
}
impl RecordsImplLayout for StatefulContextRecordImpl {
type Context = StatefulContext;
type Error = DummyRecordErr;
}
impl StatefulContext {
pub fn new() -> StatefulContext {
StatefulContext {
pre_parse_counter: 0,
parse_counter: 0,
post_parse_counter: 0,
iter: false,
}
}
}
impl RecordsContext for StatefulContext {
type Counter = ();
fn clone_for_iter(&self) -> Self {
let mut x = self.clone();
x.iter = true;
x
}
fn counter_mut(&mut self) -> &mut () {
get_empty_tuple_mut_ref()
}
}
impl<'a> RecordsImpl<'a> for StatefulContextRecordImpl {
type Record = Ref<&'a [u8], DummyRecord>;
fn parse_with_context<BV: BufferView<&'a [u8]>>(
data: &mut BV,
context: &mut Self::Context,
) -> RecordParseResult<Self::Record, Self::Error> {
if !context.iter {
context.pre_parse_counter += 1;
}
let ret = parse_dummy_rec_with_context(data, context);
if let Ok(ParsedRecord::Parsed(_)) = ret {
if !context.iter {
context.post_parse_counter += 1;
}
}
ret
}
}
impl<'a> RecordsRawImpl<'a> for StatefulContextRecordImpl {
fn parse_raw_with_context<BV: BufferView<&'a [u8]>>(
data: &mut BV,
context: &mut Self::Context,
) -> Result<bool, Self::Error> {
Self::parse_with_context(data, context).map(|r| r.consumed())
}
}
fn parse_dummy_rec_with_context<'a, BV>(
data: &mut BV,
context: &mut StatefulContext,
) -> RecordParseResult<Ref<&'a [u8], DummyRecord>, DummyRecordErr>
where
BV: BufferView<&'a [u8]>,
{
if data.is_empty() {
return Ok(ParsedRecord::Done);
}
if !context.iter {
context.parse_counter += 1;
}
match data.take_obj_front::<DummyRecord>() {
Some(res) => Ok(ParsedRecord::Parsed(res)),
None => Err(DummyRecordErr::Parse),
}
}
fn check_parsed_record(rec: &DummyRecord) {
assert_eq!(rec.a[0], 0x01);
assert_eq!(rec.a[1], 0x02);
assert_eq!(rec.b, 0x03);
}
fn validate_parsed_stateful_context_records<B: ByteSlice>(
records: Records<B, StatefulContextRecordImpl>,
context: StatefulContext,
) {
// Should be 5 because on the last iteration, we should realize that we
// have no more bytes left and end before parsing (also explaining why
// `parse_counter` should only be 4.
assert_eq!(context.pre_parse_counter, 5);
assert_eq!(context.parse_counter, 4);
assert_eq!(context.post_parse_counter, 4);
let mut iter = records.iter();
let context = &iter.context;
assert_eq!(context.pre_parse_counter, 0);
assert_eq!(context.parse_counter, 0);
assert_eq!(context.post_parse_counter, 0);
assert_eq!(context.iter, true);
// Manually iterate over `iter` so as to not move it.
let mut count = 0;
while let Some(_) = iter.next() {
count += 1;
}
assert_eq!(count, 4);
// Check to see that when iterating, the context doesn't update counters
// as that is how we implemented our StatefulContextRecordImpl..
let context = &iter.context;
assert_eq!(context.pre_parse_counter, 0);
assert_eq!(context.parse_counter, 0);
assert_eq!(context.post_parse_counter, 0);
assert_eq!(context.iter, true);
}
#[test]
fn all_records_parsing() {
let parsed = Records::<_, ContextlessRecordImpl>::parse(&DUMMY_BYTES[..]).unwrap();
let mut iter = parsed.iter();
// Test ExactSizeIterator implementation.
assert_eq!(iter.len(), 4);
let mut cnt = 4;
while let Some(_) = iter.next() {
cnt -= 1;
assert_eq!(iter.len(), cnt);
}
assert_eq!(iter.len(), 0);
for rec in parsed.iter() {
check_parsed_record(rec.deref());
}
}
// `expect` is either the number of records that should have been parsed or
// the error returned from the `Records` constructor.
//
// If there are more records than the limit, then we just truncate (not
// parsing all of them) and don't return an error.
#[test_case(0, Ok(0))]
#[test_case(1, Ok(1))]
#[test_case(2, Ok(2))]
#[test_case(3, Ok(3))]
// If there are the same number of records as the limit, then we
// succeed.
#[test_case(4, Ok(4))]
// If there are fewer records than the limit, then we fail.
#[test_case(5, Err(DummyRecordErr::TooFewRecords))]
fn limit_records_parsing(limit: usize, expect: Result<usize, DummyRecordErr>) {
// Test without mutable limit/context
let check_result =
|result: Result<Records<_, LimitContextRecordImpl>, _>| match (expect, result) {
(Ok(expect_parsed), Ok(records)) => {
assert_eq!(records.iter().count(), expect_parsed);
for rec in records.iter() {
check_parsed_record(rec.deref());
}
}
(Err(expect), Err(got)) => assert_eq!(expect, got),
(Ok(expect_parsed), Err(err)) => {
panic!("wanted {expect_parsed} successfully-parsed records; got error {err:?}")
}
(Err(expect), Ok(records)) => panic!(
"wanted error {expect:?}, got {} successfully-parsed records",
records.iter().count()
),
};
check_result(Records::<_, LimitContextRecordImpl>::parse_with_context(
&DUMMY_BYTES[..],
limit,
));
let mut mut_limit = limit;
check_result(Records::<_, LimitContextRecordImpl>::parse_with_mut_context(
&DUMMY_BYTES[..],
&mut mut_limit,
));
if let Ok(expect_parsed) = expect {
assert_eq!(limit - mut_limit, expect_parsed);
}
}
#[test]
fn context_filtering_some_byte_records_parsing() {
// Do not disallow any bytes
let context = FilterContext { disallowed: [false; 256] };
let parsed =
Records::<_, FilterContextRecordImpl>::parse_with_context(&DUMMY_BYTES[..], context)
.unwrap();
assert_eq!(parsed.iter().count(), 4);
for rec in parsed.iter() {
check_parsed_record(rec.deref());
}
// Do not allow byte value 0x01
let mut context = FilterContext { disallowed: [false; 256] };
context.disallowed[1] = true;
assert_eq!(
Records::<_, FilterContextRecordImpl>::parse_with_context(&DUMMY_BYTES[..], context)
.expect_err("fails if the buffer has an element with value 0x01"),
DummyRecordErr::Parse
);
}
#[test]
fn stateful_context_records_parsing() {
let mut context = StatefulContext::new();
let parsed = Records::<_, StatefulContextRecordImpl>::parse_with_mut_context(
&DUMMY_BYTES[..],
&mut context,
)
.unwrap();
validate_parsed_stateful_context_records(parsed, context);
}
#[test]
fn raw_parse_success() {
let mut context = StatefulContext::new();
let mut bv = &mut &DUMMY_BYTES[..];
let result = RecordsRaw::<_, StatefulContextRecordImpl>::parse_raw_with_mut_context(
&mut bv,
&mut context,
)
.complete()
.unwrap();
let RecordsRaw { bytes, context: _ } = &result;
assert_eq!(*bytes, &DUMMY_BYTES[..]);
let parsed = Records::try_from_raw(result).unwrap();
validate_parsed_stateful_context_records(parsed, context);
}
#[test]
fn raw_parse_failure() {
let mut context = StatefulContext::new();
let mut bv = &mut &DUMMY_BYTES[0..15];
let result = RecordsRaw::<_, StatefulContextRecordImpl>::parse_raw_with_mut_context(
&mut bv,
&mut context,
)
.incomplete()
.unwrap();
assert_eq!(result, (&DUMMY_BYTES[0..12], DummyRecordErr::Parse));
}
}
/// Utilities for parsing the options formats in protocols like IPv4, TCP, and
/// NDP.
