1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Utilities for parsing and serializing sequential records.
//!
//! This module provides utilities for parsing and serializing repeated,
//! sequential records. Examples of packet formats which include such records
//! include IPv4, IPv6, TCP, NDP, and IGMP.
//!
//! The utilities in this module are very flexible and generic. The user must
//! supply a number of details about the format in order for parsing and
//! serializing to work.
//!
//! Some packet formats use a [type-length-value]-like encoding for options.
//! Examples include IPv4, TCP, and NDP options. Special support for these
//! formats is provided by the [`options`] submodule.
//!
//! [type-length-value]: https://en.wikipedia.org/wiki/Type-length-value

use core::borrow::Borrow;
use core::convert::Infallible as Never;
use core::marker::PhantomData;
use core::ops::Deref;

use zerocopy::ByteSlice;

use crate::serialize::InnerPacketBuilder;
use crate::util::{FromRaw, MaybeParsed};
use crate::{BufferView, BufferViewMut};

/// A type that encapsuates the result of a record parsing operation.
pub type RecordParseResult<T, E> = core::result::Result<ParsedRecord<T>, E>;

/// A type that encapsulates the successful result of a parsing operation.
pub enum ParsedRecord<T> {
    /// A record was successfully consumed and parsed.
    Parsed(T),

    /// A record was consumed but not parsed for non-fatal reasons.
    ///
    /// The caller should attempt to parse the next record to get a successfully
    /// parsed record.
    ///
    /// An example of a record that is skippable is a record used for padding.
    Skipped,

    /// All possible records have been already been consumed; there is nothing
    /// left to parse.
    ///
    /// The behavior is unspecified if callers attempt to parse another record.
    Done,
}

impl<T> ParsedRecord<T> {
    /// Does this result indicate that a record was consumed?
    ///
    /// Returns `true` for `Parsed` and `Skipped` and `false` for `Done`.
    pub fn consumed(&self) -> bool {
        match self {
            ParsedRecord::Parsed(_) | ParsedRecord::Skipped => true,
            ParsedRecord::Done => false,
        }
    }
}

/// A parsed sequence of records.
///
/// `Records` represents a pre-parsed sequence of records whose structure is
/// enforced by the impl in `R`.
#[derive(Debug, PartialEq)]
pub struct Records<B, R: RecordsImplLayout> {
    bytes: B,
    record_count: usize,
    context: R::Context,
}

/// An unchecked sequence of records.
///
/// `RecordsRaw` represents a not-yet-parsed and not-yet-validated sequence of
/// records, whose structure is enforced by the impl in `R`.
///
/// [`Records`] provides an implementation of [`FromRaw`] that can be used to
/// validate a `RecordsRaw`.
#[derive(Debug)]
pub struct RecordsRaw<B, R: RecordsImplLayout> {
    bytes: B,
    context: R::Context,
}

impl<B, R> RecordsRaw<B, R>
where
    R: RecordsImplLayout<Context = ()>,
{
    /// Creates a new `RecordsRaw` with the data in `bytes`.
    pub fn new(bytes: B) -> Self {
        Self { bytes, context: () }
    }
}

impl<B, R> RecordsRaw<B, R>
where
    R: for<'a> RecordsRawImpl<'a>,
    B: ByteSlice,
{
    /// Raw-parses a sequence of records with a context.
    ///
    /// See [`RecordsRaw::parse_raw_with_mut_context`] for details on `bytes`,
    /// `context`, and return value. `parse_raw_with_context` just calls
    /// `parse_raw_with_mut_context` with a mutable reference to the `context`
    /// which is passed by value to this function.
    pub fn parse_raw_with_context<BV: BufferView<B>>(
        bytes: &mut BV,
        mut context: R::Context,
    ) -> MaybeParsed<Self, (B, R::Error)> {
        Self::parse_raw_with_mut_context(bytes, &mut context)
    }

    /// Raw-parses a sequence of records with a mutable context.
    ///
    /// `parse_raw_with_mut_context` shallowly parses `bytes` as a sequence of
    /// records. `context` may be used by implementers to maintain state.
    ///
    /// `parse_raw_with_mut_context` performs a single pass over all of the
    /// records to be able to find the end of the records list and update
    /// `bytes` accordingly. Upon return with [`MaybeParsed::Complete`],
    /// `bytes` will include only those bytes which are not part of the records
    /// list. Upon return with [`MaybeParsed::Incomplete`], `bytes` will still
    /// contain the bytes which could not be parsed, and all subsequent bytes.
    pub fn parse_raw_with_mut_context<BV: BufferView<B>>(
        bytes: &mut BV,
        context: &mut R::Context,
    ) -> MaybeParsed<Self, (B, R::Error)> {
        let c = context.clone();
        let mut b = LongLivedBuff::new(bytes.as_ref());
        let r = loop {
            match R::parse_raw_with_context(&mut b, context) {
                Ok(true) => {} // continue consuming from data
                Ok(false) => {
                    break None;
                }
                Err(e) => {
                    break Some(e);
                }
            }
        };

        // When we get here, we know that whatever is left in `b` is not needed
        // so we only take the amount of bytes we actually need from `bytes`,
        // leaving the rest alone for the caller to continue parsing with.
        let bytes_len = bytes.len();
        let b_len = b.len();
        let taken = bytes.take_front(bytes_len - b_len).unwrap();

        match r {
            Some(error) => MaybeParsed::Incomplete((taken, error)),
            None => MaybeParsed::Complete(RecordsRaw { bytes: taken, context: c }),
        }
    }
}

impl<B, R> RecordsRaw<B, R>
where
    R: for<'a> RecordsRawImpl<'a> + RecordsImplLayout<Context = ()>,
    B: ByteSlice,
{
    /// Raw-parses a sequence of records.
    ///
    /// Equivalent to calling [`RecordsRaw::parse_raw_with_context`] with
    /// `context = ()`.
    pub fn parse_raw<BV: BufferView<B>>(bytes: &mut BV) -> MaybeParsed<Self, (B, R::Error)> {
        Self::parse_raw_with_context(bytes, ())
    }
}

impl<B, R> Deref for RecordsRaw<B, R>
where
    B: ByteSlice,
    R: RecordsImplLayout,
{
    type Target = [u8];

    fn deref(&self) -> &[u8] {
        self.bytes.deref()
    }
}

impl<B: Deref<Target = [u8]>, R: RecordsImplLayout> RecordsRaw<B, R> {
    /// Gets the underlying bytes.
    ///
    /// `bytes` returns a reference to the byte slice backing this `RecordsRaw`.
    pub fn bytes(&self) -> &[u8] {
        &self.bytes
    }
}

/// An iterator over the records contained inside a [`Records`] instance.
#[derive(Copy, Clone, Debug)]
pub struct RecordsIter<'a, R: RecordsImpl<'a>> {
    bytes: &'a [u8],
    records_left: usize,
    context: R::Context,
}

/// The error returned when fewer records were found than expected.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct TooFewRecordsErr;

/// A counter used to keep track of how many records are remaining to be parsed.
///
/// Some record sequence formats include an indication of how many records
/// should be expected. For example, the [IGMPv3 Membership Report Message]
/// includes a "Number of Group Records" field in its header which indicates how
/// many Group Records are present following the header. A `RecordsCounter` is a
/// type used by these protocols to keep track of how many records are remaining
/// to be parsed. It is implemented for all unsigned numeric primitive types
/// (`usize`, `u8`, `u16`, `u32`, `u64`, and `u128`). A no-op implementation
/// which does not track the number of remaining records is provided for `()`.
///
/// [IGMPv3 Membership Report Message]: https://www.rfc-editor.org/rfc/rfc3376#section-4.2
pub trait RecordsCounter: Sized {
    /// The error returned from [`result_for_end_of_records`] when fewer records
    /// were found than expected.
    ///
    /// Some formats which store the number of records out-of-band consider it
    /// an error to provide fewer records than this out-of-band value.
    /// `TooFewRecordsErr` is the error returned by
    /// [`result_for_end_of_records`] when this condition is encountered. If the
    /// number of records is not tracked (usually, when `Self = ()`) or if it is
    /// not an error to provide fewer records than expected, it is recommended
    /// that `TooFewRecordsErr` be set to an uninhabited type like [`Never`].
    ///
    /// [`result_for_end_of_records`]: RecordsCounter::result_for_end_of_records
    type TooFewRecordsErr;

    /// Gets the next lowest value unless the counter is already at 0.
    ///
    /// During parsing, this value will be queried prior to parsing a record. If
    /// the counter has already reached zero (`next_lowest_value` returns
    /// `None`), parsing will be terminated. If the counter has not yet reached
    /// zero and a record is successfully parsed, the previous counter value
    /// will be overwritten with the one provided by `next_lowest_value`. In
    /// other words, the parsing logic will look something like the following
    /// pseudocode:
    ///
    /// ```rust,ignore
    /// let next = counter.next_lowest_value()?;
    /// let record = parse()?;
    /// *counter = next;
    /// ```
    ///
    /// If `Self` is a type which does not impose a limit on the number of
    /// records parsed (usually, `()`), `next_lowest_value` must always return
    /// `Some`. The value contained in the `Some` is irrelevant - it will just
    /// be written back verbatim after a record is successfully parsed.
    fn next_lowest_value(&self) -> Option<Self>;

    /// Gets a result which can be used to determine whether it is an error that
    /// there are no more records left to parse.
    ///
    /// Some formats which store the number of records out-of-band consider it
    /// an error to provide fewer records than this out-of-band value.
    /// `result_for_end_of_records` is called when there are no more records
    /// left to parse. If the counter is still at a non-zero value, and the
    /// protocol considers this to be an error, `result_for_end_of_records`
    /// should return an appropriate error. Otherwise, it should return
    /// `Ok(())`.
    fn result_for_end_of_records(&self) -> Result<(), Self::TooFewRecordsErr> {
        Ok(())
    }
}

/// The context kept while performing records parsing.
///
/// Types which implement `RecordsContext` can be used as the long-lived context
/// which is kept during records parsing. This context allows parsers to keep
/// running computations over the span of multiple records.
pub trait RecordsContext: Sized + Clone {
    /// A counter used to keep track of how many records are left to parse.
    ///
    /// See the documentation on [`RecordsCounter`] for more details.
    type Counter: RecordsCounter;

    /// Clones a context for iterator purposes.
    ///
    /// `clone_for_iter` is useful for cloning a context to be used by
    /// [`RecordsIter`]. Since [`Records::parse_with_context`] will do a full
    /// pass over all the records to check for errors, a `RecordsIter` should
    /// never error. Therefore, instead of doing checks when iterating (if a
    /// context was used for checks), a clone of a context can be made
    /// specifically for iterator purposes that does not do checks (which may be
    /// expensive).
    ///
    /// The default implementation of this method is equivalent to
    /// [`Clone::clone`].
    fn clone_for_iter(&self) -> Self {
        self.clone()
    }

    /// Gets the counter mutably.
    fn counter_mut(&mut self) -> &mut Self::Counter;
}

macro_rules! impl_records_counter_and_context_for_uxxx {
    ($ty:ty) => {
        impl RecordsCounter for $ty {
            type TooFewRecordsErr = TooFewRecordsErr;

            fn next_lowest_value(&self) -> Option<Self> {
                self.checked_sub(1)
            }

            fn result_for_end_of_records(&self) -> Result<(), TooFewRecordsErr> {
                if *self == 0 {
                    Ok(())
                } else {
                    Err(TooFewRecordsErr)
                }
            }
        }

        impl RecordsContext for $ty {
            type Counter = $ty;

            fn counter_mut(&mut self) -> &mut $ty {
                self
            }
        }
    };
}

impl_records_counter_and_context_for_uxxx!(usize);
impl_records_counter_and_context_for_uxxx!(u128);
impl_records_counter_and_context_for_uxxx!(u64);
impl_records_counter_and_context_for_uxxx!(u32);
impl_records_counter_and_context_for_uxxx!(u16);
impl_records_counter_and_context_for_uxxx!(u8);

impl RecordsCounter for () {
    type TooFewRecordsErr = Never;

    fn next_lowest_value(&self) -> Option<()> {
        Some(())
    }
}

impl RecordsContext for () {
    type Counter = ();

    fn counter_mut(&mut self) -> &mut () {
        self
    }
}

/// Basic associated types used by a [`RecordsImpl`].
///
/// This trait is kept separate from `RecordsImpl` so that the associated types
/// do not depend on the lifetime parameter to `RecordsImpl`.
pub trait RecordsImplLayout {
    // TODO(https://github.com/rust-lang/rust/issues/29661): Give the `Context`
    // type a default of `()`.

