archivist_lib/events/
router.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use crate::events::types::*;
use crate::identity::ComponentIdentity;
use fuchsia_inspect::{self as inspect, NumericProperty};
use fuchsia_inspect_contrib::inspect_log;
use fuchsia_inspect_contrib::nodes::BoundedListNode;
use futures::channel::{mpsc, oneshot};
use futures::task::{Context, Poll};
use futures::{Future, Stream, StreamExt};
use pin_project::pin_project;
use std::collections::{BTreeMap, BTreeSet};
use std::pin::Pin;
use std::sync::{Arc, Weak};
use thiserror::Error;
use tracing::{debug, error};

const RECENT_EVENT_LIMIT: usize = 200;

/// Core archivist internal event router that supports multiple event producers and multiple event
/// consumers.
pub struct EventRouter {
    // All the consumers that have been registered for an event.
    consumers: BTreeMap<EventType, Vec<Weak<dyn EventConsumer + Send + Sync>>>,
    // The types of all events that can be produced. Used only for validation.
    producers_registered: BTreeSet<EventType>,

    // Ends of the channel used by event producers.
    sender: mpsc::UnboundedSender<Event>,
    receiver: mpsc::UnboundedReceiver<Event>,

    inspect_logger: EventStreamLogger,
}

impl EventRouter {
    /// Creates a new empty event router.
    pub fn new(node: inspect::Node) -> Self {
        let (sender, receiver) = mpsc::unbounded();
        Self {
            consumers: BTreeMap::new(),
            sender,
            receiver,
            producers_registered: BTreeSet::new(),
            inspect_logger: EventStreamLogger::new(node),
        }
    }

    /// Registers an event producer with the given configuration specifying the types of events the
    /// given producer is allowed to emit.
    pub fn add_producer<T>(&mut self, config: ProducerConfig<'_, T>)
    where
        T: EventProducer,
    {
        let events: BTreeSet<_> = config.events.into_iter().collect();
        self.producers_registered.append(&mut events.clone());
        let dispatcher = Dispatcher::new(events, self.sender.clone());
        config.producer.set_dispatcher(dispatcher);
    }

    /// Registers an event consumer with the given configuration specifying the types of events the
    /// given consumer will receive.
    pub fn add_consumer<T>(&mut self, config: ConsumerConfig<'_, T>)
    where
        T: EventConsumer + Send + Sync + 'static,
    {
        let subscriber_weak = Arc::downgrade(config.consumer);
        for event_type in config.events {
            self.consumers
                .entry(event_type)
                .or_default()
                .push(Weak::clone(&subscriber_weak) as Weak<dyn EventConsumer + Send + Sync>);
        }
    }

    /// Starts listening for events emitted by the registered producers and dispatching them to
    /// registered consumers.
    ///
    /// First, validates that for every event type that will be dispatched, there exists at least
    /// one consumer. And that for every event that will be consumed, there exists at least one
    /// producer.
    ///
    /// Afterwards, listens to events emitted by producers. When an event arrives it sends it to
    /// all consumers of the event. Since all events are singletons, the first consumer that was
    /// registered will get the singleton data and the rest won't.
    pub fn start(mut self) -> Result<(TerminateHandle, impl Future<Output = ()>), RouterError> {
        self.validate_routing()?;

        let (terminate_handle, mut stream) = EventStream::new(self.receiver);
        let mut consumers = self.consumers;
        let mut inspect_logger = self.inspect_logger;

        let fut = async move {
            loop {
                match stream.next().await {
                    None => {
                        debug!("Event ingestion finished");
                        break;
                    }
                    Some(event) => {
                        inspect_logger.log(&event);

                        let event_type = event.ty();
                        let weak_consumers = match consumers.remove(&event_type) {
                            Some(c) => c,
                            None => continue,
                        };

                        let mut singleton_event = Some(event);