///
/// This module provides parsing utilities for [type-length-value]-like records
/// encodings like those used by the options in an IPv4 or TCP header or an NDP
/// packet. These formats are not identical, but share enough in common that the
/// utilities provided here only need a small amount of customization by the
/// user to be fully functional.
///
/// [type-length-value]: https://en.wikipedia.org/wiki/Type-length-value
pub mod options {
use core::mem;
use core::num::{NonZeroUsize, TryFromIntError};
use const_unwrap::const_unwrap_option;
use zerocopy::byteorder::ByteOrder;
use zerocopy::{AsBytes, FromBytes, NoCell, Unaligned};
use super::*;
/// A parsed sequence of options.
///
/// `Options` represents a parsed sequence of options, for example from an
/// IPv4 or TCP header or an NDP packet. `Options` uses [`Records`] under
/// the hood.
///
/// [`Records`]: crate::records::Records
pub type Options<B, O> = Records<B, O>;
/// A not-yet-parsed sequence of options.
///
/// `OptionsRaw` represents a not-yet-parsed and not-yet-validated sequence
/// of options, for example from an IPv4 or TCP header or an NDP packet.
/// `OptionsRaw` uses [`RecordsRaw`] under the hood.
///
/// [`RecordsRaw`]: crate::records::RecordsRaw
pub type OptionsRaw<B, O> = RecordsRaw<B, O>;
/// A builder capable of serializing a sequence of options.
///
/// An `OptionSequenceBuilder` is instantiated with an [`Iterator`] that
/// provides [`OptionBuilder`]s to be serialized. The item produced by the
/// iterator can be any type which implements `Borrow<O>` for `O:
/// OptionBuilder`.
///
/// `OptionSequenceBuilder` implements [`InnerPacketBuilder`].
pub type OptionSequenceBuilder<R, I> = RecordSequenceBuilder<R, I>;
/// A builder capable of serializing a sequence of aligned options.
///
/// An `AlignedOptionSequenceBuilder` is instantiated with an [`Iterator`]
/// that provides [`AlignedOptionBuilder`]s to be serialized. The item
/// produced by the iterator can be any type which implements `Borrow<O>`
/// for `O: AlignedOptionBuilder`.
///
/// `AlignedOptionSequenceBuilder` implements [`InnerPacketBuilder`].
pub type AlignedOptionSequenceBuilder<R, I> = AlignedRecordSequenceBuilder<R, I>;
impl<'a, O: OptionsImpl<'a>> RecordsImplLayout for O {
type Context = ();
type Error = O::Error;
}
impl<'a, O: OptionsImpl<'a>> RecordsImpl<'a> for O {
type Record = O::Option;
fn parse_with_context<BV: BufferView<&'a [u8]>>(
data: &mut BV,
_context: &mut Self::Context,
) -> RecordParseResult<Self::Record, Self::Error> {
next::<_, O>(data)
}
}
impl<O: OptionBuilder> RecordBuilder for O {
fn serialized_len(&self) -> usize {
// TODO(https://fxbug.dev/42158056): Remove this `.expect`
<O::Layout as OptionLayout>::LENGTH_ENCODING
.record_length::<<O::Layout as OptionLayout>::KindLenField>(
OptionBuilder::serialized_len(self),
)
.expect("integer overflow while computing record length")
}
fn serialize_into(&self, mut data: &mut [u8]) {
// NOTE(brunodalbo) we don't currently support serializing the two
// single-byte options used in TCP and IP: NOP and END_OF_OPTIONS.
// If it is necessary to support those as part of TLV options
// serialization, some changes will be required here.
// So that `data` implements `BufferViewMut`.
let mut data = &mut data;
// Data not having enough space is a contract violation, so we panic
// in that case.
*BufferView::<&mut [u8]>::take_obj_front::<<O::Layout as OptionLayout>::KindLenField>(&mut data)
.expect("buffer too short") = self.option_kind();
let body_len = OptionBuilder::serialized_len(self);
// TODO(https://fxbug.dev/42158056): Remove this `.expect`
let length = <O::Layout as OptionLayout>::LENGTH_ENCODING
.encode_length::<<O::Layout as OptionLayout>::KindLenField>(body_len)
.expect("integer overflow while encoding length");
// Length overflowing `O::Layout::KindLenField` is a contract
// violation, so we panic in that case.
*BufferView::<&mut [u8]>::take_obj_front::<<O::Layout as OptionLayout>::KindLenField>(&mut data)
.expect("buffer too short") = length;
// SECURITY: Because padding may have occurred, we zero-fill data
// before passing it along in order to prevent leaking information
// from packets previously stored in the buffer.
let data = data.into_rest_zero();
// Pass exactly `body_len` bytes even if there is padding.
OptionBuilder::serialize_into(self, &mut data[..body_len]);
}
}
impl<O: AlignedOptionBuilder> AlignedRecordBuilder for O {
fn alignment_requirement(&self) -> (usize, usize) {
// Use the underlying option's alignment requirement as the
// alignment requirement for the record.
AlignedOptionBuilder::alignment_requirement(self)
}
fn serialize_padding(buf: &mut [u8], length: usize) {
<O as AlignedOptionBuilder>::serialize_padding(buf, length);
}
}
/// Whether the length field of an option encodes the length of the entire
/// option (including kind and length fields) or only of the value field.
///
/// For the `TypeLengthValue` variant, an `option_len_multiplier` may also
/// be specified. Some formats (such as NDP) do not directly encode the
/// length in bytes of each option, but instead encode a number which must
/// be multiplied by `option_len_multiplier` in order to get the length in
/// bytes.
#[derive(Copy, Clone, Eq, PartialEq)]
pub enum LengthEncoding {
TypeLengthValue { option_len_multiplier: NonZeroUsize },
ValueOnly,
}
impl LengthEncoding {
/// Computes the length of an entire option record - including kind and
/// length fields - from the length of an option body.
///
/// `record_length` takes into account the length of the kind and length
/// fields and also adds any padding required to reach a multiple of
/// `option_len_multiplier`, returning `None` if the value cannot be
/// stored in a `usize`.
fn record_length<F: KindLenField>(self, option_body_len: usize) -> Option<usize> {
let unpadded_len = option_body_len.checked_add(2 * mem::size_of::<F>())?;
match self {
LengthEncoding::TypeLengthValue { option_len_multiplier } => {
round_up(unpadded_len, option_len_multiplier)
}
LengthEncoding::ValueOnly => Some(unpadded_len),
}
}
/// Encodes the length of an option's body.
///
/// `option_body_len` is the length in bytes of the body option as
/// returned from [`OptionsSerializerImpl::option_length`]. This value
/// does not include the kind, length, or padding bytes.