    /// A context type that can be used to maintain state while parsing multiple
    /// records.
    type Context: RecordsContext;

    /// The type of errors that may be returned by a call to
    /// [`RecordsImpl::parse_with_context`].
    type Error: From<
        <<Self::Context as RecordsContext>::Counter as RecordsCounter>::TooFewRecordsErr,
    >;
}

/// An implementation of a records parser.
///
/// `RecordsImpl` provides functions to parse sequential records. It is required
///  in order to construct a [`Records`] or [`RecordsIter`].
pub trait RecordsImpl<'a>: RecordsImplLayout {
    /// The type of a single record; the output from the [`parse_with_context`]
    /// function.
    ///
    /// For long or variable-length data, implementers are advised to make
    /// `Record` a reference into the bytes passed to `parse_with_context`. Such
    /// a reference will need to carry the lifetime `'a`, which is the same
    /// lifetime that is passed to `parse_with_context`, and is also the
    /// lifetime parameter to this trait.
    ///
    /// [`parse_with_context`]: RecordsImpl::parse_with_context
    type Record;

    /// Parses a record with some context.
    ///
    /// `parse_with_context` takes a variable-length `data` and a `context` to
    /// maintain state.
    ///
    /// `data` may be empty. It is up to the implementer to handle an exhausted
    /// `data`.
    ///
    /// When returning `Ok(ParsedRecord::Skipped)`, it's the implementer's
    /// responsibility to consume the bytes of the record from `data`. If this
    /// doesn't happen, then `parse_with_context` will be called repeatedly on
    /// the same `data`, and the program will be stuck in an infinite loop. If
    /// the implementation is unable to determine how many bytes to consume from
    /// `data` in order to skip the record, `parse_with_context` must return
    /// `Err`.
    ///
    /// `parse_with_context` must be deterministic, or else
    /// [`Records::parse_with_context`] cannot guarantee that future iterations
    /// will not produce errors (and thus panic).
    fn parse_with_context<BV: BufferView<&'a [u8]>>(
        data: &mut BV,
        context: &mut Self::Context,
    ) -> RecordParseResult<Self::Record, Self::Error>;
}

/// An implementation of a raw records parser.
///
/// `RecordsRawImpl` provides functions to raw-parse sequential records. It is
/// required to construct a partially-parsed [`RecordsRaw`].
///
/// `RecordsRawImpl` is meant to perform little or no validation on each record
/// it consumes. It is primarily used to be able to walk record sequences with
/// unknown lengths.
pub trait RecordsRawImpl<'a>: RecordsImplLayout {
    /// Raw-parses a single record with some context.
    ///
    /// `parse_raw_with_context` takes a variable length `data` and a `context`
    /// to maintain state, and returns `Ok(true)` if a record is successfully
    /// consumed, `Ok(false)` if it is unable to parse more records, and
    /// `Err(err)` if the `data` is malformed in any way.
    ///
    /// `data` may be empty. It is up to the implementer to handle an exhausted
    /// `data`.
    ///
    /// It's the implementer's responsibility to consume exactly one record from
    /// `data` when returning `Ok(_)`.
    fn parse_raw_with_context<BV: BufferView<&'a [u8]>>(
        data: &mut BV,
        context: &mut Self::Context,
    ) -> Result<bool, Self::Error>;
}

/// A builder capable of serializing a record.
///
/// Given `R: RecordBuilder`, an iterator of `R` can be used with a
/// [`RecordSequenceBuilder`] to serialize a sequence of records.
pub trait RecordBuilder {
    /// Provides the serialized length of a record.
    ///
    /// Returns the total length, in bytes, of the serialized encoding of
    /// `self`.
    fn serialized_len(&self) -> usize;

    /// Serializes `self` into a buffer.
    ///
    /// `data` will be exactly `self.serialized_len()` bytes long.
    ///
    /// # Panics
    ///
    /// May panic if `data` is not exactly `self.serialized_len()` bytes long.
    fn serialize_into(&self, data: &mut [u8]);
}

/// A builder capable of serializing a record with an alignment requirement.
///
/// Given `R: AlignedRecordBuilder`, an iterator of `R` can be used with an
/// [`AlignedRecordSequenceBuilder`] to serialize a sequence of aligned records.
pub trait AlignedRecordBuilder: RecordBuilder {
    /// Returns the alignment requirement of `self`.
    ///
    /// The alignment requirement is returned as `(x, y)`, which means that the
    /// record must be aligned at  `x * n + y` bytes from the beginning of the
    /// records sequence for some non-negative `n`.
    ///
    /// It is guaranteed that `x > 0` and that `x > y`.
    fn alignment_requirement(&self) -> (usize, usize);

    /// Serializes the padding between subsequent aligned records.
    ///
    /// Some formats require that padding bytes have particular content. This
    /// function serializes padding bytes as required by the format.
    fn serialize_padding(buf: &mut [u8], length: usize);
}

/// A builder capable of serializing a sequence of records.
///
/// A `RecordSequenceBuilder` is instantiated with an [`Iterator`] that provides
/// [`RecordBuilder`]s to be serialized. The item produced by the iterator can
/// be any type which implements `Borrow<R>` for `R: RecordBuilder`.
///
/// `RecordSequenceBuilder` implements [`InnerPacketBuilder`].
#[derive(Debug, Clone)]
pub struct RecordSequenceBuilder<R, I> {
    records: I,
    _marker: PhantomData<R>,
}

impl<R, I> RecordSequenceBuilder<R, I> {
    /// Creates a new `RecordSequenceBuilder` with the given `records`.
    ///
    /// `records` must produce the same sequence of values from every iteration,
    /// even if cloned. Serialization is typically performed with two passes on
    /// `records`: one to calculate the total length in bytes (`serialized_len`)
    /// and another one to serialize to a buffer (`serialize_into`). Violating
    /// this rule may result in panics or malformed serialized record sequences.
    pub fn new(records: I) -> Self {
        Self { records, _marker: PhantomData }
    }
}

impl<R, I> RecordSequenceBuilder<R, I>
where
    R: RecordBuilder,
    I: Iterator + Clone,
    I::Item: Borrow<R>,
{
    /// Returns the total length, in bytes, of the serialized encoding of the
    /// records contained within `self`.
    pub fn serialized_len(&self) -> usize {
        self.records.clone().map(|r| r.borrow().serialized_len()).sum()
    }

    /// Serializes all the records contained within `self` into the given
    /// buffer.
    ///
    /// # Panics
    ///
    /// `serialize_into` expects that `buffer` has enough bytes to serialize the
    /// contained records (as obtained from `serialized_len`), otherwise it's
    /// considered a violation of the API contract and the call may panic.
    pub fn serialize_into(&self, buffer: &mut [u8]) {
        let mut b = &mut &mut buffer[..];
        for r in self.records.clone() {
            // SECURITY: Take a zeroed buffer from b to prevent leaking
            // information from packets previously stored in this buffer.
            r.borrow().serialize_into(b.take_front_zero(r.borrow().serialized_len()).unwrap());
        }
    }

    /// Returns a reference to the inner records of this builder.
    pub fn records(&self) -> &I {
        &self.records
    }
}

impl<R, I> InnerPacketBuilder for RecordSequenceBuilder<R, I>
where
    R: RecordBuilder,
    I: Iterator + Clone,
    I::Item: Borrow<R>,
{
    fn bytes_len(&self) -> usize {
        self.serialized_len()
    }

    fn serialize(&self, buffer: &mut [u8]) {
        self.serialize_into(buffer)
    }
}

/// A builder capable of serializing a sequence of aligned records.
///
/// An `AlignedRecordSequenceBuilder` is instantiated with an [`Iterator`] that
/// provides [`AlignedRecordBuilder`]s to be serialized. The item produced by
/// the iterator can be any type which implements `Borrow<R>` for `R:
/// AlignedRecordBuilder`.
///
/// `AlignedRecordSequenceBuilder` implements [`InnerPacketBuilder`].
#[derive(Debug, Clone)]
pub struct AlignedRecordSequenceBuilder<R, I> {
    start_pos: usize,
    records: I,
    _marker: PhantomData<R>,
}

impl<R, I> AlignedRecordSequenceBuilder<R, I> {
    /// Creates a new `AlignedRecordSequenceBuilder` with given `records` and
    /// `start_pos`.
    ///
    /// `records` must produce the same sequence of values from every iteration,
    /// even if cloned. See [`RecordSequenceBuilder`] for more details.
    ///
    /// Alignment is calculated relative to the beginning of a virtual space of
    /// bytes. If non-zero, `start_pos` instructs the serializer to consider the
    /// buffer passed to [`serialize_into`] to start at the byte `start_pos`
    /// within this virtual space, and to calculate alignment and padding
    /// accordingly. For example, in the IPv6 Hop-by-Hop extension header, a
    /// fixed header of two bytes precedes that extension header's options, but
    /// alignment is calculated relative to the beginning of the extension
    /// header, not relative to the beginning of the options. Thus, when
    /// constructing an `AlignedRecordSequenceBuilder` to serialize those
    /// options, `start_pos` would be 2.
    ///
    /// [`serialize_into`]: AlignedRecordSequenceBuilder::serialize_into
    pub fn new(start_pos: usize, records: I) -> Self {
        Self { start_pos, records, _marker: PhantomData }
    }
}

impl<R, I> AlignedRecordSequenceBuilder<R, I>
where
    R: AlignedRecordBuilder,
    I: Iterator + Clone,
    I::Item: Borrow<R>,
{
    /// Returns the total length, in bytes, of the serialized records contained
    /// within `self`.
    ///
    /// Note that this length includes all padding required to ensure that all
    /// records satisfy their alignment requirements.
    pub fn serialized_len(&self) -> usize {
        let mut pos = self.start_pos;
        self.records
            .clone()
            .map(|r| {
                let (x, y) = r.borrow().alignment_requirement();
                let new_pos = align_up_to(pos, x, y) + r.borrow().serialized_len();
                let result = new_pos - pos;
                pos = new_pos;
                result
            })
            .sum()
    }

    /// Serializes all the records contained within `self` into the given
    /// buffer.
    ///
    /// # Panics
    ///
    /// `serialize_into` expects that `buffer` has enough bytes to serialize the
    /// contained records (as obtained from `serialized_len`), otherwise it's
    /// considered a violation of the API contract and the call may panic.
    pub fn serialize_into(&self, buffer: &mut [u8]) {
        let mut b = &mut &mut buffer[..];
        let mut pos = self.start_pos;
        for r in self.records.clone() {
            let (x, y) = r.borrow().alignment_requirement();
            let aligned = align_up_to(pos, x, y);
            let pad_len = aligned - pos;
            let pad = b.take_front_zero(pad_len).unwrap();
            R::serialize_padding(pad, pad_len);
            pos = aligned;
            // SECURITY: Take a zeroed buffer from b to prevent leaking
            // information from packets previously stored in this buffer.
            r.borrow().serialize_into(b.take_front_zero(r.borrow().serialized_len()).unwrap());
            pos += r.borrow().serialized_len();
        }
        // we have to pad the containing header to 8-octet boundary.
        let padding = b.take_rest_front_zero();
        R::serialize_padding(padding, padding.len());
    }
}

/// Returns the aligned offset which is at `x * n + y`.
///
/// # Panics
///
/// Panics if `x == 0` or `y >= x`.
fn align_up_to(offset: usize, x: usize, y: usize) -> usize {
    assert!(x != 0 && y < x);
    // first add `x` to prevent overflow.
    (offset + x - 1 - y) / x * x + y
}

impl<B, R> Records<B, R>
where
    B: ByteSlice,
    R: for<'a> RecordsImpl<'a>,
{
    /// Parses a sequence of records with a context.
    ///
    /// See [`parse_with_mut_context`] for details on `bytes`, `context`, and
    /// return value. `parse_with_context` just calls `parse_with_mut_context`
    /// with a mutable reference to the `context` which is passed by value to
    /// this function.
    ///
    /// [`parse_with_mut_context`]: Records::parse_with_mut_context
    pub fn parse_with_context(
        bytes: B,
        mut context: R::Context,
    ) -> Result<Records<B, R>, R::Error> {
        Self::parse_with_mut_context(bytes, &mut context)
    }