                        // Consumers which weak reference could be upgraded will be stored here.
                        let mut active_consumers = vec![];
                        for weak_consumer in weak_consumers {
                            if let Some(consumer) = weak_consumer.upgrade() {
                                active_consumers.push(weak_consumer);
                                if let Some(e) = singleton_event.take() {
                                    consumer.handle(e);
                                };
                            }
                        }

                        // We insert the list of active consumers back in the map.
                        consumers.insert(event_type, active_consumers);
                    }
                }
            }
        };
        Ok((terminate_handle, fut))
    }

    fn validate_routing(&mut self) -> Result<(), RouterError> {
        for consumed_event in self.consumers.keys() {
            if !self.producers_registered.contains(consumed_event) {
                return Err(RouterError::MissingProducer(consumed_event.clone()));
            }
        }
        for produced_event in &self.producers_registered {
            if !self.consumers.contains_key(produced_event) {
                return Err(RouterError::MissingConsumer(produced_event.clone()));
            }
        }
        Ok(())
    }
}

/// Stream of events that  provides the mechanisms used to notify when the events have
/// been drained.
#[pin_project]
struct EventStream {
    /// The stream containing events.
    #[pin]
    receiver: mpsc::UnboundedReceiver<Event>,

    /// When this future is ready, the stream will be closed. Messages still in the buffer
    /// will be drained.
    #[pin]
    on_terminate: oneshot::Receiver<()>,

    /// When the stream has been drained a notification will be sent through this channel.
    on_drained: Option<oneshot::Sender<()>>,
}

impl EventStream {
    fn new(receiver: mpsc::UnboundedReceiver<Event>) -> (TerminateHandle, Self) {
        let (snd, rcv) = oneshot::channel();
        let (drain_snd, drain_rcv) = oneshot::channel();
        (
            TerminateHandle { snd, drained: drain_rcv },
            Self { receiver, on_terminate: rcv, on_drained: Some(drain_snd) },
        )
    }
}

impl Stream for EventStream {
    type Item = Event;

    /// This stream implementation merges two streams into a single one polling from each of them
    /// in a round robin fashion. When one stream finishes, this will keep polling from the
    /// remaining one.
    ///
    /// When receiving a request for termination, the event stream will be
    /// closed so that no new messages can be sent through that channel, but it'll still be drained.
    ///
    /// When the stream has been drained, a message is sent through the appropriate
    /// channel.
    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        let mut this = self.project();

        // First check if request to terminate the event ingestion has been requested, if
        // it has, then close the channel to which events are sent. This will prevent
        // further messages to be sent, but it remains possible to drain the channel
        // buffer.
        //
        // IMPORTANT: If we ever use this event stream for events emitted internally, then we
        // should bring back the changed undone in https://fxrev.dev/744413 as internal event
        // streams shouldn't be closed on termination.
        match this.on_terminate.poll(cx) {
            Poll::Pending => {}
            Poll::Ready(_) => {
                this.receiver.close();
            }
        }
        // Poll the stream and track whether it's drained or not.
        match this.receiver.poll_next(cx) {
            Poll::Pending => Poll::Pending,
            Poll::Ready(None) => {
                // Notify once that it has been drained.
                if let Some(snd) = this.on_drained.take() {
                    snd.send(()).unwrap_or_else(|err| {
                        error!(?err, "Failed to notify the events have been drained.");
                    });
                };
                Poll::Ready(None)
            }
            res @ Poll::Ready(Some(_)) => res,
        }
    }
}

/// Allows to termiante event ingestion.
pub struct TerminateHandle {
    snd: oneshot::Sender<()>,
    drained: oneshot::Receiver<()>,
}

impl TerminateHandle {
    /// Terminates event ingestion. Buffered events will be drained. The returned future
    /// will complete once all buffered events have been drained.
    pub async fn terminate(self) {
        self.snd.send(()).unwrap_or_else(|err| {
            error!(?err, "Failed to terminate the event ingestion.");
        });
        self.drained
            .await
            .unwrap_or_else(|err| error!(?err, "Error waiting for events to be drained."));
    }
}