///
/// `encode_length` computes the value which should be stored in the
/// length field, returning `None` if the value cannot be stored in an
/// `F`.
fn encode_length<F: KindLenField>(self, option_body_len: usize) -> Option<F> {
let len = match self {
LengthEncoding::TypeLengthValue { option_len_multiplier } => {
let unpadded_len = (2 * mem::size_of::<F>()).checked_add(option_body_len)?;
let padded_len = round_up(unpadded_len, option_len_multiplier)?;
padded_len / option_len_multiplier.get()
}
LengthEncoding::ValueOnly => option_body_len,
};
match F::try_from(len) {
Ok(len) => Some(len),
Err(TryFromIntError { .. }) => None,
}
}
/// Decodes the length of an option's body.
///
/// `length_field` is the value of the length field. `decode_length`
/// computes the length of the option's body which this value encodes,
/// returning an error if `length_field` is invalid or if integer
/// overflow occurs. `length_field` is invalid if it encodes a total
/// length smaller than the header (specifically, if `self` is
/// LengthEncoding::TypeLengthValue { option_len_multiplier }` and
/// `length_field * option_len_multiplier < 2 * size_of::<F>()`).
fn decode_length<F: KindLenField>(self, length_field: F) -> Option<usize> {
let length_field = length_field.into();
match self {
LengthEncoding::TypeLengthValue { option_len_multiplier } => length_field
.checked_mul(option_len_multiplier.get())
.and_then(|product| product.checked_sub(2 * mem::size_of::<F>())),
LengthEncoding::ValueOnly => Some(length_field),
}
}
}
/// Rounds up `x` to the next multiple of `mul` unless `x` is already a
/// multiple of `mul`.
fn round_up(x: usize, mul: NonZeroUsize) -> Option<usize> {
let mul = mul.get();
// - Subtracting 1 can't underflow because we just added `mul`, which is
// at least 1, and the addition didn't overflow
// - Dividing by `mul` can't overflow (and can't divide by 0 because
// `mul` is nonzero)
// - Multiplying by `mul` can't overflow because division rounds down,
// so the result of the multiplication can't be any larger than the
// numerator in `(x_times_mul - 1) / mul`, which we already know
// didn't overflow
x.checked_add(mul).map(|x_times_mul| ((x_times_mul - 1) / mul) * mul)
}
/// The type of the "kind" and "length" fields in an option.
///
/// See the docs for [`OptionLayout::KindLenField`] for more information.
pub trait KindLenField:
FromBytes
+ AsBytes
+ NoCell
+ Unaligned
+ Into<usize>
+ TryFrom<usize, Error = TryFromIntError>
+ Eq
+ Copy
+ crate::sealed::Sealed
{
}
impl crate::sealed::Sealed for u8 {}
impl KindLenField for u8 {}
impl<O: ByteOrder> crate::sealed::Sealed for zerocopy::U16<O> {}
impl<O: ByteOrder> KindLenField for zerocopy::U16<O> {}
/// Information about an option's layout.
///
/// It is recommended that this trait be implemented for an uninhabited type
/// since it never needs to be instantiated:
///
/// ```rust
/// # use packet::records::options::{OptionLayout, LengthEncoding};
/// /// A carrier for information about the layout of the IPv4 option
/// /// format.
/// ///
/// /// This type exists only at the type level, and does not need to be
/// /// constructed.
/// pub enum Ipv4OptionLayout {}
///
/// impl OptionLayout for Ipv4OptionLayout {
/// type KindLenField = u8;
/// }
/// ```
pub trait OptionLayout {
/// The type of the "kind" and "length" fields in an option.
///
/// For most protocols, this is simply `u8`, as the "kind" and "length"
/// fields are each a single byte. For protocols which use two bytes for
/// these fields, this is [`zerocopy::U16`].
// TODO(https://github.com/rust-lang/rust/issues/29661): Have
// `KindLenField` default to `u8`.
type KindLenField: KindLenField;
/// The encoding of the length byte.
///
/// Some formats (such as IPv4) use the length field to encode the
/// length of the entire option, including the kind and length bytes.
/// Other formats (such as IPv6) use the length field to encode the
/// length of only the value. This constant specifies which encoding is
/// used.
///
/// Additionally, some formats (such as NDP) do not directly encode the
/// length in bytes of each option, but instead encode a number which
/// must be multiplied by a constant in order to get the length in
/// bytes. This is set using the [`TypeLengthValue`] variant's
/// `option_len_multiplier` field, and it defaults to 1.
///
/// [`TypeLengthValue`]: LengthEncoding::TypeLengthValue
const LENGTH_ENCODING: LengthEncoding = LengthEncoding::TypeLengthValue {
option_len_multiplier: const_unwrap_option(NonZeroUsize::new(1)),
};
}
/// An error encountered while parsing an option or sequence of options.
pub trait OptionParseError: From<Never> {
/// An error encountered while parsing a sequence of options.
///
/// If an error is encountered while parsing a sequence of [`Options`],
/// this is the error that will be emitted. This is the only type of
/// error that can be generated by the [`Options`] parser itself. All
/// other errors come from the user-provided [`OptionsImpl::parse`],
/// which parses the data of a single option.
const SEQUENCE_FORMAT_ERROR: Self;
}
/// An error encountered while parsing an option or sequence of options.
///
/// `OptionParseErr` is a simple implementation of [`OptionParseError`] that
/// doesn't carry information other than the fact that an error was
/// encountered.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct OptionParseErr;
impl From<Never> for OptionParseErr {
fn from(err: Never) -> OptionParseErr {
match err {}
}
}
impl OptionParseError for OptionParseErr {
const SEQUENCE_FORMAT_ERROR: OptionParseErr = OptionParseErr;
}
/// Information about an option's layout required in order to parse it.
pub trait OptionParseLayout: OptionLayout {
/// The type of errors that may be returned by a call to
/// [`OptionsImpl::parse`].
type Error: OptionParseError;
/// The End of options kind (if one exists).
const END_OF_OPTIONS: Option<Self::KindLenField>;
/// The No-op kind (if one exists).
const NOP: Option<Self::KindLenField>;
}
/// An implementation of an options parser.
///
/// `OptionsImpl` provides functions to parse fixed- and variable-length
/// options. It is required in order to construct an [`Options`].
pub trait OptionsImpl<'a>: OptionParseLayout {
/// The type of an option; the output from the [`parse`] function.
///
/// For long or variable-length data, implementers are advised to make
/// `Option` a reference into the bytes passed to `parse`. Such a
/// reference will need to carry the lifetime `'a`, which is the same
/// lifetime that is passed to `parse`, and is also the lifetime
/// parameter to this trait.
///
/// [`parse`]: crate::records::options::OptionsImpl::parse
type Option;
/// Parses an option.
///
/// `parse` takes a kind byte and variable-length data and returns
/// `Ok(Some(o))` if the option successfully parsed as `o`, `Ok(None)`
/// if the kind byte was unrecognized, and `Err(err)` if the kind byte
/// was recognized but `data` was malformed for that option kind.
///
/// `parse` is allowed to not recognize certain option kinds, as the
/// length field can still be used to safely skip over them, but it must
/// recognize all single-byte options (if it didn't, a single-byte
/// option would be spuriously interpreted as a multi-byte option, and
/// the first byte of the next option byte would be spuriously
/// interpreted as the option's length byte).