    /// Parses a sequence of records with a mutable context.
    ///
    /// `context` may be used by implementers to maintain state while parsing
    /// multiple records.
    ///
    /// `parse_with_mut_context` performs a single pass over all of the records
    /// to verify that they are well-formed. Once `parse_with_context` returns
    /// successfully, the resulting `Records` can be used to construct
    /// infallible iterators.
    pub fn parse_with_mut_context(
        bytes: B,
        context: &mut R::Context,
    ) -> Result<Records<B, R>, R::Error> {
        // First, do a single pass over the bytes to detect any errors up front.
        // Once this is done, since we have a reference to `bytes`, these bytes
        // can't change out from under us, and so we can treat any iterator over
        // these bytes as infallible. This makes a few assumptions, but none of
        // them are that big of a deal. In all cases, breaking these assumptions
        // would at worst result in a runtime panic.
        // - B could return different bytes each time
        // - R::parse could be non-deterministic
        let c = context.clone();
        let mut b = LongLivedBuff::new(bytes.deref());
        let mut record_count = 0;
        while next::<_, R>(&mut b, context)?.is_some() {
            record_count += 1;
        }
        Ok(Records { bytes, record_count, context: c })
    }
}

impl<B, R> Records<B, R>
where
    B: ByteSlice,
    R: for<'a> RecordsImpl<'a, Context = ()>,
{
    /// Parses a sequence of records.
    ///
    /// Equivalent to calling [`parse_with_context`] with `context = ()`.
    ///
    /// [`parse_with_context`]: Records::parse_with_context
    pub fn parse(bytes: B) -> Result<Records<B, R>, R::Error> {
        Self::parse_with_context(bytes, ())
    }
}

impl<B, R> FromRaw<RecordsRaw<B, R>, ()> for Records<B, R>
where
    for<'a> R: RecordsImpl<'a>,
    B: ByteSlice,
{
    type Error = R::Error;

    fn try_from_raw_with(raw: RecordsRaw<B, R>, _args: ()) -> Result<Self, R::Error> {
        Records::<B, R>::parse_with_context(raw.bytes, raw.context)
    }
}

impl<B: Deref<Target = [u8]>, R> Records<B, R>
where
    R: for<'a> RecordsImpl<'a>,
{
    /// Gets the underlying bytes.
    ///
    /// `bytes` returns a reference to the byte slice backing this `Records`.
    pub fn bytes(&self) -> &[u8] {
        &self.bytes
    }
}

impl<'a, B, R> Records<B, R>
where
    B: 'a + ByteSlice,
    R: RecordsImpl<'a>,
{
    /// Iterates over options.
    ///
    /// Since the records were validated in [`parse`], then so long as
    /// [`R::parse_with_context`] is deterministic, the iterator is infallible.
    ///
    /// [`parse`]: Records::parse
    /// [`R::parse_with_context`]: RecordsImpl::parse_with_context
    pub fn iter(&'a self) -> RecordsIter<'a, R> {
        RecordsIter {
            bytes: &self.bytes,
            records_left: self.record_count,
            context: self.context.clone_for_iter(),
        }
    }
}

impl<'a, R> RecordsIter<'a, R>
where
    R: RecordsImpl<'a>,
{
    /// Gets a reference to the context.
    pub fn context(&self) -> &R::Context {
        &self.context
    }
}

impl<'a, R> Iterator for RecordsIter<'a, R>
where
    R: RecordsImpl<'a>,
{
    type Item = R::Record;

    fn next(&mut self) -> Option<R::Record> {
        let mut bytes = LongLivedBuff::new(self.bytes);
        // use match rather than expect because expect requires that Err: Debug
        #[allow(clippy::match_wild_err_arm)]
        let result = match next::<_, R>(&mut bytes, &mut self.context) {
            Ok(o) => o,
            Err(_) => panic!("already-validated options should not fail to parse"),
        };
        if result.is_some() {
            self.records_left -= 1;
        }
        self.bytes = bytes.into_rest();
        result
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.records_left, Some(self.records_left))
    }
}

impl<'a, R> ExactSizeIterator for RecordsIter<'a, R>
where
    R: RecordsImpl<'a>,
{
    fn len(&self) -> usize {
        self.records_left
    }
}

/// Gets the next entry for a set of sequential records in `bytes`.
///
/// On return, `bytes` will be pointing to the start of where a next record
/// would be.
fn next<'a, BV, R>(bytes: &mut BV, context: &mut R::Context) -> Result<Option<R::Record>, R::Error>
where
    R: RecordsImpl<'a>,
    BV: BufferView<&'a [u8]>,
{
    loop {
        // If we're already at 0, don't attempt to parse any more records.
        let next_lowest_counter_val = match context.counter_mut().next_lowest_value() {
            Some(val) => val,
            None => return Ok(None),
        };
        match R::parse_with_context(bytes, context)? {
            ParsedRecord::Done => {
                return context
                    .counter_mut()
                    .result_for_end_of_records()
                    .map_err(Into::into)
                    .map(|()| None);
            }
            ParsedRecord::Skipped => {}
            ParsedRecord::Parsed(o) => {
                *context.counter_mut() = next_lowest_counter_val;
                return Ok(Some(o));
            }
        }
    }
}

/// A wrapper around the implementation of `BufferView` for slices.
///
/// `LongLivedBuff` is a thin wrapper around `&[u8]` meant to provide an
/// implementation of `BufferView` that returns slices tied to the same lifetime
/// as the slice that `LongLivedBuff` was created with. This is in contrast to
/// the more widely used `&'b mut &'a [u8]` `BufferView` implementer that
/// returns slice references tied to lifetime `b`.
struct LongLivedBuff<'a>(&'a [u8]);

impl<'a> LongLivedBuff<'a> {
    /// Creates a new `LongLivedBuff` around a slice reference with lifetime
    /// `'a`.
    ///
    /// All slices returned by the `BufferView` impl of `LongLivedBuff` are
    /// guaranteed to return slice references tied to the same lifetime `'a`.
    fn new(data: &'a [u8]) -> LongLivedBuff<'a> {
        LongLivedBuff::<'a>(data)
    }
}

impl<'a> AsRef<[u8]> for LongLivedBuff<'a> {
    fn as_ref(&self) -> &[u8] {
        self.0
    }
}

impl<'a> BufferView<&'a [u8]> for LongLivedBuff<'a> {
    fn take_front(&mut self, n: usize) -> Option<&'a [u8]> {
        if self.0.len() >= n {
            let (prefix, rest) = core::mem::replace(&mut self.0, &[]).split_at(n);
            self.0 = rest;
            Some(prefix)
        } else {
            None
        }
    }

    fn take_back(&mut self, n: usize) -> Option<&'a [u8]> {
        if self.0.len() >= n {
            let (rest, suffix) = core::mem::replace(&mut self.0, &[]).split_at(n);
            self.0 = rest;
            Some(suffix)
        } else {
            None
        }
    }

    fn into_rest(self) -> &'a [u8] {
        self.0
    }
}

#[cfg(test)]
mod tests {
    use test_case::test_case;
    use zerocopy::{AsBytes, FromBytes, FromZeros, NoCell, Ref, Unaligned};

    use super::*;

    const DUMMY_BYTES: [u8; 16] = [
        0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03, 0x04, 0x01, 0x02, 0x03,
        0x04,
    ];

    fn get_empty_tuple_mut_ref<'a>() -> &'a mut () {
        // This is a hack since `&mut ()` is invalid.
        let bytes: &mut [u8] = &mut [];
        zerocopy::Ref::<_, ()>::new_unaligned(bytes).unwrap().into_mut()
    }

    #[derive(Debug, AsBytes, FromZeros, FromBytes, NoCell, Unaligned)]
    #[repr(C)]
    struct DummyRecord {
        a: [u8; 2],
        b: u8,
        c: u8,
    }

    #[derive(Copy, Clone, Debug, Eq, PartialEq)]
    enum DummyRecordErr {
        Parse,
        TooFewRecords,
    }

    impl From<Never> for DummyRecordErr {
        fn from(err: Never) -> DummyRecordErr {
            match err {}
        }
    }

    impl From<TooFewRecordsErr> for DummyRecordErr {
        fn from(_: TooFewRecordsErr) -> DummyRecordErr {
            DummyRecordErr::TooFewRecords
        }
    }

    fn parse_dummy_rec<'a, BV>(
        data: &mut BV,
    ) -> RecordParseResult<Ref<&'a [u8], DummyRecord>, DummyRecordErr>
    where
        BV: BufferView<&'a [u8]>,
    {
        if data.is_empty() {
            return Ok(ParsedRecord::Done);
        }

        match data.take_obj_front::<DummyRecord>() {
            Some(res) => Ok(ParsedRecord::Parsed(res)),
            None => Err(DummyRecordErr::Parse),
        }
    }

    //
    // Context-less records
    //

    #[derive(Debug)]
    struct ContextlessRecordImpl;

    impl RecordsImplLayout for ContextlessRecordImpl {
        type Context = ();
        type Error = DummyRecordErr;
    }

    impl<'a> RecordsImpl<'a> for ContextlessRecordImpl {
        type Record = Ref<&'a [u8], DummyRecord>;

        fn parse_with_context<BV: BufferView<&'a [u8]>>(
            data: &mut BV,
            _context: &mut Self::Context,
        ) -> RecordParseResult<Self::Record, Self::Error> {
            parse_dummy_rec(data)
        }
    }

    //
    // Limit context records
    //

    #[derive(Debug)]
    struct LimitContextRecordImpl;

    impl RecordsImplLayout for LimitContextRecordImpl {
        type Context = usize;
        type Error = DummyRecordErr;
    }

    impl<'a> RecordsImpl<'a> for LimitContextRecordImpl {
        type Record = Ref<&'a [u8], DummyRecord>;

        fn parse_with_context<BV: BufferView<&'a [u8]>>(
            data: &mut BV,
            _context: &mut usize,
        ) -> RecordParseResult<Self::Record, Self::Error> {
            parse_dummy_rec(data)
        }
    }

    //
    // Filter context records
    //

    #[derive(Debug)]
    struct FilterContextRecordImpl;

    #[derive(Clone)]
    struct FilterContext {
        pub disallowed: [bool; 256],
    }

    impl RecordsContext for FilterContext {
        type Counter = ();
        fn counter_mut(&mut self) -> &mut () {
            get_empty_tuple_mut_ref()
        }
    }

    impl RecordsImplLayout for FilterContextRecordImpl {
        type Context = FilterContext;
        type Error = DummyRecordErr;
    }

    impl core::fmt::Debug for FilterContext {
        fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
            write!(f, "FilterContext{{disallowed:{:?}}}", &self.disallowed[..])
        }
    }

    impl<'a> RecordsImpl<'a> for FilterContextRecordImpl {
        type Record = Ref<&'a [u8], DummyRecord>;

        fn parse_with_context<BV: BufferView<&'a [u8]>>(
            bytes: &mut BV,
            context: &mut Self::Context,
        ) -> RecordParseResult<Self::Record, Self::Error> {
            if bytes.len() < core::mem::size_of::<DummyRecord>() {
                Ok(ParsedRecord::Done)
            } else if bytes.as_ref()[0..core::mem::size_of::<DummyRecord>()]
                .iter()
                .any(|x| context.disallowed[*x as usize])
            {
                Err(DummyRecordErr::Parse)
            } else {
                parse_dummy_rec(bytes)
            }
        }
    }

    //
    // Stateful context records
    //

    #[derive(Debug)]
    struct StatefulContextRecordImpl;