/// Allows to emit events of a restricted set of types.
///
/// Event producers will receive a `Dispatcher` instance that will allow them to emit events of
/// restricted set of types.
pub struct Dispatcher {
    allowed_events: BTreeSet<EventType>,
    sender: Option<mpsc::UnboundedSender<Event>>,
}

/// Returns a no-op dispatcher.
impl Default for Dispatcher {
    fn default() -> Self {
        Self { allowed_events: BTreeSet::new(), sender: None }
    }
}

impl Dispatcher {
    fn new(allowed_events: BTreeSet<EventType>, sender: mpsc::UnboundedSender<Event>) -> Self {
        Self { allowed_events, sender: Some(sender) }
    }

    /// Emits an event. If the event isn't in the restricted set of allowed types, this operation
    /// is a no-op. An error is returned when sending the event into the channel fails.
    pub fn emit(&mut self, event: Event) -> Result<(), mpsc::TrySendError<Event>> {
        if let Some(sender) = &mut self.sender {
            if self.allowed_events.contains(&event.ty()) {
                sender.unbounded_send(event)?;
            }
        }
        Ok(())
    }

    #[cfg(test)]
    pub fn new_for_test(
        allowed_events: BTreeSet<EventType>,
    ) -> (mpsc::UnboundedReceiver<Event>, Self) {
        let (sender, receiver) = mpsc::unbounded();
        (receiver, Self::new(allowed_events, sender))
    }
}

struct EventStreamLogger {
    counters: BTreeMap<EventType, inspect::UintProperty>,
    component_log_node: BoundedListNode,
    counters_node: inspect::Node,
    _node: inspect::Node,
}

impl EventStreamLogger {
    /// Creates a new event logger. All inspect data will be written as children of `parent`.
    pub fn new(node: inspect::Node) -> Self {
        let counters_node = node.create_child("event_counts");
        let recent_events_node = node.create_child("recent_events");
        Self {
            _node: node,
            counters: BTreeMap::new(),
            counters_node,
            component_log_node: BoundedListNode::new(recent_events_node, RECENT_EVENT_LIMIT),
        }
    }

    /// Log a new component event to inspect.
    pub fn log(&mut self, event: &Event) {
        let ty = event.ty();
        if self.counters.contains_key(&ty) {
            self.counters.get_mut(&ty).unwrap().add(1);
        } else {
            let counter = self.counters_node.create_uint(ty.as_ref(), 1);
            self.counters.insert(ty.clone(), counter);
        }
        // TODO(https://fxbug.dev/42174041): leverage string references for the payload.
        match &event.payload {
            EventPayload::LogSinkRequested(LogSinkRequestedPayload { component, .. })
            | EventPayload::InspectSinkRequested(InspectSinkRequestedPayload {
                component, ..
            }) => {
                self.log_inspect(ty.as_ref(), component);
            }
        }
    }

    fn log_inspect(&mut self, event_name: &str, identity: &ComponentIdentity) {
        // TODO(https://fxbug.dev/42174041): leverage string references for the `event_name`.
        inspect_log!(self.component_log_node,
            "event" => event_name,
            "moniker" => identity.moniker.to_string(),
        );
    }
}

/// Set of errors that can happen when setting up an event router and executing its dispatching loop.
#[derive(Debug, Error)]
pub enum RouterError {
    #[error("Missing consumer for event type {0:?}")]
    MissingConsumer(EventType),

    #[error("Missing producer for event type {0:?}")]
    MissingProducer(EventType),
}

/// Configuration for an event producer.
pub struct ProducerConfig<'a, T> {
    /// The event producer that will receive a `Dispatcher`
    pub producer: &'a mut T,

    /// The set of events that the `producer` will be allowed to emit.
    pub events: Vec<EventType>,
}

/// Configuration for an event consumer.
pub struct ConsumerConfig<'a, T> {
    /// The event consumer that will receive events when they are emitted by producers.
    pub consumer: &'a Arc<T>,