///
/// `parse` must be deterministic, or else [`Options::parse`] cannot
/// guarantee that future iterations will not produce errors (and thus
/// panic).
///
/// [`Options::parse`]: crate::records::Records::parse
fn parse(
kind: Self::KindLenField,
data: &'a [u8],
) -> Result<Option<Self::Option>, Self::Error>;
}
/// A builder capable of serializing an option.
///
/// Given `O: OptionBuilder`, an iterator of `O` can be used with a
/// [`OptionSequenceBuilder`] to serialize a sequence of options.
pub trait OptionBuilder {
/// Information about the option's layout.
type Layout: OptionLayout;
/// Returns the serialized length, in bytes, of `self`.
///
/// Implementers must return the length, in bytes, of the **data***
/// portion of the option field (not counting the kind and length
/// bytes). The internal machinery of options serialization takes care
/// of aligning options to their [`option_len_multiplier`] boundaries,
/// adding padding bytes if necessary.
///
/// [`option_len_multiplier`]: LengthEncoding::TypeLengthValue::option_len_multiplier
fn serialized_len(&self) -> usize;
/// Returns the wire value for this option kind.
fn option_kind(&self) -> <Self::Layout as OptionLayout>::KindLenField;
/// Serializes `self` into `data`.
///
/// `data` will be exactly `self.serialized_len()` bytes long.
/// Implementers must write the **data** portion of `self` into `data`
/// (not the kind or length fields).
///
/// # Panics
///
/// May panic if `data` is not exactly `self.serialized_len()` bytes
/// long.
fn serialize_into(&self, data: &mut [u8]);
}
/// A builder capable of serializing an option with an alignment
/// requirement.
///
/// Given `O: AlignedOptionBuilder`, an iterator of `O` can be used with an
/// [`AlignedOptionSequenceBuilder`] to serialize a sequence of aligned
/// options.
pub trait AlignedOptionBuilder: OptionBuilder {
/// Returns the alignment requirement of `self`.
///
/// `option.alignment_requirement()` returns `(x, y)`, which means that
/// the serialized encoding of `option` must be aligned at `x * n + y`
/// bytes from the beginning of the options sequence for some
/// non-negative `n`. For example, the IPv6 Router Alert Hop-by-Hop
/// option has alignment (2, 0), while the Jumbo Payload option has
/// alignment (4, 2). (1, 0) means there is no alignment requirement.
///
/// `x` must be non-zero and `y` must be smaller than `x`.
fn alignment_requirement(&self) -> (usize, usize);
/// Serializes the padding between subsequent aligned options.
///
/// Some formats require that padding bytes have particular content.
/// This function serializes padding bytes as required by the format.
fn serialize_padding(buf: &mut [u8], length: usize);
}
fn next<'a, BV, O>(bytes: &mut BV) -> RecordParseResult<O::Option, O::Error>
where
BV: BufferView<&'a [u8]>,
O: OptionsImpl<'a>,
{
// For an explanation of this format, see the "Options" section of
// https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure
loop {
if bytes.len() == 0 {
return Ok(ParsedRecord::Done);
}
let kind = match bytes.take_obj_front::<O::KindLenField>() {
// Thanks to the preceding `if`, we know at this point that
// `bytes.len() > 0`. If `take_obj_front` returns `None`, that
// means that `bytes.len()` is shorter than `O::KindLenField`.
None => return Err(O::Error::SEQUENCE_FORMAT_ERROR),
Some(k) => {
// Can't do pattern matching with associated constants, so
// do it the good-ol' way:
if Some(*k) == O::NOP {
continue;
} else if Some(*k) == O::END_OF_OPTIONS {
return Ok(ParsedRecord::Done);
}
k
}
};
let body_len = match bytes.take_obj_front::<O::KindLenField>() {
None => return Err(O::Error::SEQUENCE_FORMAT_ERROR),
Some(len) => O::LENGTH_ENCODING
.decode_length::<O::KindLenField>(*len)
.ok_or(O::Error::SEQUENCE_FORMAT_ERROR)?,
};
let option_data = bytes.take_front(body_len).ok_or(O::Error::SEQUENCE_FORMAT_ERROR)?;
match O::parse(*kind, option_data) {
Ok(Some(o)) => return Ok(ParsedRecord::Parsed(o)),
Ok(None) => {}
Err(err) => return Err(err),
}
}
}
#[cfg(test)]
mod tests {
use core::convert::TryInto as _;
use core::fmt::Debug;
use zerocopy::byteorder::network_endian::U16;
use super::*;
use crate::Serializer;
#[derive(Debug)]
struct DummyOptionsImpl;
#[derive(Debug)]
struct DummyOption {
kind: u8,
data: Vec<u8>,
}
impl OptionLayout for DummyOptionsImpl {
type KindLenField = u8;
}
impl OptionParseLayout for DummyOptionsImpl {
type Error = OptionParseErr;
const END_OF_OPTIONS: Option<u8> = Some(0);
const NOP: Option<u8> = Some(1);
}
impl<'a> OptionsImpl<'a> for DummyOptionsImpl {
type Option = DummyOption;
fn parse(kind: u8, data: &'a [u8]) -> Result<Option<Self::Option>, OptionParseErr> {
let mut v = Vec::new();
v.extend_from_slice(data);
Ok(Some(DummyOption { kind, data: v }))
}
}
impl OptionBuilder for DummyOption {
type Layout = DummyOptionsImpl;
fn serialized_len(&self) -> usize {
self.data.len()
}
fn option_kind(&self) -> u8 {
self.kind
}
fn serialize_into(&self, data: &mut [u8]) {
assert_eq!(data.len(), OptionBuilder::serialized_len(self));
data.copy_from_slice(&self.data);
}
}
impl AlignedOptionBuilder for DummyOption {
// For our `DummyOption`, we simply regard (length, kind) as their
// alignment requirement.