    #[derive(Clone, Debug)]
    struct StatefulContext {
        pub pre_parse_counter: usize,
        pub parse_counter: usize,
        pub post_parse_counter: usize,
        pub iter: bool,
    }

    impl RecordsImplLayout for StatefulContextRecordImpl {
        type Context = StatefulContext;
        type Error = DummyRecordErr;
    }

    impl StatefulContext {
        pub fn new() -> StatefulContext {
            StatefulContext {
                pre_parse_counter: 0,
                parse_counter: 0,
                post_parse_counter: 0,
                iter: false,
            }
        }
    }

    impl RecordsContext for StatefulContext {
        type Counter = ();

        fn clone_for_iter(&self) -> Self {
            let mut x = self.clone();
            x.iter = true;
            x
        }

        fn counter_mut(&mut self) -> &mut () {
            get_empty_tuple_mut_ref()
        }
    }

    impl<'a> RecordsImpl<'a> for StatefulContextRecordImpl {
        type Record = Ref<&'a [u8], DummyRecord>;

        fn parse_with_context<BV: BufferView<&'a [u8]>>(
            data: &mut BV,
            context: &mut Self::Context,
        ) -> RecordParseResult<Self::Record, Self::Error> {
            if !context.iter {
                context.pre_parse_counter += 1;
            }

            let ret = parse_dummy_rec_with_context(data, context);

            if let Ok(ParsedRecord::Parsed(_)) = ret {
                if !context.iter {
                    context.post_parse_counter += 1;
                }
            }

            ret
        }
    }

    impl<'a> RecordsRawImpl<'a> for StatefulContextRecordImpl {
        fn parse_raw_with_context<BV: BufferView<&'a [u8]>>(
            data: &mut BV,
            context: &mut Self::Context,
        ) -> Result<bool, Self::Error> {
            Self::parse_with_context(data, context).map(|r| r.consumed())
        }
    }

    fn parse_dummy_rec_with_context<'a, BV>(
        data: &mut BV,
        context: &mut StatefulContext,
    ) -> RecordParseResult<Ref<&'a [u8], DummyRecord>, DummyRecordErr>
    where
        BV: BufferView<&'a [u8]>,
    {
        if data.is_empty() {
            return Ok(ParsedRecord::Done);
        }

        if !context.iter {
            context.parse_counter += 1;
        }

        match data.take_obj_front::<DummyRecord>() {
            Some(res) => Ok(ParsedRecord::Parsed(res)),
            None => Err(DummyRecordErr::Parse),
        }
    }

    fn check_parsed_record(rec: &DummyRecord) {
        assert_eq!(rec.a[0], 0x01);
        assert_eq!(rec.a[1], 0x02);
        assert_eq!(rec.b, 0x03);
    }

    fn validate_parsed_stateful_context_records<B: ByteSlice>(
        records: Records<B, StatefulContextRecordImpl>,
        context: StatefulContext,
    ) {
        // Should be 5 because on the last iteration, we should realize that we
        // have no more bytes left and end before parsing (also explaining why
        // `parse_counter` should only be 4.
        assert_eq!(context.pre_parse_counter, 5);
        assert_eq!(context.parse_counter, 4);
        assert_eq!(context.post_parse_counter, 4);

        let mut iter = records.iter();
        let context = &iter.context;
        assert_eq!(context.pre_parse_counter, 0);
        assert_eq!(context.parse_counter, 0);
        assert_eq!(context.post_parse_counter, 0);
        assert_eq!(context.iter, true);

        // Manually iterate over `iter` so as to not move it.
        let mut count = 0;
        while let Some(_) = iter.next() {
            count += 1;
        }
        assert_eq!(count, 4);

        // Check to see that when iterating, the context doesn't update counters
        // as that is how we implemented our StatefulContextRecordImpl..
        let context = &iter.context;
        assert_eq!(context.pre_parse_counter, 0);
        assert_eq!(context.parse_counter, 0);
        assert_eq!(context.post_parse_counter, 0);
        assert_eq!(context.iter, true);
    }

    #[test]
    fn all_records_parsing() {
        let parsed = Records::<_, ContextlessRecordImpl>::parse(&DUMMY_BYTES[..]).unwrap();
        let mut iter = parsed.iter();
        // Test ExactSizeIterator implementation.
        assert_eq!(iter.len(), 4);
        let mut cnt = 4;
        while let Some(_) = iter.next() {
            cnt -= 1;
            assert_eq!(iter.len(), cnt);
        }
        assert_eq!(iter.len(), 0);
        for rec in parsed.iter() {
            check_parsed_record(rec.deref());
        }
    }

    // `expect` is either the number of records that should have been parsed or
    // the error returned from the `Records` constructor.
    //
    // If there are more records than the limit, then we just truncate (not
    // parsing all of them) and don't return an error.
    #[test_case(0, Ok(0))]
    #[test_case(1, Ok(1))]
    #[test_case(2, Ok(2))]
    #[test_case(3, Ok(3))]
    // If there are the same number of records as the limit, then we
    // succeed.
    #[test_case(4, Ok(4))]
    // If there are fewer records than the limit, then we fail.
    #[test_case(5, Err(DummyRecordErr::TooFewRecords))]
    fn limit_records_parsing(limit: usize, expect: Result<usize, DummyRecordErr>) {
        // Test without mutable limit/context
        let check_result =
            |result: Result<Records<_, LimitContextRecordImpl>, _>| match (expect, result) {
                (Ok(expect_parsed), Ok(records)) => {
                    assert_eq!(records.iter().count(), expect_parsed);
                    for rec in records.iter() {
                        check_parsed_record(rec.deref());
                    }
                }
                (Err(expect), Err(got)) => assert_eq!(expect, got),
                (Ok(expect_parsed), Err(err)) => {
                    panic!("wanted {expect_parsed} successfully-parsed records; got error {err:?}")
                }
                (Err(expect), Ok(records)) => panic!(
                    "wanted error {expect:?}, got {} successfully-parsed records",
                    records.iter().count()
                ),
            };

        check_result(Records::<_, LimitContextRecordImpl>::parse_with_context(
            &DUMMY_BYTES[..],
            limit,
        ));
        let mut mut_limit = limit;
        check_result(Records::<_, LimitContextRecordImpl>::parse_with_mut_context(
            &DUMMY_BYTES[..],
            &mut mut_limit,
        ));
        if let Ok(expect_parsed) = expect {
            assert_eq!(limit - mut_limit, expect_parsed);
        }
    }

    #[test]
    fn context_filtering_some_byte_records_parsing() {
        // Do not disallow any bytes
        let context = FilterContext { disallowed: [false; 256] };
        let parsed =
            Records::<_, FilterContextRecordImpl>::parse_with_context(&DUMMY_BYTES[..], context)
                .unwrap();
        assert_eq!(parsed.iter().count(), 4);
        for rec in parsed.iter() {
            check_parsed_record(rec.deref());
        }

        // Do not allow byte value 0x01
        let mut context = FilterContext { disallowed: [false; 256] };
        context.disallowed[1] = true;
        assert_eq!(
            Records::<_, FilterContextRecordImpl>::parse_with_context(&DUMMY_BYTES[..], context)
                .expect_err("fails if the buffer has an element with value 0x01"),
            DummyRecordErr::Parse
        );
    }

    #[test]
    fn stateful_context_records_parsing() {
        let mut context = StatefulContext::new();
        let parsed = Records::<_, StatefulContextRecordImpl>::parse_with_mut_context(
            &DUMMY_BYTES[..],
            &mut context,
        )
        .unwrap();
        validate_parsed_stateful_context_records(parsed, context);
    }

    #[test]
    fn raw_parse_success() {
        let mut context = StatefulContext::new();
        let mut bv = &mut &DUMMY_BYTES[..];
        let result = RecordsRaw::<_, StatefulContextRecordImpl>::parse_raw_with_mut_context(
            &mut bv,
            &mut context,
        )
        .complete()
        .unwrap();
        let RecordsRaw { bytes, context: _ } = &result;
        assert_eq!(*bytes, &DUMMY_BYTES[..]);
        let parsed = Records::try_from_raw(result).unwrap();
        validate_parsed_stateful_context_records(parsed, context);
    }

    #[test]
    fn raw_parse_failure() {
        let mut context = StatefulContext::new();
        let mut bv = &mut &DUMMY_BYTES[0..15];
        let result = RecordsRaw::<_, StatefulContextRecordImpl>::parse_raw_with_mut_context(
            &mut bv,
            &mut context,
        )
        .incomplete()
        .unwrap();
        assert_eq!(result, (&DUMMY_BYTES[0..12], DummyRecordErr::Parse));
    }
}

/// Utilities for parsing the options formats in protocols like IPv4, TCP, and
/// NDP.
///
/// This module provides parsing utilities for [type-length-value]-like records
/// encodings like those used by the options in an IPv4 or TCP header or an NDP
/// packet. These formats are not identical, but share enough in common that the
/// utilities provided here only need a small amount of customization by the
/// user to be fully functional.
///
/// [type-length-value]: https://en.wikipedia.org/wiki/Type-length-value
pub mod options {
    use core::mem;
    use core::num::{NonZeroUsize, TryFromIntError};

    use const_unwrap::const_unwrap_option;
    use zerocopy::byteorder::ByteOrder;
    use zerocopy::{AsBytes, FromBytes, NoCell, Unaligned};

    use super::*;

    /// A parsed sequence of options.
    ///
    /// `Options` represents a parsed sequence of options, for example from an
    /// IPv4 or TCP header or an NDP packet. `Options` uses [`Records`] under
    /// the hood.
    ///
    /// [`Records`]: crate::records::Records
    pub type Options<B, O> = Records<B, O>;

    /// A not-yet-parsed sequence of options.
    ///
    /// `OptionsRaw` represents a not-yet-parsed and not-yet-validated sequence
    /// of options, for example from an IPv4 or TCP header or an NDP packet.
    /// `OptionsRaw` uses [`RecordsRaw`] under the hood.
    ///
    /// [`RecordsRaw`]: crate::records::RecordsRaw
    pub type OptionsRaw<B, O> = RecordsRaw<B, O>;

    /// A builder capable of serializing a sequence of options.
    ///
    /// An `OptionSequenceBuilder` is instantiated with an [`Iterator`] that
    /// provides [`OptionBuilder`]s to be serialized. The item produced by the
    /// iterator can be any type which implements `Borrow<O>` for `O:
    /// OptionBuilder`.
    ///
    /// `OptionSequenceBuilder` implements [`InnerPacketBuilder`].
    pub type OptionSequenceBuilder<R, I> = RecordSequenceBuilder<R, I>;

    /// A builder capable of serializing a sequence of aligned options.
    ///
    /// An `AlignedOptionSequenceBuilder` is instantiated with an [`Iterator`]
    /// that provides [`AlignedOptionBuilder`]s to be serialized. The item
    /// produced by the iterator can be any type which implements `Borrow<O>`
    /// for `O: AlignedOptionBuilder`.
    ///
    /// `AlignedOptionSequenceBuilder` implements [`InnerPacketBuilder`].
    pub type AlignedOptionSequenceBuilder<R, I> = AlignedRecordSequenceBuilder<R, I>;

    impl<'a, O: OptionsImpl<'a>> RecordsImplLayout for O {
        type Context = ();
        type Error = O::Error;
    }

    impl<'a, O: OptionsImpl<'a>> RecordsImpl<'a> for O {
        type Record = O::Option;

        fn parse_with_context<BV: BufferView<&'a [u8]>>(
            data: &mut BV,
            _context: &mut Self::Context,
        ) -> RecordParseResult<Self::Record, Self::Error> {
            next::<_, O>(data)
        }
    }

    impl<O: OptionBuilder> RecordBuilder for O {
        fn serialized_len(&self) -> usize {
            // TODO(https://fxbug.dev/42158056): Remove this `.expect`
            <O::Layout as OptionLayout>::LENGTH_ENCODING
                .record_length::<<O::Layout as OptionLayout>::KindLenField>(
                    OptionBuilder::serialized_len(self),
                )
                .expect("integer overflow while computing record length")
        }

        fn serialize_into(&self, mut data: &mut [u8]) {
            // NOTE(brunodalbo) we don't currently support serializing the two
            //  single-byte options used in TCP and IP: NOP and END_OF_OPTIONS.
            //  If it is necessary to support those as part of TLV options
            //  serialization, some changes will be required here.