    /// The set of event types that the `consumer` will receive.
    pub events: Vec<EventType>,
}

/// Trait implemented by data types which receive events.
pub trait EventConsumer {
    /// Event consumers will receive a call on this method when an event they are interested on
    /// happens.
    fn handle(self: Arc<Self>, event: Event);
}

/// Trait implemented by data types which emit events.
pub trait EventProducer {
    /// Whent registered, event producers will receive a call on this method with the `dispatcher`
    /// they can use to emit events.
    fn set_dispatcher(&mut self, dispatcher: Dispatcher);
}

#[cfg(test)]
mod tests {
    use super::*;
    use assert_matches::assert_matches;
    use diagnostics_assertions::{assert_data_tree, AnyProperty};
    use fidl::encoding::ProxyChannelBox;
    use fidl::endpoints::RequestStream;
    use fidl_fuchsia_inspect::InspectSinkMarker;
    use fidl_fuchsia_logger::{LogSinkMarker, LogSinkRequestStream};
    use fuchsia_async as fasync;
    use fuchsia_sync::Mutex;
    use futures::FutureExt;
    use moniker::ExtendedMoniker;
    use std::sync::LazyLock;
    use zx::AsHandleRef;

    const TEST_URL: &str = "NO-OP URL";
    const FAKE_TIMESTAMP: i64 = 5;
    static IDENTITY: LazyLock<Arc<ComponentIdentity>> = LazyLock::new(|| {
        Arc::new(ComponentIdentity::new(ExtendedMoniker::parse_str("./a/b").unwrap(), TEST_URL))
    });

    #[derive(Default)]
    struct TestEventProducer {
        dispatcher: Dispatcher,
    }

    impl TestEventProducer {
        fn emit(&mut self, event_type: EventType, identity: Arc<ComponentIdentity>) {
            let event = match event_type {
                EventType::LogSinkRequested => {
                    let (_, request_stream) =
                        fidl::endpoints::create_proxy_and_stream::<LogSinkMarker>();
                    Event {
                        timestamp: zx::BootInstant::from_nanos(FAKE_TIMESTAMP),
                        payload: EventPayload::LogSinkRequested(LogSinkRequestedPayload {
                            component: identity,
                            request_stream,
                        }),
                    }
                }
                EventType::InspectSinkRequested => {
                    let (_, request_stream) =
                        fidl::endpoints::create_proxy_and_stream::<InspectSinkMarker>();
                    Event {
                        timestamp: zx::BootInstant::from_nanos(FAKE_TIMESTAMP),
                        payload: EventPayload::InspectSinkRequested(InspectSinkRequestedPayload {
                            component: identity,
                            request_stream,
                        }),
                    }
                }
            };
            let _ = self.dispatcher.emit(event);
        }
    }

    impl EventProducer for TestEventProducer {
        fn set_dispatcher(&mut self, dispatcher: Dispatcher) {
            self.dispatcher = dispatcher;
        }
    }

    struct TestEventConsumer {
        event_sender: Mutex<mpsc::UnboundedSender<Event>>,
    }

    impl TestEventConsumer {
        fn new() -> (mpsc::UnboundedReceiver<Event>, Arc<Self>) {
            let (event_sender, event_receiver) = mpsc::unbounded();
            (event_receiver, Arc::new(Self { event_sender: Mutex::new(event_sender) }))
        }
    }

    impl EventConsumer for TestEventConsumer {
        fn handle(self: Arc<Self>, event: Event) {
            self.event_sender.lock().unbounded_send(event).unwrap();
        }
    }

    #[fuchsia::test]
    fn invalid_routing() {
        let mut producer = TestEventProducer::default();
        let (_receiver, consumer) = TestEventConsumer::new();
        let mut router = EventRouter::new(inspect::Node::default());
        router.add_producer(ProducerConfig {
            producer: &mut producer,
            events: vec![EventType::InspectSinkRequested],
        });
        router.add_consumer(ConsumerConfig {
            consumer: &consumer,
            events: vec![EventType::InspectSinkRequested, EventType::LogSinkRequested],
        });