fn alignment_requirement(&self) -> (usize, usize) {
(self.data.len(), self.kind as usize)
}
fn serialize_padding(buf: &mut [u8], length: usize) {
assert!(length <= buf.len());
assert!(length <= (std::u8::MAX as usize) + 2);
if length == 1 {
// Use Pad1
buf[0] = 0
} else if length > 1 {
// Use PadN
buf[0] = 1;
buf[1] = (length - 2) as u8;
for i in 2..length {
buf[i] = 0
}
}
}
}
#[derive(Debug, Eq, PartialEq)]
enum AlwaysErrorErr {
Sequence,
Option,
}
impl From<Never> for AlwaysErrorErr {
fn from(err: Never) -> AlwaysErrorErr {
match err {}
}
}
impl OptionParseError for AlwaysErrorErr {
const SEQUENCE_FORMAT_ERROR: AlwaysErrorErr = AlwaysErrorErr::Sequence;
}
#[derive(Debug)]
struct AlwaysErrOptionsImpl;
impl OptionLayout for AlwaysErrOptionsImpl {
type KindLenField = u8;
}
impl OptionParseLayout for AlwaysErrOptionsImpl {
type Error = AlwaysErrorErr;
const END_OF_OPTIONS: Option<u8> = Some(0);
const NOP: Option<u8> = Some(1);
}
impl<'a> OptionsImpl<'a> for AlwaysErrOptionsImpl {
type Option = ();
fn parse(_kind: u8, _data: &'a [u8]) -> Result<Option<()>, AlwaysErrorErr> {
Err(AlwaysErrorErr::Option)
}
}
#[derive(Debug)]
struct DummyNdpOptionsImpl;
#[derive(Debug)]
struct NdpOption {
kind: u8,
data: Vec<u8>,
}
impl OptionLayout for NdpOption {
type KindLenField = u8;
const LENGTH_ENCODING: LengthEncoding = LengthEncoding::TypeLengthValue {
option_len_multiplier: const_unwrap_option(NonZeroUsize::new(8)),
};
}
impl OptionLayout for DummyNdpOptionsImpl {
type KindLenField = u8;
const LENGTH_ENCODING: LengthEncoding = LengthEncoding::TypeLengthValue {
option_len_multiplier: const_unwrap_option(NonZeroUsize::new(8)),
};
}
impl OptionParseLayout for DummyNdpOptionsImpl {
type Error = OptionParseErr;
const END_OF_OPTIONS: Option<u8> = None;
const NOP: Option<u8> = None;
}
impl<'a> OptionsImpl<'a> for DummyNdpOptionsImpl {
type Option = NdpOption;
fn parse(kind: u8, data: &'a [u8]) -> Result<Option<Self::Option>, OptionParseErr> {
let mut v = Vec::with_capacity(data.len());
v.extend_from_slice(data);
Ok(Some(NdpOption { kind, data: v }))
}
}
impl OptionBuilder for NdpOption {
type Layout = DummyNdpOptionsImpl;
fn serialized_len(&self) -> usize {
self.data.len()
}
fn option_kind(&self) -> u8 {
self.kind
}
fn serialize_into(&self, data: &mut [u8]) {
assert_eq!(data.len(), OptionBuilder::serialized_len(self));
data.copy_from_slice(&self.data)
}
}
#[derive(Debug)]
struct DummyMultiByteKindOptionsImpl;
#[derive(Debug)]
struct MultiByteOption {
kind: U16,
data: Vec<u8>,
}
impl OptionLayout for MultiByteOption {
type KindLenField = U16;
}
impl OptionLayout for DummyMultiByteKindOptionsImpl {
type KindLenField = U16;
}
impl OptionParseLayout for DummyMultiByteKindOptionsImpl {
type Error = OptionParseErr;
const END_OF_OPTIONS: Option<U16> = None;
const NOP: Option<U16> = None;
}
impl<'a> OptionsImpl<'a> for DummyMultiByteKindOptionsImpl {
type Option = MultiByteOption;
fn parse(kind: U16, data: &'a [u8]) -> Result<Option<Self::Option>, OptionParseErr> {
let mut v = Vec::with_capacity(data.len());
v.extend_from_slice(data);
Ok(Some(MultiByteOption { kind, data: v }))
}
}
impl OptionBuilder for MultiByteOption {
type Layout = DummyMultiByteKindOptionsImpl;
fn serialized_len(&self) -> usize {
self.data.len()
}
fn option_kind(&self) -> U16 {
self.kind
}
fn serialize_into(&self, data: &mut [u8]) {
data.copy_from_slice(&self.data)
}
}
#[test]
fn test_length_encoding() {
const TLV_1: LengthEncoding = LengthEncoding::TypeLengthValue {
option_len_multiplier: const_unwrap_option(NonZeroUsize::new(1)),
};
const TLV_2: LengthEncoding = LengthEncoding::TypeLengthValue {
option_len_multiplier: const_unwrap_option(NonZeroUsize::new(2)),
};
// Test LengthEncoding::record_length
// For `ValueOnly`, `record_length` should always add 2 or 4 for the kind
// and length bytes, but never add padding.
assert_eq!(LengthEncoding::ValueOnly.record_length::<u8>(0), Some(2));
assert_eq!(LengthEncoding::ValueOnly.record_length::<u8>(1), Some(3));
assert_eq!(LengthEncoding::ValueOnly.record_length::<u8>(2), Some(4));
assert_eq!(LengthEncoding::ValueOnly.record_length::<u8>(3), Some(5));
assert_eq!(LengthEncoding::ValueOnly.record_length::<U16>(0), Some(4));
assert_eq!(LengthEncoding::ValueOnly.record_length::<U16>(1), Some(5));
assert_eq!(LengthEncoding::ValueOnly.record_length::<U16>(2), Some(6));
assert_eq!(LengthEncoding::ValueOnly.record_length::<U16>(3), Some(7));
// For `TypeLengthValue` with `option_len_multiplier = 1`,
// `record_length` should always add 2 or 4 for the kind and length
// bytes, but never add padding.
assert_eq!(TLV_1.record_length::<u8>(0), Some(2));
assert_eq!(TLV_1.record_length::<u8>(1), Some(3));
assert_eq!(TLV_1.record_length::<u8>(2), Some(4));
assert_eq!(TLV_1.record_length::<u8>(3), Some(5));
assert_eq!(TLV_1.record_length::<U16>(0), Some(4));
assert_eq!(TLV_1.record_length::<U16>(1), Some(5));
assert_eq!(TLV_1.record_length::<U16>(2), Some(6));
assert_eq!(TLV_1.record_length::<U16>(3), Some(7));
// For `TypeLengthValue` with `option_len_multiplier = 2`,
// `record_length` should always add 2 or 4 for the kind and length
// bytes, and add padding if necessary to reach a multiple of 2.
assert_eq!(TLV_2.record_length::<u8>(0), Some(2)); // (0 + 2)
assert_eq!(TLV_2.record_length::<u8>(1), Some(4)); // (1 + 2 + 1)
assert_eq!(TLV_2.record_length::<u8>(2), Some(4)); // (2 + 2)
assert_eq!(TLV_2.record_length::<u8>(3), Some(6)); // (3 + 2 + 1)
assert_eq!(TLV_2.record_length::<U16>(0), Some(4)); // (0 + 4)
assert_eq!(TLV_2.record_length::<U16>(1), Some(6)); // (1 + 4 + 1)
assert_eq!(TLV_2.record_length::<U16>(2), Some(6)); // (2 + 4)
assert_eq!(TLV_2.record_length::<U16>(3), Some(8)); // (3 + 4 + 1)
// Test LengthEncoding::encode_length
fn encode_length<K: KindLenField>(
length_encoding: LengthEncoding,
option_body_len: usize,
) -> Option<usize> {
length_encoding.encode_length::<K>(option_body_len).map(Into::into)
}
// For `ValueOnly`, `encode_length` should always return the
// argument unmodified.
assert_eq!(encode_length::<u8>(LengthEncoding::ValueOnly, 0), Some(0));
assert_eq!(encode_length::<u8>(LengthEncoding::ValueOnly, 1), Some(1));
assert_eq!(encode_length::<u8>(LengthEncoding::ValueOnly, 2), Some(2));
assert_eq!(encode_length::<u8>(LengthEncoding::ValueOnly, 3), Some(3));
assert_eq!(encode_length::<U16>(LengthEncoding::ValueOnly, 0), Some(0));
assert_eq!(encode_length::<U16>(LengthEncoding::ValueOnly, 1), Some(1));
assert_eq!(encode_length::<U16>(LengthEncoding::ValueOnly, 2), Some(2));
assert_eq!(encode_length::<U16>(LengthEncoding::ValueOnly, 3), Some(3));
// For `TypeLengthValue` with `option_len_multiplier = 1`,
// `encode_length` should always add 2 or 4 for the kind and length
// bytes.