            // So that `data` implements `BufferViewMut`.
            let mut data = &mut data;

            // Data not having enough space is a contract violation, so we panic
            // in that case.
            *BufferView::<&mut [u8]>::take_obj_front::<<O::Layout as OptionLayout>::KindLenField>(&mut data)
                .expect("buffer too short") = self.option_kind();
            let body_len = OptionBuilder::serialized_len(self);
            // TODO(https://fxbug.dev/42158056): Remove this `.expect`
            let length = <O::Layout as OptionLayout>::LENGTH_ENCODING
                .encode_length::<<O::Layout as OptionLayout>::KindLenField>(body_len)
                .expect("integer overflow while encoding length");
            // Length overflowing `O::Layout::KindLenField` is a contract
            // violation, so we panic in that case.
            *BufferView::<&mut [u8]>::take_obj_front::<<O::Layout as OptionLayout>::KindLenField>(&mut data)
                .expect("buffer too short") = length;
            // SECURITY: Because padding may have occurred, we zero-fill data
            // before passing it along in order to prevent leaking information
            // from packets previously stored in the buffer.
            let data = data.into_rest_zero();
            // Pass exactly `body_len` bytes even if there is padding.
            OptionBuilder::serialize_into(self, &mut data[..body_len]);
        }
    }

    impl<O: AlignedOptionBuilder> AlignedRecordBuilder for O {
        fn alignment_requirement(&self) -> (usize, usize) {
            // Use the underlying option's alignment requirement as the
            // alignment requirement for the record.
            AlignedOptionBuilder::alignment_requirement(self)
        }

        fn serialize_padding(buf: &mut [u8], length: usize) {
            <O as AlignedOptionBuilder>::serialize_padding(buf, length);
        }
    }

    /// Whether the length field of an option encodes the length of the entire
    /// option (including kind and length fields) or only of the value field.
    ///
    /// For the `TypeLengthValue` variant, an `option_len_multiplier` may also
    /// be specified. Some formats (such as NDP) do not directly encode the
    /// length in bytes of each option, but instead encode a number which must
    /// be multiplied by `option_len_multiplier` in order to get the length in
    /// bytes.
    #[derive(Copy, Clone, Eq, PartialEq)]
    pub enum LengthEncoding {
        TypeLengthValue { option_len_multiplier: NonZeroUsize },
        ValueOnly,
    }

    impl LengthEncoding {
        /// Computes the length of an entire option record - including kind and
        /// length fields - from the length of an option body.
        ///
        /// `record_length` takes into account the length of the kind and length
        /// fields and also adds any padding required to reach a multiple of
        /// `option_len_multiplier`, returning `None` if the value cannot be
        /// stored in a `usize`.
        fn record_length<F: KindLenField>(self, option_body_len: usize) -> Option<usize> {
            let unpadded_len = option_body_len.checked_add(2 * mem::size_of::<F>())?;
            match self {
                LengthEncoding::TypeLengthValue { option_len_multiplier } => {
                    round_up(unpadded_len, option_len_multiplier)
                }
                LengthEncoding::ValueOnly => Some(unpadded_len),
            }
        }

        /// Encodes the length of an option's body.
        ///
        /// `option_body_len` is the length in bytes of the body option as
        /// returned from [`OptionsSerializerImpl::option_length`]. This value
        /// does not include the kind, length, or padding bytes.
        ///
        /// `encode_length` computes the value which should be stored in the
        /// length field, returning `None` if the value cannot be stored in an
        /// `F`.
        fn encode_length<F: KindLenField>(self, option_body_len: usize) -> Option<F> {
            let len = match self {
                LengthEncoding::TypeLengthValue { option_len_multiplier } => {
                    let unpadded_len = (2 * mem::size_of::<F>()).checked_add(option_body_len)?;
                    let padded_len = round_up(unpadded_len, option_len_multiplier)?;
                    padded_len / option_len_multiplier.get()
                }
                LengthEncoding::ValueOnly => option_body_len,
            };
            match F::try_from(len) {
                Ok(len) => Some(len),
                Err(TryFromIntError { .. }) => None,
            }
        }

        /// Decodes the length of an option's body.
        ///
        /// `length_field` is the value of the length field. `decode_length`
        /// computes the length of the option's body which this value encodes,
        /// returning an error if `length_field` is invalid or if integer
        /// overflow occurs. `length_field` is invalid if it encodes a total
        /// length smaller than the header (specifically, if `self` is
        /// LengthEncoding::TypeLengthValue { option_len_multiplier }` and
        /// `length_field * option_len_multiplier < 2 * size_of::<F>()`).
        fn decode_length<F: KindLenField>(self, length_field: F) -> Option<usize> {
            let length_field = length_field.into();
            match self {
                LengthEncoding::TypeLengthValue { option_len_multiplier } => length_field
                    .checked_mul(option_len_multiplier.get())
                    .and_then(|product| product.checked_sub(2 * mem::size_of::<F>())),
                LengthEncoding::ValueOnly => Some(length_field),
            }
        }
    }

    /// Rounds up `x` to the next multiple of `mul` unless `x` is already a
    /// multiple of `mul`.
    fn round_up(x: usize, mul: NonZeroUsize) -> Option<usize> {
        let mul = mul.get();
        // - Subtracting 1 can't underflow because we just added `mul`, which is
        //   at least 1, and the addition didn't overflow
        // - Dividing by `mul` can't overflow (and can't divide by 0 because
        //   `mul` is nonzero)
        // - Multiplying by `mul` can't overflow because division rounds down,
        //   so the result of the multiplication can't be any larger than the
        //   numerator in `(x_times_mul - 1) / mul`, which we already know
        //   didn't overflow
        x.checked_add(mul).map(|x_times_mul| ((x_times_mul - 1) / mul) * mul)
    }

    /// The type of the "kind" and "length" fields in an option.
    ///
    /// See the docs for [`OptionLayout::KindLenField`] for more information.
    pub trait KindLenField:
        FromBytes
        + AsBytes
        + NoCell
        + Unaligned
        + Into<usize>
        + TryFrom<usize, Error = TryFromIntError>
        + Eq
        + Copy
        + crate::sealed::Sealed
    {
    }

    impl crate::sealed::Sealed for u8 {}
    impl KindLenField for u8 {}
    impl<O: ByteOrder> crate::sealed::Sealed for zerocopy::U16<O> {}
    impl<O: ByteOrder> KindLenField for zerocopy::U16<O> {}

    /// Information about an option's layout.
    ///
    /// It is recommended that this trait be implemented for an uninhabited type
    /// since it never needs to be instantiated:
    ///
    /// ```rust
    /// # use packet::records::options::{OptionLayout, LengthEncoding};
    /// /// A carrier for information about the layout of the IPv4 option
    /// /// format.
    /// ///
    /// /// This type exists only at the type level, and does not need to be
    /// /// constructed.
    /// pub enum Ipv4OptionLayout {}
    ///
    /// impl OptionLayout for Ipv4OptionLayout {
    ///     type KindLenField = u8;
    /// }
    /// ```
    pub trait OptionLayout {
        /// The type of the "kind" and "length" fields in an option.
        ///
        /// For most protocols, this is simply `u8`, as the "kind" and "length"
        /// fields are each a single byte. For protocols which use two bytes for
        /// these fields, this is [`zerocopy::U16`].
        // TODO(https://github.com/rust-lang/rust/issues/29661): Have
        // `KindLenField` default to `u8`.
        type KindLenField: KindLenField;

        /// The encoding of the length byte.
        ///
        /// Some formats (such as IPv4) use the length field to encode the
        /// length of the entire option, including the kind and length bytes.
        /// Other formats (such as IPv6) use the length field to encode the
        /// length of only the value. This constant specifies which encoding is
        /// used.
        ///
        /// Additionally, some formats (such as NDP) do not directly encode the
        /// length in bytes of each option, but instead encode a number which
        /// must be multiplied by a constant in order to get the length in
        /// bytes. This is set using the [`TypeLengthValue`] variant's
        /// `option_len_multiplier` field, and it defaults to 1.
        ///
        /// [`TypeLengthValue`]: LengthEncoding::TypeLengthValue
        const LENGTH_ENCODING: LengthEncoding = LengthEncoding::TypeLengthValue {
            option_len_multiplier: const_unwrap_option(NonZeroUsize::new(1)),
        };
    }

    /// An error encountered while parsing an option or sequence of options.
    pub trait OptionParseError: From<Never> {
        /// An error encountered while parsing a sequence of options.
        ///
        /// If an error is encountered while parsing a sequence of [`Options`],
        /// this is the error that will be emitted. This is the only type of
        /// error that can be generated by the [`Options`] parser itself. All
        /// other errors come from the user-provided [`OptionsImpl::parse`],
        /// which parses the data of a single option.
        const SEQUENCE_FORMAT_ERROR: Self;
    }

    /// An error encountered while parsing an option or sequence of options.
    ///
    /// `OptionParseErr` is a simple implementation of [`OptionParseError`] that
    /// doesn't carry information other than the fact that an error was
    /// encountered.
    #[derive(Copy, Clone, Debug, Eq, PartialEq)]
    pub struct OptionParseErr;

    impl From<Never> for OptionParseErr {
        fn from(err: Never) -> OptionParseErr {
            match err {}
        }
    }

    impl OptionParseError for OptionParseErr {
        const SEQUENCE_FORMAT_ERROR: OptionParseErr = OptionParseErr;
    }

    /// Information about an option's layout required in order to parse it.
    pub trait OptionParseLayout: OptionLayout {
        /// The type of errors that may be returned by a call to
        /// [`OptionsImpl::parse`].
        type Error: OptionParseError;

        /// The End of options kind (if one exists).
        const END_OF_OPTIONS: Option<Self::KindLenField>;

        /// The No-op kind (if one exists).
        const NOP: Option<Self::KindLenField>;
    }

    /// An implementation of an options parser.
    ///
    /// `OptionsImpl` provides functions to parse fixed- and variable-length
    /// options. It is required in order to construct an [`Options`].
    pub trait OptionsImpl<'a>: OptionParseLayout {
        /// The type of an option; the output from the [`parse`] function.
        ///
        /// For long or variable-length data, implementers are advised to make
        /// `Option` a reference into the bytes passed to `parse`. Such a
        /// reference will need to carry the lifetime `'a`, which is the same
        /// lifetime that is passed to `parse`, and is also the lifetime
        /// parameter to this trait.
        ///
        /// [`parse`]: crate::records::options::OptionsImpl::parse
        type Option;

        /// Parses an option.
        ///
        /// `parse` takes a kind byte and variable-length data and returns
        /// `Ok(Some(o))` if the option successfully parsed as `o`, `Ok(None)`
        /// if the kind byte was unrecognized, and `Err(err)` if the kind byte
        /// was recognized but `data` was malformed for that option kind.
        ///
        /// `parse` is allowed to not recognize certain option kinds, as the
        /// length field can still be used to safely skip over them, but it must
        /// recognize all single-byte options (if it didn't, a single-byte
        /// option would be spuriously interpreted as a multi-byte option, and
        /// the first byte of the next option byte would be spuriously
        /// interpreted as the option's length byte).
        ///
        /// `parse` must be deterministic, or else [`Options::parse`] cannot
        /// guarantee that future iterations will not produce errors (and thus
        /// panic).
        ///
        /// [`Options::parse`]: crate::records::Records::parse
        fn parse(
            kind: Self::KindLenField,
            data: &'a [u8],
        ) -> Result<Option<Self::Option>, Self::Error>;
    }

    /// A builder capable of serializing an option.
    ///
    /// Given `O: OptionBuilder`, an iterator of `O` can be used with a
    /// [`OptionSequenceBuilder`] to serialize a sequence of options.
    pub trait OptionBuilder {
        /// Information about the option's layout.
        type Layout: OptionLayout;

        /// Returns the serialized length, in bytes, of `self`.
        ///
        /// Implementers must return the length, in bytes, of the **data***
        /// portion of the option field (not counting the kind and length
        /// bytes). The internal machinery of options serialization takes care
        /// of aligning options to their [`option_len_multiplier`] boundaries,
        /// adding padding bytes if necessary.
        ///
        /// [`option_len_multiplier`]: LengthEncoding::TypeLengthValue::option_len_multiplier
        fn serialized_len(&self) -> usize;

        /// Returns the wire value for this option kind.
        fn option_kind(&self) -> <Self::Layout as OptionLayout>::KindLenField;

        /// Serializes `self` into `data`.
        ///
        /// `data` will be exactly `self.serialized_len()` bytes long.
        /// Implementers must write the **data** portion of `self` into `data`
        /// (not the kind or length fields).
        ///
        /// # Panics
        ///
        /// May panic if `data` is not exactly `self.serialized_len()` bytes
        /// long.
        fn serialize_into(&self, data: &mut [u8]);
    }