        // An explicit match is needed here since unwrap_err requires Debug implemented for both T
        // and E in Result<T, E> and T is a pair which second element is `impl Future` which
        // doesn't implement Debug.
        match router.start() {
            Err(err) => {
                assert_matches!(err, RouterError::MissingProducer(EventType::LogSinkRequested));
            }
            Ok(_) => panic!("expected an error from routing events"),
        }

        let mut producer = TestEventProducer::default();
        let (_receiver, consumer) = TestEventConsumer::new();
        let mut router = EventRouter::new(inspect::Node::default());
        router.add_producer(ProducerConfig {
            producer: &mut producer,
            events: vec![EventType::InspectSinkRequested],
        });
        router.add_consumer(ConsumerConfig {
            consumer: &consumer,
            events: vec![EventType::LogSinkRequested],
        });

        match router.start() {
            Err(err) => {
                assert_matches!(
                    err,
                    RouterError::MissingConsumer(EventType::InspectSinkRequested)
                        | RouterError::MissingProducer(EventType::LogSinkRequested)
                );
            }
            Ok(_) => panic!("expected an error from routing events"),
        }
    }

    #[fuchsia::test]
    async fn event_subscription() {
        let mut producer = TestEventProducer::default();
        let (mut first_receiver, first_consumer) = TestEventConsumer::new();
        let (mut second_receiver, second_consumer) = TestEventConsumer::new();
        let mut router = EventRouter::new(inspect::Node::default());
        router.add_producer(ProducerConfig {
            producer: &mut producer,
            events: vec![EventType::LogSinkRequested],
        });
        router.add_consumer(ConsumerConfig {
            consumer: &first_consumer,
            events: vec![EventType::LogSinkRequested],
        });
        router.add_consumer(ConsumerConfig {
            consumer: &second_consumer,
            events: vec![EventType::LogSinkRequested],
        });

        let (_terminate_handle, fut) = router.start().unwrap();
        let _router_task = fasync::Task::spawn(fut);

        // Emit an event
        let (_, server_end) = fidl::endpoints::create_proxy::<LogSinkMarker>();
        let request_stream_koid = server_end.as_handle_ref().get_koid().unwrap();
        let request_stream = LogSinkRequestStream::from_channel(fidl::AsyncChannel::from_channel(
            server_end.into_channel(),
        ));
        let timestamp = zx::BootInstant::get();
        producer
            .dispatcher
            .emit(Event {
                timestamp,
                payload: EventPayload::LogSinkRequested(LogSinkRequestedPayload {
                    component: IDENTITY.clone(),
                    request_stream,
                }),
            })
            .unwrap();

        // The first consumer that was registered receives the request stream. The second one
        // receives nothing.
        let first_event = first_receiver.next().await.unwrap();
        assert_matches!(first_event, Event {
            payload: EventPayload::LogSinkRequested(payload),
            ..
        } => {
            assert_eq!(payload.component, *IDENTITY);
            let actual_koid = payload.request_stream
                .into_inner().0.channel().as_channel().as_handle_ref().get_koid().unwrap();
            assert_eq!(actual_koid, request_stream_koid);
        });
        assert!(second_receiver.next().now_or_never().is_none());
    }

    #[fuchsia::test]
    async fn consumers_cleanup() {
        let mut producer = TestEventProducer::default();
        let (mut first_receiver, first_consumer) = TestEventConsumer::new();
        let (mut second_receiver, second_consumer) = TestEventConsumer::new();
        let (mut third_receiver, third_consumer) = TestEventConsumer::new();
        let mut router = EventRouter::new(inspect::Node::default());
        router.add_producer(ProducerConfig {
            producer: &mut producer,
            events: vec![EventType::InspectSinkRequested],
        });
        router.add_consumer(ConsumerConfig {
            consumer: &first_consumer,
            events: vec![EventType::InspectSinkRequested],
        });
        router.add_consumer(ConsumerConfig {
            consumer: &second_consumer,
            events: vec![EventType::InspectSinkRequested],
        });
        router.add_consumer(ConsumerConfig {
            consumer: &third_consumer,
            events: vec![EventType::InspectSinkRequested],
        });

        drop(first_consumer);
        drop(third_consumer);

        let (_terminate_handle, fut) = router.start().unwrap();
        let _router_task = fasync::Task::spawn(fut);