assert_eq!(encode_length::<u8>(TLV_1, 0), Some(2));
assert_eq!(encode_length::<u8>(TLV_1, 1), Some(3));
assert_eq!(encode_length::<u8>(TLV_1, 2), Some(4));
assert_eq!(encode_length::<u8>(TLV_1, 3), Some(5));
assert_eq!(encode_length::<U16>(TLV_1, 0), Some(4));
assert_eq!(encode_length::<U16>(TLV_1, 1), Some(5));
assert_eq!(encode_length::<U16>(TLV_1, 2), Some(6));
assert_eq!(encode_length::<U16>(TLV_1, 3), Some(7));
// For `TypeLengthValue` with `option_len_multiplier = 2`,
// `encode_length` should always add 2 or 4 for the kind and length
// bytes, add padding if necessary to reach a multiple of 2, and
// then divide by 2.
assert_eq!(encode_length::<u8>(TLV_2, 0), Some(1)); // (0 + 2) / 2
assert_eq!(encode_length::<u8>(TLV_2, 1), Some(2)); // (1 + 2 + 1) / 2
assert_eq!(encode_length::<u8>(TLV_2, 2), Some(2)); // (2 + 2) / 2
assert_eq!(encode_length::<u8>(TLV_2, 3), Some(3)); // (3 + 2 + 1) / 2
assert_eq!(encode_length::<U16>(TLV_2, 0), Some(2)); // (0 + 4) / 2
assert_eq!(encode_length::<U16>(TLV_2, 1), Some(3)); // (1 + 4 + 1) / 2
assert_eq!(encode_length::<U16>(TLV_2, 2), Some(3)); // (2 + 4) / 2
assert_eq!(encode_length::<U16>(TLV_2, 3), Some(4)); // (3 + 4 + 1) / 2
// Test LengthEncoding::decode_length
fn decode_length<K: KindLenField>(
length_encoding: LengthEncoding,
length_field: usize,
) -> Option<usize> {
length_encoding.decode_length::<K>(length_field.try_into().unwrap())
}
// For `ValueOnly`, `decode_length` should always return the
// argument unmodified.
assert_eq!(decode_length::<u8>(LengthEncoding::ValueOnly, 0), Some(0));
assert_eq!(decode_length::<u8>(LengthEncoding::ValueOnly, 1), Some(1));
assert_eq!(decode_length::<u8>(LengthEncoding::ValueOnly, 2), Some(2));
assert_eq!(decode_length::<u8>(LengthEncoding::ValueOnly, 3), Some(3));
assert_eq!(decode_length::<U16>(LengthEncoding::ValueOnly, 0), Some(0));
assert_eq!(decode_length::<U16>(LengthEncoding::ValueOnly, 1), Some(1));
assert_eq!(decode_length::<U16>(LengthEncoding::ValueOnly, 2), Some(2));
assert_eq!(decode_length::<U16>(LengthEncoding::ValueOnly, 3), Some(3));
// For `TypeLengthValue` with `option_len_multiplier = 1`,
// `decode_length` should always subtract 2 or 4 for the kind and
// length bytes.
assert_eq!(decode_length::<u8>(TLV_1, 0), None);
assert_eq!(decode_length::<u8>(TLV_1, 1), None);
assert_eq!(decode_length::<u8>(TLV_1, 2), Some(0));
assert_eq!(decode_length::<u8>(TLV_1, 3), Some(1));
assert_eq!(decode_length::<U16>(TLV_1, 0), None);
assert_eq!(decode_length::<U16>(TLV_1, 1), None);
assert_eq!(decode_length::<U16>(TLV_1, 2), None);
assert_eq!(decode_length::<U16>(TLV_1, 3), None);
assert_eq!(decode_length::<U16>(TLV_1, 4), Some(0));
assert_eq!(decode_length::<U16>(TLV_1, 5), Some(1));
// For `TypeLengthValue` with `option_len_multiplier = 2`,
// `decode_length` should always multiply by 2 or 4 and then
// subtract 2 for the kind and length bytes.
assert_eq!(decode_length::<u8>(TLV_2, 0), None);
assert_eq!(decode_length::<u8>(TLV_2, 1), Some(0));
assert_eq!(decode_length::<u8>(TLV_2, 2), Some(2));
assert_eq!(decode_length::<u8>(TLV_2, 3), Some(4));
assert_eq!(decode_length::<U16>(TLV_2, 0), None);
assert_eq!(decode_length::<U16>(TLV_2, 1), None);
assert_eq!(decode_length::<U16>(TLV_2, 2), Some(0));
assert_eq!(decode_length::<U16>(TLV_2, 3), Some(2));
// Test end-to-end by creating options implementation with different
// length encodings.
/// Declare a new options impl type with a custom `LENGTH_ENCODING`.
macro_rules! declare_options_impl {
($opt:ident, $impl:ident, $encoding:expr) => {
#[derive(Debug)]
enum $impl {}
#[derive(Debug, PartialEq)]
struct $opt {
kind: u8,
data: Vec<u8>,
}
impl<'a> From<&'a (u8, Vec<u8>)> for $opt {
fn from((kind, data): &'a (u8, Vec<u8>)) -> $opt {
$opt { kind: *kind, data: data.clone() }
}
}
impl OptionLayout for $opt {
const LENGTH_ENCODING: LengthEncoding = $encoding;
type KindLenField = u8;
}
impl OptionLayout for $impl {
const LENGTH_ENCODING: LengthEncoding = $encoding;
type KindLenField = u8;
}
impl OptionParseLayout for $impl {
type Error = OptionParseErr;
const END_OF_OPTIONS: Option<u8> = Some(0);
const NOP: Option<u8> = Some(1);
}
impl<'a> OptionsImpl<'a> for $impl {
type Option = $opt;
fn parse(
kind: u8,
data: &'a [u8],
) -> Result<Option<Self::Option>, OptionParseErr> {
let mut v = Vec::new();
v.extend_from_slice(data);
Ok(Some($opt { kind, data: v }))
}
}
impl OptionBuilder for $opt {
type Layout = $impl;
fn serialized_len(&self) -> usize {
self.data.len()
}
fn option_kind(&self) -> u8 {
self.kind
}
fn serialize_into(&self, data: &mut [u8]) {
assert_eq!(data.len(), OptionBuilder::serialized_len(self));
data.copy_from_slice(&self.data);
}
}
};
}
declare_options_impl!(
DummyImplValueOnly,
DummyImplValueOnlyImpl,
LengthEncoding::ValueOnly
);
declare_options_impl!(DummyImplTlv1, DummyImplTlv1Impl, TLV_1);
declare_options_impl!(DummyImplTlv2, DummyImplTlv2Impl, TLV_2);
/// Tests that a given option is parsed from different byte
/// sequences for different options layouts.