    /// A builder capable of serializing an option with an alignment
    /// requirement.
    ///
    /// Given `O: AlignedOptionBuilder`, an iterator of `O` can be used with an
    /// [`AlignedOptionSequenceBuilder`] to serialize a sequence of aligned
    /// options.
    pub trait AlignedOptionBuilder: OptionBuilder {
        /// Returns the alignment requirement of `self`.
        ///
        /// `option.alignment_requirement()` returns `(x, y)`, which means that
        /// the serialized encoding of `option` must be aligned at `x * n + y`
        /// bytes from the beginning of the options sequence for some
        /// non-negative `n`. For example, the IPv6 Router Alert Hop-by-Hop
        /// option has alignment (2, 0), while the Jumbo Payload option has
        /// alignment (4, 2). (1, 0) means there is no alignment requirement.
        ///
        /// `x` must be non-zero and `y` must be smaller than `x`.
        fn alignment_requirement(&self) -> (usize, usize);

        /// Serializes the padding between subsequent aligned options.
        ///
        /// Some formats require that padding bytes have particular content.
        /// This function serializes padding bytes as required by the format.
        fn serialize_padding(buf: &mut [u8], length: usize);
    }

    fn next<'a, BV, O>(bytes: &mut BV) -> RecordParseResult<O::Option, O::Error>
    where
        BV: BufferView<&'a [u8]>,
        O: OptionsImpl<'a>,
    {
        // For an explanation of this format, see the "Options" section of
        // https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure
        loop {
            if bytes.len() == 0 {
                return Ok(ParsedRecord::Done);
            }
            let kind = match bytes.take_obj_front::<O::KindLenField>() {
                // Thanks to the preceding `if`, we know at this point that
                // `bytes.len() > 0`. If `take_obj_front` returns `None`, that
                // means that `bytes.len()` is shorter than `O::KindLenField`.
                None => return Err(O::Error::SEQUENCE_FORMAT_ERROR),
                Some(k) => {
                    // Can't do pattern matching with associated constants, so
                    // do it the good-ol' way:
                    if Some(*k) == O::NOP {
                        continue;
                    } else if Some(*k) == O::END_OF_OPTIONS {
                        return Ok(ParsedRecord::Done);
                    }
                    k
                }
            };
            let body_len = match bytes.take_obj_front::<O::KindLenField>() {
                None => return Err(O::Error::SEQUENCE_FORMAT_ERROR),
                Some(len) => O::LENGTH_ENCODING
                    .decode_length::<O::KindLenField>(*len)
                    .ok_or(O::Error::SEQUENCE_FORMAT_ERROR)?,
            };

            let option_data = bytes.take_front(body_len).ok_or(O::Error::SEQUENCE_FORMAT_ERROR)?;
            match O::parse(*kind, option_data) {
                Ok(Some(o)) => return Ok(ParsedRecord::Parsed(o)),
                Ok(None) => {}
                Err(err) => return Err(err),
            }
        }
    }

    #[cfg(test)]
    mod tests {
        use core::convert::TryInto as _;
        use core::fmt::Debug;

        use zerocopy::byteorder::network_endian::U16;

        use super::*;
        use crate::Serializer;

        #[derive(Debug)]
        struct DummyOptionsImpl;

        #[derive(Debug)]
        struct DummyOption {
            kind: u8,
            data: Vec<u8>,
        }

        impl OptionLayout for DummyOptionsImpl {
            type KindLenField = u8;
        }

        impl OptionParseLayout for DummyOptionsImpl {
            type Error = OptionParseErr;
            const END_OF_OPTIONS: Option<u8> = Some(0);
            const NOP: Option<u8> = Some(1);
        }

        impl<'a> OptionsImpl<'a> for DummyOptionsImpl {
            type Option = DummyOption;

            fn parse(kind: u8, data: &'a [u8]) -> Result<Option<Self::Option>, OptionParseErr> {
                let mut v = Vec::new();
                v.extend_from_slice(data);
                Ok(Some(DummyOption { kind, data: v }))
            }
        }

        impl OptionBuilder for DummyOption {
            type Layout = DummyOptionsImpl;

            fn serialized_len(&self) -> usize {
                self.data.len()
            }

            fn option_kind(&self) -> u8 {
                self.kind
            }

            fn serialize_into(&self, data: &mut [u8]) {
                assert_eq!(data.len(), OptionBuilder::serialized_len(self));
                data.copy_from_slice(&self.data);
            }
        }

        impl AlignedOptionBuilder for DummyOption {
            // For our `DummyOption`, we simply regard (length, kind) as their
            // alignment requirement.
            fn alignment_requirement(&self) -> (usize, usize) {
                (self.data.len(), self.kind as usize)
            }

            fn serialize_padding(buf: &mut [u8], length: usize) {
                assert!(length <= buf.len());
                assert!(length <= (std::u8::MAX as usize) + 2);

                if length == 1 {
                    // Use Pad1
                    buf[0] = 0
                } else if length > 1 {
                    // Use PadN
                    buf[0] = 1;
                    buf[1] = (length - 2) as u8;
                    for i in 2..length {
                        buf[i] = 0
                    }
                }
            }
        }

        #[derive(Debug, Eq, PartialEq)]
        enum AlwaysErrorErr {
            Sequence,
            Option,
        }

        impl From<Never> for AlwaysErrorErr {
            fn from(err: Never) -> AlwaysErrorErr {
                match err {}
            }
        }

        impl OptionParseError for AlwaysErrorErr {
            const SEQUENCE_FORMAT_ERROR: AlwaysErrorErr = AlwaysErrorErr::Sequence;
        }

        #[derive(Debug)]
        struct AlwaysErrOptionsImpl;

        impl OptionLayout for AlwaysErrOptionsImpl {
            type KindLenField = u8;
        }

        impl OptionParseLayout for AlwaysErrOptionsImpl {
            type Error = AlwaysErrorErr;
            const END_OF_OPTIONS: Option<u8> = Some(0);
            const NOP: Option<u8> = Some(1);
        }

        impl<'a> OptionsImpl<'a> for AlwaysErrOptionsImpl {
            type Option = ();

            fn parse(_kind: u8, _data: &'a [u8]) -> Result<Option<()>, AlwaysErrorErr> {
                Err(AlwaysErrorErr::Option)
            }
        }

        #[derive(Debug)]
        struct DummyNdpOptionsImpl;

        #[derive(Debug)]
        struct NdpOption {
            kind: u8,
            data: Vec<u8>,
        }

        impl OptionLayout for NdpOption {
            type KindLenField = u8;

            const LENGTH_ENCODING: LengthEncoding = LengthEncoding::TypeLengthValue {
                option_len_multiplier: const_unwrap_option(NonZeroUsize::new(8)),
            };
        }

        impl OptionLayout for DummyNdpOptionsImpl {
            type KindLenField = u8;

            const LENGTH_ENCODING: LengthEncoding = LengthEncoding::TypeLengthValue {
                option_len_multiplier: const_unwrap_option(NonZeroUsize::new(8)),
            };
        }

        impl OptionParseLayout for DummyNdpOptionsImpl {
            type Error = OptionParseErr;

            const END_OF_OPTIONS: Option<u8> = None;

            const NOP: Option<u8> = None;
        }

        impl<'a> OptionsImpl<'a> for DummyNdpOptionsImpl {
            type Option = NdpOption;

            fn parse(kind: u8, data: &'a [u8]) -> Result<Option<Self::Option>, OptionParseErr> {
                let mut v = Vec::with_capacity(data.len());
                v.extend_from_slice(data);
                Ok(Some(NdpOption { kind, data: v }))
            }
        }

        impl OptionBuilder for NdpOption {
            type Layout = DummyNdpOptionsImpl;

            fn serialized_len(&self) -> usize {
                self.data.len()
            }

            fn option_kind(&self) -> u8 {
                self.kind
            }

            fn serialize_into(&self, data: &mut [u8]) {
                assert_eq!(data.len(), OptionBuilder::serialized_len(self));
                data.copy_from_slice(&self.data)
            }
        }

        #[derive(Debug)]
        struct DummyMultiByteKindOptionsImpl;

        #[derive(Debug)]
        struct MultiByteOption {
            kind: U16,
            data: Vec<u8>,
        }

        impl OptionLayout for MultiByteOption {
            type KindLenField = U16;
        }

        impl OptionLayout for DummyMultiByteKindOptionsImpl {
            type KindLenField = U16;
        }

        impl OptionParseLayout for DummyMultiByteKindOptionsImpl {
            type Error = OptionParseErr;

            const END_OF_OPTIONS: Option<U16> = None;

            const NOP: Option<U16> = None;
        }

        impl<'a> OptionsImpl<'a> for DummyMultiByteKindOptionsImpl {
            type Option = MultiByteOption;

            fn parse(kind: U16, data: &'a [u8]) -> Result<Option<Self::Option>, OptionParseErr> {
                let mut v = Vec::with_capacity(data.len());
                v.extend_from_slice(data);
                Ok(Some(MultiByteOption { kind, data: v }))
            }
        }

        impl OptionBuilder for MultiByteOption {
            type Layout = DummyMultiByteKindOptionsImpl;

            fn serialized_len(&self) -> usize {
                self.data.len()
            }

            fn option_kind(&self) -> U16 {
                self.kind
            }

            fn serialize_into(&self, data: &mut [u8]) {
                data.copy_from_slice(&self.data)
            }
        }

        #[test]
        fn test_length_encoding() {
            const TLV_1: LengthEncoding = LengthEncoding::TypeLengthValue {
                option_len_multiplier: const_unwrap_option(NonZeroUsize::new(1)),
            };
            const TLV_2: LengthEncoding = LengthEncoding::TypeLengthValue {
                option_len_multiplier: const_unwrap_option(NonZeroUsize::new(2)),
            };

            // Test LengthEncoding::record_length

            // For `ValueOnly`, `record_length` should always add 2 or 4 for the kind
            // and length bytes, but never add padding.
            assert_eq!(LengthEncoding::ValueOnly.record_length::<u8>(0), Some(2));
            assert_eq!(LengthEncoding::ValueOnly.record_length::<u8>(1), Some(3));
            assert_eq!(LengthEncoding::ValueOnly.record_length::<u8>(2), Some(4));
            assert_eq!(LengthEncoding::ValueOnly.record_length::<u8>(3), Some(5));

            assert_eq!(LengthEncoding::ValueOnly.record_length::<U16>(0), Some(4));
            assert_eq!(LengthEncoding::ValueOnly.record_length::<U16>(1), Some(5));
            assert_eq!(LengthEncoding::ValueOnly.record_length::<U16>(2), Some(6));
            assert_eq!(LengthEncoding::ValueOnly.record_length::<U16>(3), Some(7));

            // For `TypeLengthValue` with `option_len_multiplier = 1`,
            // `record_length` should always add 2 or 4 for the kind and length
            // bytes, but never add padding.
            assert_eq!(TLV_1.record_length::<u8>(0), Some(2));
            assert_eq!(TLV_1.record_length::<u8>(1), Some(3));
            assert_eq!(TLV_1.record_length::<u8>(2), Some(4));
            assert_eq!(TLV_1.record_length::<u8>(3), Some(5));

            assert_eq!(TLV_1.record_length::<U16>(0), Some(4));
            assert_eq!(TLV_1.record_length::<U16>(1), Some(5));
            assert_eq!(TLV_1.record_length::<U16>(2), Some(6));
            assert_eq!(TLV_1.record_length::<U16>(3), Some(7));

            // For `TypeLengthValue` with `option_len_multiplier = 2`,
            // `record_length` should always add 2 or 4 for the kind and length
            // bytes, and add padding if necessary to reach a multiple of 2.
            assert_eq!(TLV_2.record_length::<u8>(0), Some(2)); // (0 + 2)
            assert_eq!(TLV_2.record_length::<u8>(1), Some(4)); // (1 + 2 + 1)
            assert_eq!(TLV_2.record_length::<u8>(2), Some(4)); // (2 + 2)
            assert_eq!(TLV_2.record_length::<u8>(3), Some(6)); // (3 + 2 + 1)

            assert_eq!(TLV_2.record_length::<U16>(0), Some(4)); // (0 + 4)
            assert_eq!(TLV_2.record_length::<U16>(1), Some(6)); // (1 + 4 + 1)
            assert_eq!(TLV_2.record_length::<U16>(2), Some(6)); // (2 + 4)
            assert_eq!(TLV_2.record_length::<U16>(3), Some(8)); // (3 + 4 + 1)

