1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! A convenience crate for Zircon VMO objects mapped into memory.

#![deny(missing_docs)]

use fuchsia_runtime::vmar_root_self;
use shared_buffer::SharedBuffer;
use std::ops::{Deref, DerefMut};
use zx::{self as zx, AsHandleRef};

mod immutable;
pub use immutable::{Error as ImmutableMappingError, ImmutableMapping};

/// A safe wrapper around a mapped region of memory.
///
/// Note: this type implements `Deref`/`DerefMut` to the `SharedBuffer`
/// type, which allows reading/writing from the underlying memory.
/// Aside from creation and the `Drop` impl, all of the interesting
/// functionality of this type is offered via `SharedBuffer`.
#[derive(Debug)]
pub struct Mapping {
    buffer: SharedBuffer,
}

impl Deref for Mapping {
    type Target = SharedBuffer;
    fn deref(&self) -> &Self::Target {
        &self.buffer
    }
}

impl DerefMut for Mapping {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.buffer
    }
}

impl Mapping {
    /// Create a `Mapping` and map it in the root address space.
    /// Returns the VMO that was mapped.
    ///
    /// The resulting VMO will not be resizeable.
    pub fn allocate(size: usize) -> Result<(Self, zx::Vmo), zx::Status> {
        let vmo = zx::Vmo::create(size as u64)?;
        let flags = zx::VmarFlags::PERM_READ
            | zx::VmarFlags::PERM_WRITE
            | zx::VmarFlags::MAP_RANGE
            | zx::VmarFlags::REQUIRE_NON_RESIZABLE;
        let mapping = Self::create_from_vmo(&vmo, size, flags)?;
        Ok((mapping, vmo))
    }

    /// Create a `Mapping` and map it in the root address space.
    /// Returns the VMO that was mapped.
    ///
    /// The resulting VMO will not be resizeable.
    pub fn allocate_with_name(size: usize, name: &str) -> Result<(Self, zx::Vmo), zx::Status> {
        let name = zx::Name::new(name)?;
        let vmo = zx::Vmo::create(size as u64)?;
        vmo.set_name(&name)?;
        let flags = zx::VmarFlags::PERM_READ
            | zx::VmarFlags::PERM_WRITE
            | zx::VmarFlags::MAP_RANGE
            | zx::VmarFlags::REQUIRE_NON_RESIZABLE;
        let mapping = Self::create_from_vmo(&vmo, size, flags)?;
        Ok((mapping, vmo))
    }

    /// Create a `Mapping` from an existing VMO.
    ///
    /// Requires that the VMO was not created with the `RESIZABLE`
    /// option, and returns `ZX_ERR_NOT_SUPPORTED` otherwise.
    pub fn create_from_vmo(
        vmo: &zx::Vmo,
        size: usize,
        flags: zx::VmarFlags,
    ) -> Result<Self, zx::Status> {
        let flags = flags | zx::VmarFlags::REQUIRE_NON_RESIZABLE;
        let addr = vmar_root_self().map(0, &vmo, 0, size, flags)?;

        // Safety:
        //
        // The memory behind this `SharedBuffer` is only accessible via
        // methods on `SharedBuffer`.
        //
        // The underlying memory is accessible during any accesses to `SharedBuffer`:
        // - It is only unmapped on `drop`
        // - `SharedBuffer` is never exposed in a way that would allow it to live longer than
        //   the `Mapping` itself
        // - The underlying VMO is non-resizeable.
        let buffer = unsafe { SharedBuffer::new(addr as *mut u8, size) };
        Ok(Mapping { buffer })
    }

    /// Return the size of the mapping.
    pub fn len(&self) -> usize {
        self.buffer.len()
    }
}

impl Drop for Mapping {
    fn drop(&mut self) {
        let (addr, size): (*mut u8, usize) = self.buffer.as_ptr_len();
        let addr = addr as usize;

        // Safety:
        //
        // The memory behind this `SharedBuffer` is only accessible
        // via references to the internal `SharedBuffer`, which must
        // have all been invalidated at this point. The memory is
        // therefore safe to unmap.
        unsafe {
            let _ = vmar_root_self().unmap(addr, size);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    const PAGE_SIZE: usize = 4096;

    #[test]
    fn test_create() {
        let size = PAGE_SIZE;
        let (mapping, _vmo) = Mapping::allocate(size).unwrap();
        assert_eq!(size, mapping.len());
    }

    #[test]
    fn test_create_from_vmo() {
        let size = PAGE_SIZE;
        let flags = zx::VmarFlags::PERM_READ | zx::VmarFlags::PERM_WRITE;
        {
            // Mapping::create_from_vmo requires a non-resizable vmo
            let vmo = zx::Vmo::create_with_opts(zx::VmoOptions::RESIZABLE, size as u64).unwrap();
            let status = Mapping::create_from_vmo(&vmo, size, flags).unwrap_err();
            assert_eq!(status, zx::Status::NOT_SUPPORTED);
        }
        {
            let vmo = zx::Vmo::create(size as u64).unwrap();
            let mapping = Mapping::create_from_vmo(&vmo, size, flags).unwrap();
            assert_eq!(size, mapping.len());
        }
    }

    #[test]
    fn test_create_with_name() {
        let size = PAGE_SIZE;
        let (mapping, vmo) = Mapping::allocate_with_name(size, "TestName").unwrap();
        assert_eq!(size, mapping.len());
        assert_eq!("TestName", vmo.get_name().expect("Has name"));
        let res = Mapping::allocate_with_name(size, "Invalid\0TestName");
        assert_eq!(zx::Status::INVALID_ARGS, res.unwrap_err());
    }

    #[test]
    fn test_mapping_read_write() {
        let size = PAGE_SIZE;
        let (mapping, vmo) = Mapping::allocate(size).unwrap();

        let mut buf = [0; 128];

        // We can write to the Vmo, and see the results in the mapping.
        let s = b"Hello world";
        vmo.write(s, 0).unwrap();
        let slice = &mut buf[0..s.len()];
        mapping.read(slice);
        assert_eq!(s, slice);

        // We can write to the mapping, and see the results in the Vmo.
        let s = b"Goodbye world";
        mapping.write(s);
        let slice = &mut buf[0..s.len()];
        vmo.read(slice, 0).unwrap();
        assert_eq!(s, slice);
    }
}