///
/// Since some options cannot be parsed from any byte sequence using
/// the `DummyImplTlv2` layout (namely, those whose lengths are not
/// a multiple of 2), `tlv_2` may be `None`.
fn test_parse(
(expect_kind, expect_data): (u8, Vec<u8>),
value_only: &[u8],
tlv_1: &[u8],
tlv_2: Option<&[u8]>,
) {
let options = Options::<_, DummyImplValueOnlyImpl>::parse(value_only)
.unwrap()
.iter()
.collect::<Vec<_>>();
let data = expect_data.clone();
assert_eq!(options, [DummyImplValueOnly { kind: expect_kind, data }]);
let options = Options::<_, DummyImplTlv1Impl>::parse(tlv_1)
.unwrap()
.iter()
.collect::<Vec<_>>();
let data = expect_data.clone();
assert_eq!(options, [DummyImplTlv1 { kind: expect_kind, data }]);
if let Some(tlv_2) = tlv_2 {
let options = Options::<_, DummyImplTlv2Impl>::parse(tlv_2)
.unwrap()
.iter()
.collect::<Vec<_>>();
assert_eq!(options, [DummyImplTlv2 { kind: expect_kind, data: expect_data }]);
}
}
// 0-byte body
test_parse((0xFF, vec![]), &[0xFF, 0], &[0xFF, 2], Some(&[0xFF, 1]));
// 1-byte body
test_parse((0xFF, vec![0]), &[0xFF, 1, 0], &[0xFF, 3, 0], None);
// 2-byte body
test_parse(
(0xFF, vec![0, 1]),
&[0xFF, 2, 0, 1],
&[0xFF, 4, 0, 1],
Some(&[0xFF, 2, 0, 1]),
);
// 3-byte body
test_parse((0xFF, vec![0, 1, 2]), &[0xFF, 3, 0, 1, 2], &[0xFF, 5, 0, 1, 2], None);
// 4-byte body
test_parse(
(0xFF, vec![0, 1, 2, 3]),
&[0xFF, 4, 0, 1, 2, 3],
&[0xFF, 6, 0, 1, 2, 3],
Some(&[0xFF, 3, 0, 1, 2, 3]),
);
/// Tests that an option can be serialized and then parsed in each
/// option layout.
///
/// In some cases (when the body length is not a multiple of 2), the
/// `DummyImplTlv2` layout will parse a different option than was
/// originally serialized. In this case, `expect_tlv_2` can be used
/// to provide a different value to expect as the result of parsing.
fn test_serialize_parse(opt: (u8, Vec<u8>), expect_tlv_2: Option<(u8, Vec<u8>)>) {
let opts = [opt.clone()];
fn test_serialize_parse_inner<
O: OptionBuilder + Debug + PartialEq + for<'a> From<&'a (u8, Vec<u8>)>,
I: for<'a> OptionsImpl<'a, Error = OptionParseErr, Option = O> + std::fmt::Debug,
>(
opts: &[(u8, Vec<u8>)],
expect: &[(u8, Vec<u8>)],
) {
let opts = opts.iter().map(Into::into).collect::<Vec<_>>();
let expect = expect.iter().map(Into::into).collect::<Vec<_>>();
let ser = OptionSequenceBuilder::<O, _>::new(opts.iter());
let serialized =
ser.into_serializer().serialize_vec_outer().unwrap().as_ref().to_vec();
let options = Options::<_, I>::parse(serialized.as_slice())
.unwrap()
.iter()
.collect::<Vec<_>>();
assert_eq!(options, expect);
}
test_serialize_parse_inner::<DummyImplValueOnly, DummyImplValueOnlyImpl>(
&opts, &opts,
);
test_serialize_parse_inner::<DummyImplTlv1, DummyImplTlv1Impl>(&opts, &opts);
let expect = if let Some(expect) = expect_tlv_2 { expect } else { opt };
test_serialize_parse_inner::<DummyImplTlv2, DummyImplTlv2Impl>(&opts, &[expect]);
}
// 0-byte body
test_serialize_parse((0xFF, vec![]), None);
// 1-byte body
test_serialize_parse((0xFF, vec![0]), Some((0xFF, vec![0, 0])));
// 2-byte body
test_serialize_parse((0xFF, vec![0, 1]), None);
// 3-byte body
test_serialize_parse((0xFF, vec![0, 1, 2]), Some((0xFF, vec![0, 1, 2, 0])));
// 4-byte body
test_serialize_parse((0xFF, vec![0, 1, 2, 3]), None);
}
#[test]
fn test_empty_options() {
// all END_OF_OPTIONS
let bytes = [0; 64];
let options = Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap();
assert_eq!(options.iter().count(), 0);
// all NOP
let bytes = [1; 64];
let options = Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap();
assert_eq!(options.iter().count(), 0);
}
#[test]
fn test_parse() {
// Construct byte sequences in the pattern [3, 2], [4, 3, 2], [5, 4,
// 3, 2], etc. The second byte is the length byte, so these are all
// valid options (with data [], [2], [3, 2], etc).
let mut bytes = Vec::new();
for i in 4..16 {
// from the user's perspective, these NOPs should be transparent
bytes.push(1);
for j in (2..i).rev() {
bytes.push(j);
}
// from the user's perspective, these NOPs should be transparent
bytes.push(1);
}
let options = Options::<_, DummyOptionsImpl>::parse(bytes.as_slice()).unwrap();
for (idx, DummyOption { kind, data }) in options.iter().enumerate() {
assert_eq!(kind as usize, idx + 3);
assert_eq!(data.len(), idx);
let mut bytes = Vec::new();
for i in (2..(idx + 2)).rev() {
bytes.push(i as u8);
}
assert_eq!(data, bytes);
}
// Test that we get no parse errors so long as
// AlwaysErrOptionsImpl::parse is never called.
//
// `bytes` is a sequence of NOPs.
let bytes = [1; 64];
let options = Options::<_, AlwaysErrOptionsImpl>::parse(&bytes[..]).unwrap();
assert_eq!(options.iter().count(), 0);
}
#[test]
fn test_parse_ndp_options() {
let mut bytes = Vec::new();
for i in 0..16 {
bytes.push(i);
// NDP uses len*8 for the actual length.
bytes.push(i + 1);
// Write remaining 6 bytes.
for j in 2..((i + 1) * 8) {
bytes.push(j)
}
}
let options = Options::<_, DummyNdpOptionsImpl>::parse(bytes.as_slice()).unwrap();
for (idx, NdpOption { kind, data }) in options.iter().enumerate() {
assert_eq!(kind as usize, idx);
assert_eq!(data.len(), ((idx + 1) * 8) - 2);
let mut bytes = Vec::new();
for i in 2..((idx + 1) * 8) {
bytes.push(i as u8);
}
assert_eq!(data, bytes);
}
}
#[test]
fn test_parse_err() {
// the length byte is too short
let bytes = [2, 1];
assert_eq!(
Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap_err(),
OptionParseErr
);
// the length byte is 0 (similar check to above, but worth
// explicitly testing since this was a bug in the Linux kernel:
// https://bugzilla.redhat.com/show_bug.cgi?id=1622404)
let bytes = [2, 0];
assert_eq!(
Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap_err(),
OptionParseErr
);
// the length byte is too long
let bytes = [2, 3];
assert_eq!(
Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap_err(),
OptionParseErr
);
// the buffer is fine, but the implementation returns a parse error
let bytes = [2, 2];
assert_eq!(
Options::<_, AlwaysErrOptionsImpl>::parse(&bytes[..]).unwrap_err(),
AlwaysErrorErr::Option,
);
}
#[test]
fn test_missing_length_bytes() {
// Construct a sequence with a valid record followed by an
// incomplete one, where `kind` is specified but `len` is missing.