            // Test LengthEncoding::encode_length

            fn encode_length<K: KindLenField>(
                length_encoding: LengthEncoding,
                option_body_len: usize,
            ) -> Option<usize> {
                length_encoding.encode_length::<K>(option_body_len).map(Into::into)
            }

            // For `ValueOnly`, `encode_length` should always return the
            // argument unmodified.
            assert_eq!(encode_length::<u8>(LengthEncoding::ValueOnly, 0), Some(0));
            assert_eq!(encode_length::<u8>(LengthEncoding::ValueOnly, 1), Some(1));
            assert_eq!(encode_length::<u8>(LengthEncoding::ValueOnly, 2), Some(2));
            assert_eq!(encode_length::<u8>(LengthEncoding::ValueOnly, 3), Some(3));

            assert_eq!(encode_length::<U16>(LengthEncoding::ValueOnly, 0), Some(0));
            assert_eq!(encode_length::<U16>(LengthEncoding::ValueOnly, 1), Some(1));
            assert_eq!(encode_length::<U16>(LengthEncoding::ValueOnly, 2), Some(2));
            assert_eq!(encode_length::<U16>(LengthEncoding::ValueOnly, 3), Some(3));

            // For `TypeLengthValue` with `option_len_multiplier = 1`,
            // `encode_length` should always add 2 or 4 for the kind and length
            // bytes.
            assert_eq!(encode_length::<u8>(TLV_1, 0), Some(2));
            assert_eq!(encode_length::<u8>(TLV_1, 1), Some(3));
            assert_eq!(encode_length::<u8>(TLV_1, 2), Some(4));
            assert_eq!(encode_length::<u8>(TLV_1, 3), Some(5));

            assert_eq!(encode_length::<U16>(TLV_1, 0), Some(4));
            assert_eq!(encode_length::<U16>(TLV_1, 1), Some(5));
            assert_eq!(encode_length::<U16>(TLV_1, 2), Some(6));
            assert_eq!(encode_length::<U16>(TLV_1, 3), Some(7));

            // For `TypeLengthValue` with `option_len_multiplier = 2`,
            // `encode_length` should always add 2 or 4 for the kind and length
            // bytes, add padding if necessary to reach a multiple of 2, and
            // then divide by 2.
            assert_eq!(encode_length::<u8>(TLV_2, 0), Some(1)); // (0 + 2)     / 2
            assert_eq!(encode_length::<u8>(TLV_2, 1), Some(2)); // (1 + 2 + 1) / 2
            assert_eq!(encode_length::<u8>(TLV_2, 2), Some(2)); // (2 + 2)     / 2
            assert_eq!(encode_length::<u8>(TLV_2, 3), Some(3)); // (3 + 2 + 1) / 2

            assert_eq!(encode_length::<U16>(TLV_2, 0), Some(2)); // (0 + 4)     / 2
            assert_eq!(encode_length::<U16>(TLV_2, 1), Some(3)); // (1 + 4 + 1) / 2
            assert_eq!(encode_length::<U16>(TLV_2, 2), Some(3)); // (2 + 4)     / 2
            assert_eq!(encode_length::<U16>(TLV_2, 3), Some(4)); // (3 + 4 + 1) / 2

            // Test LengthEncoding::decode_length

            fn decode_length<K: KindLenField>(
                length_encoding: LengthEncoding,
                length_field: usize,
            ) -> Option<usize> {
                length_encoding.decode_length::<K>(length_field.try_into().unwrap())
            }

            // For `ValueOnly`, `decode_length` should always return the
            // argument unmodified.
            assert_eq!(decode_length::<u8>(LengthEncoding::ValueOnly, 0), Some(0));
            assert_eq!(decode_length::<u8>(LengthEncoding::ValueOnly, 1), Some(1));
            assert_eq!(decode_length::<u8>(LengthEncoding::ValueOnly, 2), Some(2));
            assert_eq!(decode_length::<u8>(LengthEncoding::ValueOnly, 3), Some(3));

            assert_eq!(decode_length::<U16>(LengthEncoding::ValueOnly, 0), Some(0));
            assert_eq!(decode_length::<U16>(LengthEncoding::ValueOnly, 1), Some(1));
            assert_eq!(decode_length::<U16>(LengthEncoding::ValueOnly, 2), Some(2));
            assert_eq!(decode_length::<U16>(LengthEncoding::ValueOnly, 3), Some(3));

            // For `TypeLengthValue` with `option_len_multiplier = 1`,
            // `decode_length` should always subtract 2 or 4 for the kind and
            // length bytes.
            assert_eq!(decode_length::<u8>(TLV_1, 0), None);
            assert_eq!(decode_length::<u8>(TLV_1, 1), None);
            assert_eq!(decode_length::<u8>(TLV_1, 2), Some(0));
            assert_eq!(decode_length::<u8>(TLV_1, 3), Some(1));

            assert_eq!(decode_length::<U16>(TLV_1, 0), None);
            assert_eq!(decode_length::<U16>(TLV_1, 1), None);
            assert_eq!(decode_length::<U16>(TLV_1, 2), None);
            assert_eq!(decode_length::<U16>(TLV_1, 3), None);
            assert_eq!(decode_length::<U16>(TLV_1, 4), Some(0));
            assert_eq!(decode_length::<U16>(TLV_1, 5), Some(1));

            // For `TypeLengthValue` with `option_len_multiplier = 2`,
            // `decode_length` should always multiply by 2 or 4 and then
            // subtract 2 for the kind and length bytes.
            assert_eq!(decode_length::<u8>(TLV_2, 0), None);
            assert_eq!(decode_length::<u8>(TLV_2, 1), Some(0));
            assert_eq!(decode_length::<u8>(TLV_2, 2), Some(2));
            assert_eq!(decode_length::<u8>(TLV_2, 3), Some(4));

            assert_eq!(decode_length::<U16>(TLV_2, 0), None);
            assert_eq!(decode_length::<U16>(TLV_2, 1), None);
            assert_eq!(decode_length::<U16>(TLV_2, 2), Some(0));
            assert_eq!(decode_length::<U16>(TLV_2, 3), Some(2));

            // Test end-to-end by creating options implementation with different
            // length encodings.

            /// Declare a new options impl type with a custom `LENGTH_ENCODING`.
            macro_rules! declare_options_impl {
                ($opt:ident, $impl:ident, $encoding:expr) => {
                    #[derive(Debug)]
                    enum $impl {}

                    #[derive(Debug, PartialEq)]
                    struct $opt {
                        kind: u8,
                        data: Vec<u8>,
                    }

                    impl<'a> From<&'a (u8, Vec<u8>)> for $opt {
                        fn from((kind, data): &'a (u8, Vec<u8>)) -> $opt {
                            $opt { kind: *kind, data: data.clone() }
                        }
                    }

                    impl OptionLayout for $opt {
                        const LENGTH_ENCODING: LengthEncoding = $encoding;
                        type KindLenField = u8;
                    }

                    impl OptionLayout for $impl {
                        const LENGTH_ENCODING: LengthEncoding = $encoding;
                        type KindLenField = u8;
                    }

                    impl OptionParseLayout for $impl {
                        type Error = OptionParseErr;
                        const END_OF_OPTIONS: Option<u8> = Some(0);
                        const NOP: Option<u8> = Some(1);
                    }

                    impl<'a> OptionsImpl<'a> for $impl {
                        type Option = $opt;

                        fn parse(
                            kind: u8,
                            data: &'a [u8],
                        ) -> Result<Option<Self::Option>, OptionParseErr> {
                            let mut v = Vec::new();
                            v.extend_from_slice(data);
                            Ok(Some($opt { kind, data: v }))
                        }
                    }

                    impl OptionBuilder for $opt {
                        type Layout = $impl;

                        fn serialized_len(&self) -> usize {
                            self.data.len()
                        }

                        fn option_kind(&self) -> u8 {
                            self.kind
                        }

                        fn serialize_into(&self, data: &mut [u8]) {
                            assert_eq!(data.len(), OptionBuilder::serialized_len(self));
                            data.copy_from_slice(&self.data);
                        }
                    }
                };
            }

            declare_options_impl!(
                DummyImplValueOnly,
                DummyImplValueOnlyImpl,
                LengthEncoding::ValueOnly
            );
            declare_options_impl!(DummyImplTlv1, DummyImplTlv1Impl, TLV_1);
            declare_options_impl!(DummyImplTlv2, DummyImplTlv2Impl, TLV_2);

            /// Tests that a given option is parsed from different byte
            /// sequences for different options layouts.
            ///
            /// Since some options cannot be parsed from any byte sequence using
            /// the `DummyImplTlv2` layout (namely, those whose lengths are not
            /// a multiple of 2), `tlv_2` may be `None`.
            fn test_parse(
                (expect_kind, expect_data): (u8, Vec<u8>),
                value_only: &[u8],
                tlv_1: &[u8],
                tlv_2: Option<&[u8]>,
            ) {
                let options = Options::<_, DummyImplValueOnlyImpl>::parse(value_only)
                    .unwrap()
                    .iter()
                    .collect::<Vec<_>>();
                let data = expect_data.clone();
                assert_eq!(options, [DummyImplValueOnly { kind: expect_kind, data }]);

                let options = Options::<_, DummyImplTlv1Impl>::parse(tlv_1)
                    .unwrap()
                    .iter()
                    .collect::<Vec<_>>();
                let data = expect_data.clone();
                assert_eq!(options, [DummyImplTlv1 { kind: expect_kind, data }]);

                if let Some(tlv_2) = tlv_2 {
                    let options = Options::<_, DummyImplTlv2Impl>::parse(tlv_2)
                        .unwrap()
                        .iter()
                        .collect::<Vec<_>>();
                    assert_eq!(options, [DummyImplTlv2 { kind: expect_kind, data: expect_data }]);
                }
            }

            // 0-byte body
            test_parse((0xFF, vec![]), &[0xFF, 0], &[0xFF, 2], Some(&[0xFF, 1]));
            // 1-byte body
            test_parse((0xFF, vec![0]), &[0xFF, 1, 0], &[0xFF, 3, 0], None);
            // 2-byte body
            test_parse(
                (0xFF, vec![0, 1]),
                &[0xFF, 2, 0, 1],
                &[0xFF, 4, 0, 1],
                Some(&[0xFF, 2, 0, 1]),
            );
            // 3-byte body
            test_parse((0xFF, vec![0, 1, 2]), &[0xFF, 3, 0, 1, 2], &[0xFF, 5, 0, 1, 2], None);
            // 4-byte body
            test_parse(
                (0xFF, vec![0, 1, 2, 3]),
                &[0xFF, 4, 0, 1, 2, 3],
                &[0xFF, 6, 0, 1, 2, 3],
                Some(&[0xFF, 3, 0, 1, 2, 3]),
            );

            /// Tests that an option can be serialized and then parsed in each
            /// option layout.
            ///
            /// In some cases (when the body length is not a multiple of 2), the
            /// `DummyImplTlv2` layout will parse a different option than was
            /// originally serialized. In this case, `expect_tlv_2` can be used
            /// to provide a different value to expect as the result of parsing.
            fn test_serialize_parse(opt: (u8, Vec<u8>), expect_tlv_2: Option<(u8, Vec<u8>)>) {
                let opts = [opt.clone()];

                fn test_serialize_parse_inner<
                    O: OptionBuilder + Debug + PartialEq + for<'a> From<&'a (u8, Vec<u8>)>,
                    I: for<'a> OptionsImpl<'a, Error = OptionParseErr, Option = O> + std::fmt::Debug,
                >(
                    opts: &[(u8, Vec<u8>)],
                    expect: &[(u8, Vec<u8>)],
                ) {
                    let opts = opts.iter().map(Into::into).collect::<Vec<_>>();
                    let expect = expect.iter().map(Into::into).collect::<Vec<_>>();

                    let ser = OptionSequenceBuilder::<O, _>::new(opts.iter());
                    let serialized =
                        ser.into_serializer().serialize_vec_outer().unwrap().as_ref().to_vec();
                    let options = Options::<_, I>::parse(serialized.as_slice())
                        .unwrap()
                        .iter()
                        .collect::<Vec<_>>();
                    assert_eq!(options, expect);
                }

                test_serialize_parse_inner::<DummyImplValueOnly, DummyImplValueOnlyImpl>(
                    &opts, &opts,
                );
                test_serialize_parse_inner::<DummyImplTlv1, DummyImplTlv1Impl>(&opts, &opts);
                let expect = if let Some(expect) = expect_tlv_2 { expect } else { opt };
                test_serialize_parse_inner::<DummyImplTlv2, DummyImplTlv2Impl>(&opts, &[expect]);
            }