        // Emit an event
        let (_, request_stream) = fidl::endpoints::create_proxy_and_stream::<InspectSinkMarker>();
        producer
            .dispatcher
            .emit(Event {
                timestamp: zx::BootInstant::get(),
                payload: EventPayload::InspectSinkRequested(InspectSinkRequestedPayload {
                    component: IDENTITY.clone(),
                    request_stream,
                }),
            })
            .unwrap();

        // We see the event only in the receiver which consumer wasn't dropped.
        let event = second_receiver.next().await.unwrap();
        assert_matches!(event.payload, EventPayload::InspectSinkRequested(_));
        assert!(first_receiver.next().now_or_never().unwrap().is_none());
        assert!(third_receiver.next().now_or_never().unwrap().is_none());

        // We see additional events in the second receiver which remains alive.
        let (_, request_stream) = fidl::endpoints::create_proxy_and_stream::<InspectSinkMarker>();
        producer
            .dispatcher
            .emit(Event {
                timestamp: zx::BootInstant::get(),
                payload: EventPayload::InspectSinkRequested(InspectSinkRequestedPayload {
                    component: IDENTITY.clone(),
                    request_stream,
                }),
            })
            .unwrap();
        let event = second_receiver.next().await.unwrap();
        assert_matches!(event.payload, EventPayload::InspectSinkRequested(_));
        assert!(first_receiver.next().now_or_never().unwrap().is_none());
        assert!(third_receiver.next().now_or_never().unwrap().is_none());
    }

    #[fuchsia::test]
    async fn inspect_log() {
        let inspector = inspect::Inspector::default();
        let mut router = EventRouter::new(inspector.root().create_child("events"));
        let mut producer1 = TestEventProducer::default();
        let mut producer2 = TestEventProducer::default();
        let (receiver, consumer) = TestEventConsumer::new();
        router.add_consumer(ConsumerConfig {
            consumer: &consumer,
            events: vec![EventType::InspectSinkRequested, EventType::LogSinkRequested],
        });
        router.add_producer(ProducerConfig {
            producer: &mut producer1,
            events: vec![EventType::LogSinkRequested],
        });
        router.add_producer(ProducerConfig {
            producer: &mut producer2,
            events: vec![EventType::InspectSinkRequested],
        });

        producer1.emit(EventType::LogSinkRequested, IDENTITY.clone());
        producer2.emit(EventType::InspectSinkRequested, IDENTITY.clone());

        // Consume the events.
        let (_terminate_handle, fut) = router.start().unwrap();
        let _router_task = fasync::Task::spawn(fut);
        receiver.take(2).collect::<Vec<_>>().await;

        assert_data_tree!(inspector, root: {
            events: {
                event_counts: {
                    log_sink_requested: 1u64,
                    inspect_sink_requested: 1u64,
                },
                recent_events: {
                    "0": {
                        "@time": AnyProperty,
                        event: "log_sink_requested",
                        moniker: "a/b"
                    },
                    "1": {
                        "@time": AnyProperty,
                        event: "inspect_sink_requested",
                        moniker: "a/b"
                    },
                }
            }
        });
    }