// So we can assert that we'll fail cleanly in that case.
//
// Added as part of Change-Id
// Ibd46ac7384c7c5e0d74cb344b48c88876c351b1a.
//
// Before the small refactor in the Change-Id above, there was a
// check during parsing that guaranteed that the length of the
// remaining buffer was >= 1, but it should've been a check for
// >= 2, and the case below would have caused it to panic while
// trying to access the length byte, which was a DoS vulnerability.
assert_matches::assert_matches!(
Options::<_, DummyOptionsImpl>::parse(&[0x03, 0x03, 0x01, 0x03][..]),
Err(OptionParseErr)
);
}
#[test]
fn test_partial_kind_field() {
// Construct a sequence with only one byte where a two-byte kind
// field is expected.
//
// Added as part of Change-Id
// I468121f5712b73c4e704460f580f166c876ee7d6.
//
// Before the small refactor in the Change-Id above, we treated any
// failure to consume the kind field from the byte slice as
// indicating that there were no bytes left, and we would stop
// parsing successfully. This logic was correct when we only
// supported 1-byte kind fields, but it became incorrect once we
// introduced multi-byte kind fields.
assert_matches::assert_matches!(
Options::<_, DummyMultiByteKindOptionsImpl>::parse(&[0x00][..]),
Err(OptionParseErr)
);
}
#[test]
fn test_parse_and_serialize() {
// Construct byte sequences in the pattern [3, 2], [4, 3, 2], [5, 4,
// 3, 2], etc. The second byte is the length byte, so these are all
// valid options (with data [], [2], [3, 2], etc).
let mut bytes = Vec::new();
for i in 4..16 {
// from the user's perspective, these NOPs should be transparent
for j in (2..i).rev() {
bytes.push(j);
}
}
let options = Options::<_, DummyOptionsImpl>::parse(bytes.as_slice()).unwrap();
let collected = options.iter().collect::<Vec<_>>();
// Pass `collected.iter()` instead of `options.iter()` since we need
// an iterator over references, and `options.iter()` produces an
// iterator over values.
let ser = OptionSequenceBuilder::<DummyOption, _>::new(collected.iter());
let serialized = ser.into_serializer().serialize_vec_outer().unwrap().as_ref().to_vec();
assert_eq!(serialized, bytes);
}
#[test]
fn test_parse_and_serialize_ndp() {
let mut bytes = Vec::new();
for i in 0..16 {
bytes.push(i);
// NDP uses len*8 for the actual length.
bytes.push(i + 1);
// Write remaining 6 bytes.
for j in 2..((i + 1) * 8) {
bytes.push(j)
}
}
let options = Options::<_, DummyNdpOptionsImpl>::parse(bytes.as_slice()).unwrap();
let collected = options.iter().collect::<Vec<_>>();
// Pass `collected.iter()` instead of `options.iter()` since we need
// an iterator over references, and `options.iter()` produces an
// iterator over values.
let ser = OptionSequenceBuilder::<NdpOption, _>::new(collected.iter());
let serialized = ser.into_serializer().serialize_vec_outer().unwrap().as_ref().to_vec();
assert_eq!(serialized, bytes);
}
#[test]
fn test_parse_and_serialize_multi_byte_fields() {
let mut bytes = Vec::new();
for i in 4..16 {
// Push kind U16<NetworkEndian>.
bytes.push(0);
bytes.push(i);
// Push length U16<NetworkEndian>.
bytes.push(0);
bytes.push(i);
// Write `i` - 4 bytes.
for j in 4..i {
bytes.push(j);
}
}
let options =
Options::<_, DummyMultiByteKindOptionsImpl>::parse(bytes.as_slice()).unwrap();
for (idx, MultiByteOption { kind, data }) in options.iter().enumerate() {
assert_eq!(usize::from(kind), idx + 4);
let idx: u8 = idx.try_into().unwrap();
let bytes: Vec<_> = (4..(idx + 4)).collect();
assert_eq!(data, bytes);
}
let collected = options.iter().collect::<Vec<_>>();
// Pass `collected.iter()` instead of `options.iter()` since we need
// an iterator over references, and `options.iter()` produces an
// iterator over values.
let ser = OptionSequenceBuilder::<MultiByteOption, _>::new(collected.iter());
let mut output = vec![0u8; ser.serialized_len()];
ser.serialize_into(output.as_mut_slice());
assert_eq!(output, bytes);
}
#[test]
fn test_align_up_to() {
// We are doing some sort of property testing here:
// We generate a random alignment requirement (x, y) and a random offset `pos`.
// The resulting `new_pos` must:
// - 1. be at least as large as the original `pos`.
// - 2. be in form of x * n + y for some integer n.
// - 3. for any number in between, they shouldn't be in form of x * n + y.
use rand::{thread_rng, Rng};
let mut rng = thread_rng();
for _ in 0..100_000 {
let x = rng.gen_range(1usize..256);
let y = rng.gen_range(0..x);
let pos = rng.gen_range(0usize..65536);
let new_pos = align_up_to(pos, x, y);
// 1)
assert!(new_pos >= pos);
// 2)
assert_eq!((new_pos - y) % x, 0);
// 3) Note: `p` is not guaranteed to be bigger than `y`, plus `x` to avoid overflow.
assert!((pos..new_pos).all(|p| (p + x - y) % x != 0))
}
}
#[test]
#[rustfmt::skip]
fn test_aligned_dummy_options_serializer() {
// testing for cases: 2n+{0,1}, 3n+{1,2}, 1n+0, 4n+2
let dummy_options = [
// alignment requirement: 2 * n + 1,
//
DummyOption { kind: 1, data: vec![42, 42] },
DummyOption { kind: 0, data: vec![42, 42] },
DummyOption { kind: 1, data: vec![1, 2, 3] },
DummyOption { kind: 2, data: vec![3, 2, 1] },
DummyOption { kind: 0, data: vec![42] },
DummyOption { kind: 2, data: vec![9, 9, 9, 9] },
];
let ser = AlignedRecordSequenceBuilder::<DummyOption, _>::new(
0,
dummy_options.iter(),
);
assert_eq!(ser.serialized_len(), 32);
let mut buf = [0u8; 32];
ser.serialize_into(&mut buf[..]);
assert_eq!(
&buf[..],
&[
0, // Pad1 padding
1, 4, 42, 42, // (1, [42, 42]) starting at 2 * 0 + 1 = 3
0, // Pad1 padding
0, 4, 42, 42, // (0, [42, 42]) starting at 2 * 3 + 0 = 6
1, 5, 1, 2, 3, // (1, [1, 2, 3]) starting at 3 * 2 + 1 = 7
1, 0, // PadN padding
2, 5, 3, 2, 1, // (2, [3, 2, 1]) starting at 3 * 4 + 2 = 14
0, 3, 42, // (0, [42]) starting at 1 * 19 + 0 = 19
0, // PAD1 padding
2, 6, 9, 9, 9, 9 // (2, [9, 9, 9, 9]) starting at 4 * 6 + 2 = 26
// total length: 32
]
);
}
}
}