            // 0-byte body
            test_serialize_parse((0xFF, vec![]), None);
            // 1-byte body
            test_serialize_parse((0xFF, vec![0]), Some((0xFF, vec![0, 0])));
            // 2-byte body
            test_serialize_parse((0xFF, vec![0, 1]), None);
            // 3-byte body
            test_serialize_parse((0xFF, vec![0, 1, 2]), Some((0xFF, vec![0, 1, 2, 0])));
            // 4-byte body
            test_serialize_parse((0xFF, vec![0, 1, 2, 3]), None);
        }

        #[test]
        fn test_empty_options() {
            // all END_OF_OPTIONS
            let bytes = [0; 64];
            let options = Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap();
            assert_eq!(options.iter().count(), 0);

            // all NOP
            let bytes = [1; 64];
            let options = Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap();
            assert_eq!(options.iter().count(), 0);
        }

        #[test]
        fn test_parse() {
            // Construct byte sequences in the pattern [3, 2], [4, 3, 2], [5, 4,
            // 3, 2], etc. The second byte is the length byte, so these are all
            // valid options (with data [], [2], [3, 2], etc).
            let mut bytes = Vec::new();
            for i in 4..16 {
                // from the user's perspective, these NOPs should be transparent
                bytes.push(1);
                for j in (2..i).rev() {
                    bytes.push(j);
                }
                // from the user's perspective, these NOPs should be transparent
                bytes.push(1);
            }

            let options = Options::<_, DummyOptionsImpl>::parse(bytes.as_slice()).unwrap();
            for (idx, DummyOption { kind, data }) in options.iter().enumerate() {
                assert_eq!(kind as usize, idx + 3);
                assert_eq!(data.len(), idx);
                let mut bytes = Vec::new();
                for i in (2..(idx + 2)).rev() {
                    bytes.push(i as u8);
                }
                assert_eq!(data, bytes);
            }

            // Test that we get no parse errors so long as
            // AlwaysErrOptionsImpl::parse is never called.
            //
            // `bytes` is a sequence of NOPs.
            let bytes = [1; 64];
            let options = Options::<_, AlwaysErrOptionsImpl>::parse(&bytes[..]).unwrap();
            assert_eq!(options.iter().count(), 0);
        }

        #[test]
        fn test_parse_ndp_options() {
            let mut bytes = Vec::new();
            for i in 0..16 {
                bytes.push(i);
                // NDP uses len*8 for the actual length.
                bytes.push(i + 1);
                // Write remaining 6 bytes.
                for j in 2..((i + 1) * 8) {
                    bytes.push(j)
                }
            }

            let options = Options::<_, DummyNdpOptionsImpl>::parse(bytes.as_slice()).unwrap();
            for (idx, NdpOption { kind, data }) in options.iter().enumerate() {
                assert_eq!(kind as usize, idx);
                assert_eq!(data.len(), ((idx + 1) * 8) - 2);
                let mut bytes = Vec::new();
                for i in 2..((idx + 1) * 8) {
                    bytes.push(i as u8);
                }
                assert_eq!(data, bytes);
            }
        }

        #[test]
        fn test_parse_err() {
            // the length byte is too short
            let bytes = [2, 1];
            assert_eq!(
                Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap_err(),
                OptionParseErr
            );

            // the length byte is 0 (similar check to above, but worth
            // explicitly testing since this was a bug in the Linux kernel:
            // https://bugzilla.redhat.com/show_bug.cgi?id=1622404)
            let bytes = [2, 0];
            assert_eq!(
                Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap_err(),
                OptionParseErr
            );

            // the length byte is too long
            let bytes = [2, 3];
            assert_eq!(
                Options::<_, DummyOptionsImpl>::parse(&bytes[..]).unwrap_err(),
                OptionParseErr
            );

            // the buffer is fine, but the implementation returns a parse error
            let bytes = [2, 2];
            assert_eq!(
                Options::<_, AlwaysErrOptionsImpl>::parse(&bytes[..]).unwrap_err(),
                AlwaysErrorErr::Option,
            );
        }

        #[test]
        fn test_missing_length_bytes() {
            // Construct a sequence with a valid record followed by an
            // incomplete one, where `kind` is specified but `len` is missing.
            // So we can assert that we'll fail cleanly in that case.
            //
            // Added as part of Change-Id
            // Ibd46ac7384c7c5e0d74cb344b48c88876c351b1a.
            //
            // Before the small refactor in the Change-Id above, there was a
            // check during parsing that guaranteed that the length of the
            // remaining buffer was >= 1, but it should've been a check for
            // >= 2, and the case below would have caused it to panic while
            // trying to access the length byte, which was a DoS vulnerability.
            assert_matches::assert_matches!(
                Options::<_, DummyOptionsImpl>::parse(&[0x03, 0x03, 0x01, 0x03][..]),
                Err(OptionParseErr)
            );
        }

        #[test]
        fn test_partial_kind_field() {
            // Construct a sequence with only one byte where a two-byte kind
            // field is expected.
            //
            // Added as part of Change-Id
            // I468121f5712b73c4e704460f580f166c876ee7d6.
            //
            // Before the small refactor in the Change-Id above, we treated any
            // failure to consume the kind field from the byte slice as
            // indicating that there were no bytes left, and we would stop
            // parsing successfully. This logic was correct when we only
            // supported 1-byte kind fields, but it became incorrect once we
            // introduced multi-byte kind fields.
            assert_matches::assert_matches!(
                Options::<_, DummyMultiByteKindOptionsImpl>::parse(&[0x00][..]),
                Err(OptionParseErr)
            );
        }

        #[test]
        fn test_parse_and_serialize() {
            // Construct byte sequences in the pattern [3, 2], [4, 3, 2], [5, 4,
            // 3, 2], etc. The second byte is the length byte, so these are all
            // valid options (with data [], [2], [3, 2], etc).
            let mut bytes = Vec::new();
            for i in 4..16 {
                // from the user's perspective, these NOPs should be transparent
                for j in (2..i).rev() {
                    bytes.push(j);
                }
            }

            let options = Options::<_, DummyOptionsImpl>::parse(bytes.as_slice()).unwrap();

            let collected = options.iter().collect::<Vec<_>>();
            // Pass `collected.iter()` instead of `options.iter()` since we need
            // an iterator over references, and `options.iter()` produces an
            // iterator over values.
            let ser = OptionSequenceBuilder::<DummyOption, _>::new(collected.iter());

            let serialized = ser.into_serializer().serialize_vec_outer().unwrap().as_ref().to_vec();

            assert_eq!(serialized, bytes);
        }

        #[test]
        fn test_parse_and_serialize_ndp() {
            let mut bytes = Vec::new();
            for i in 0..16 {
                bytes.push(i);
                // NDP uses len*8 for the actual length.
                bytes.push(i + 1);
                // Write remaining 6 bytes.
                for j in 2..((i + 1) * 8) {
                    bytes.push(j)
                }
            }
            let options = Options::<_, DummyNdpOptionsImpl>::parse(bytes.as_slice()).unwrap();
            let collected = options.iter().collect::<Vec<_>>();
            // Pass `collected.iter()` instead of `options.iter()` since we need
            // an iterator over references, and `options.iter()` produces an
            // iterator over values.
            let ser = OptionSequenceBuilder::<NdpOption, _>::new(collected.iter());

            let serialized = ser.into_serializer().serialize_vec_outer().unwrap().as_ref().to_vec();

            assert_eq!(serialized, bytes);
        }

        #[test]
        fn test_parse_and_serialize_multi_byte_fields() {
            let mut bytes = Vec::new();
            for i in 4..16 {
                // Push kind U16<NetworkEndian>.
                bytes.push(0);
                bytes.push(i);
                // Push length U16<NetworkEndian>.
                bytes.push(0);
                bytes.push(i);
                // Write `i` - 4 bytes.
                for j in 4..i {
                    bytes.push(j);
                }
            }

            let options =
                Options::<_, DummyMultiByteKindOptionsImpl>::parse(bytes.as_slice()).unwrap();
            for (idx, MultiByteOption { kind, data }) in options.iter().enumerate() {
                assert_eq!(usize::from(kind), idx + 4);
                let idx: u8 = idx.try_into().unwrap();
                let bytes: Vec<_> = (4..(idx + 4)).collect();
                assert_eq!(data, bytes);
            }

            let collected = options.iter().collect::<Vec<_>>();
            // Pass `collected.iter()` instead of `options.iter()` since we need
            // an iterator over references, and `options.iter()` produces an
            // iterator over values.
            let ser = OptionSequenceBuilder::<MultiByteOption, _>::new(collected.iter());
            let mut output = vec![0u8; ser.serialized_len()];
            ser.serialize_into(output.as_mut_slice());
            assert_eq!(output, bytes);
        }

        #[test]
        fn test_align_up_to() {
            // We are doing some sort of property testing here:
            // We generate a random alignment requirement (x, y) and a random offset `pos`.
            // The resulting `new_pos` must:
            //   - 1. be at least as large as the original `pos`.
            //   - 2. be in form of x * n + y for some integer n.
            //   - 3. for any number in between, they shouldn't be in form of x * n + y.
            use rand::{thread_rng, Rng};
            let mut rng = thread_rng();
            for _ in 0..100_000 {
                let x = rng.gen_range(1usize..256);
                let y = rng.gen_range(0..x);
                let pos = rng.gen_range(0usize..65536);
                let new_pos = align_up_to(pos, x, y);
                // 1)
                assert!(new_pos >= pos);
                // 2)
                assert_eq!((new_pos - y) % x, 0);
                // 3) Note: `p` is not guaranteed to be bigger than `y`, plus `x` to avoid overflow.
                assert!((pos..new_pos).all(|p| (p + x - y) % x != 0))
            }
        }

        #[test]
        #[rustfmt::skip]
        fn test_aligned_dummy_options_serializer() {
            // testing for cases: 2n+{0,1}, 3n+{1,2}, 1n+0, 4n+2
            let dummy_options = [
                // alignment requirement: 2 * n + 1,
                //
                DummyOption { kind: 1, data: vec![42, 42] },
                DummyOption { kind: 0, data: vec![42, 42] },
                DummyOption { kind: 1, data: vec![1, 2, 3] },
                DummyOption { kind: 2, data: vec![3, 2, 1] },
                DummyOption { kind: 0, data: vec![42] },
                DummyOption { kind: 2, data: vec![9, 9, 9, 9] },
            ];
            let ser = AlignedRecordSequenceBuilder::<DummyOption, _>::new(
                0,
                dummy_options.iter(),
            );
            assert_eq!(ser.serialized_len(), 32);
            let mut buf = [0u8; 32];
            ser.serialize_into(&mut buf[..]);
            assert_eq!(
                &buf[..],
                &[
                    0, // Pad1 padding
                    1, 4, 42, 42, // (1, [42, 42]) starting at 2 * 0 + 1 = 3
                    0,  // Pad1 padding
                    0, 4, 42, 42, // (0, [42, 42]) starting at 2 * 3 + 0 = 6
                    1, 5, 1, 2, 3, // (1, [1, 2, 3]) starting at 3 * 2 + 1 = 7
                    1, 0, // PadN padding
                    2, 5, 3, 2, 1, // (2, [3, 2, 1]) starting at 3 * 4 + 2 = 14
                    0, 3, 42, // (0, [42]) starting at 1 * 19 + 0 = 19
                    0,  // PAD1 padding
                    2, 6, 9, 9, 9, 9 // (2, [9, 9, 9, 9]) starting at 4 * 6 + 2 = 26
                    // total length: 32
                ]
            );
        }
    }
}