    #[fuchsia::test]
    async fn event_stream_semantics() {
        let inspector = inspect::Inspector::default();
        let mut router = EventRouter::new(inspector.root().create_child("events"));
        let mut producer1 = TestEventProducer::default();
        let mut producer2 = TestEventProducer::default();
        let (receiver, consumer) = TestEventConsumer::new();
        router.add_consumer(ConsumerConfig {
            consumer: &consumer,
            events: vec![EventType::InspectSinkRequested],
        });
        router.add_producer(ProducerConfig {
            producer: &mut producer1,
            events: vec![EventType::InspectSinkRequested],
        });
        router.add_producer(ProducerConfig {
            producer: &mut producer2,
            events: vec![EventType::InspectSinkRequested],
        });

        let identity = |moniker| {
            Arc::new(ComponentIdentity::new(ExtendedMoniker::parse_str(moniker).unwrap(), TEST_URL))
        };

        producer1.emit(EventType::InspectSinkRequested, identity("./a"));
        producer2.emit(EventType::InspectSinkRequested, identity("./b"));
        producer1.emit(EventType::InspectSinkRequested, identity("./c"));
        producer2.emit(EventType::InspectSinkRequested, identity("./d"));

        // We should see the events in order of emission.
        let (_terminate_handle, fut) = router.start().unwrap();
        let _router_task = fasync::Task::spawn(fut);
        let events = receiver.take(4).collect::<Vec<_>>().await;

        let expected_events = vec![
            inspect_sink_requested(identity("./a")),
            inspect_sink_requested(identity("./b")),
            inspect_sink_requested(identity("./c")),
            inspect_sink_requested(identity("./d")),
        ];
        assert_eq!(events.len(), expected_events.len());
        for (event, expected_event) in std::iter::zip(events, expected_events) {
            assert_event(event, expected_event);
        }
    }

    #[fuchsia::test]
    async fn stream_draining() {
        let inspector = inspect::Inspector::default();
        let mut router = EventRouter::new(inspector.root().create_child("events"));
        let mut producer = TestEventProducer::default();
        let (mut receiver, consumer) = TestEventConsumer::new();
        router.add_consumer(ConsumerConfig {
            consumer: &consumer,
            events: vec![EventType::InspectSinkRequested],
        });
        router.add_producer(ProducerConfig {
            producer: &mut producer,
            events: vec![EventType::InspectSinkRequested],
        });
        router.add_producer(ProducerConfig {
            producer: &mut producer,
            events: vec![EventType::InspectSinkRequested],
        });

        producer.emit(EventType::InspectSinkRequested, IDENTITY.clone());

        let (terminate_handle, fut) = router.start().unwrap();
        let _router_task = fasync::Task::spawn(fut);
        let on_drained = terminate_handle.terminate();
        let drain_finished = fasync::Task::spawn(on_drained);

        assert_event(receiver.next().await.unwrap(), inspect_sink_requested(IDENTITY.clone()));

        // This future must be complete now.
        drain_finished.await;

        // We must never see any new event emitted by the producer.
        producer.emit(EventType::InspectSinkRequested, IDENTITY.clone());
        assert!(receiver.next().now_or_never().is_none());
    }

    fn assert_event(event: Event, other: Event) {
        assert_eq!(event.timestamp, other.timestamp);
        match (event.payload, other.payload) {
            (
                EventPayload::InspectSinkRequested(InspectSinkRequestedPayload {
                    component: this_identity,
                    ..
                }),
                EventPayload::InspectSinkRequested(InspectSinkRequestedPayload {
                    component: other_identity,
                    ..
                }),
            ) => {
                assert_eq!(this_identity, other_identity);
            }
            _ => unimplemented!("no other combinations are expected in these tests"),
        }
    }

    fn inspect_sink_requested(identity: Arc<ComponentIdentity>) -> Event {
        let (_proxy, request_stream) =
            fidl::endpoints::create_proxy_and_stream::<InspectSinkMarker>();
        Event {
            timestamp: zx::BootInstant::from_nanos(FAKE_TIMESTAMP),
            payload: EventPayload::InspectSinkRequested(InspectSinkRequestedPayload {
                component: identity,
                request_stream,
            }),
        }
    }
}