encode_unicode/
utf16_iterators.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/* Copyright 2016 The encode_unicode Developers
 *
 * Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
 * http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
 * http://opensource.org/licenses/MIT>, at your option. This file may not be
 * copied, modified, or distributed except according to those terms.
 */

use traits::CharExt;
use utf16_char::Utf16Char;
use errors::EmptyStrError;
extern crate core;
use self::core::fmt;
use self::core::borrow::Borrow;

// Invalid values that says the field is consumed or empty.
const FIRST_USED: u16 = 0x_dc_00;
const SECOND_USED: u16 = 0;

/// Iterate over the units of the UTF-16 representation of a codepoint.
#[derive(Clone)]
pub struct Utf16Iterator {
    first: u16,
    second: u16,
}
impl From<char> for Utf16Iterator {
    fn from(c: char) -> Self {
        let (first, second) = c.to_utf16_tuple();
        Utf16Iterator{ first: first,  second: second.unwrap_or(SECOND_USED) }
    }
}
impl From<Utf16Char> for Utf16Iterator {
    fn from(uc: Utf16Char) -> Self {
        let (first, second) = uc.to_tuple();
        Utf16Iterator{ first: first,  second: second.unwrap_or(SECOND_USED) }
    }
}
impl Iterator for Utf16Iterator {
    type Item=u16;
    fn next(&mut self) -> Option<u16> {
        match (self.first, self.second) {
            (FIRST_USED, SECOND_USED)  =>  {                            None        },
            (FIRST_USED, second     )  =>  {self.second = SECOND_USED;  Some(second)},
            (first     ,      _     )  =>  {self.first = FIRST_USED;    Some(first )},
        }
    }
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.len(), Some(self.len()))
    }
}
impl ExactSizeIterator for Utf16Iterator {
    fn len(&self) -> usize {
        (if self.first == FIRST_USED {0} else {1}) +
        (if self.second == SECOND_USED {0} else {1})
    }
}
impl fmt::Debug for Utf16Iterator {
    fn fmt(&self,  fmtr: &mut fmt::Formatter) -> fmt::Result {
        let mut clone = self.clone();
        match (clone.next(), clone.next()) {
            (Some(one), None)  => write!(fmtr, "[{}]", one),
            (Some(a), Some(b)) => write!(fmtr, "[{}, {}]", a, b),
            (None,  _)         => write!(fmtr, "[]"),
        }
    }
}



/// Converts an iterator of `Utf16Char` (or `&Utf16Char`)
/// to an iterator of `u16`s.  
/// Is equivalent to calling `.flat_map()` on the original iterator,
/// but the returned iterator is about twice as fast.
///
/// The exact number of units cannot be known in advance, but `size_hint()`
/// gives the possible range.
///
/// # Examples
///
/// From iterator of values:
///
/// ```
/// use encode_unicode::{iter_units, CharExt};
///
/// let iterator = "foo".chars().map(|c| c.to_utf16() );
/// let mut units = [0; 4];
/// for (u,dst) in iter_units(iterator).zip(&mut units) {*dst=u;}
/// assert_eq!(units, ['f' as u16, 'o' as u16, 'o' as u16, 0]);
/// ```
///
/// From iterator of references:
///
#[cfg_attr(feature="std", doc=" ```")]
#[cfg_attr(not(feature="std"), doc=" ```no_compile")]
/// use encode_unicode::{iter_units, CharExt, Utf16Char};
///
/// // (💣 takes two units)
/// let chars: Vec<Utf16Char> = "💣 bomb 💣".chars().map(|c| c.to_utf16() ).collect();
/// let units: Vec<u16> = iter_units(&chars).collect();
/// let flat_map: Vec<u16> = chars.iter().flat_map(|u16c| *u16c ).collect();
/// assert_eq!(units, flat_map);
/// ```
pub fn iter_units<U:Borrow<Utf16Char>, I:IntoIterator<Item=U>>
(iterable: I) -> Utf16CharSplitter<U, I::IntoIter> {
    Utf16CharSplitter{ inner: iterable.into_iter(),  prev_second: 0 }
}

/// The iterator type returned by `iter_units()`
#[derive(Clone)]
pub struct Utf16CharSplitter<U:Borrow<Utf16Char>, I:Iterator<Item=U>> {
    inner: I,
    prev_second: u16,
}
impl<I:Iterator<Item=Utf16Char>> From<I> for Utf16CharSplitter<Utf16Char,I> {
    /// A less generic constructor than `iter_units()`
    fn from(iter: I) -> Self {
        iter_units(iter)
    }
}
impl<U:Borrow<Utf16Char>, I:Iterator<Item=U>> Utf16CharSplitter<U,I> {
    /// Extracts the source iterator.
    ///
    /// Note that `iter_units(iter.into_inner())` is not a no-op:  
    /// If the last returned unit from `next()` was a leading surrogate,
    /// the trailing surrogate is lost.
    pub fn into_inner(self) -> I {
        self.inner
    }
}
impl<U:Borrow<Utf16Char>, I:Iterator<Item=U>> Iterator for Utf16CharSplitter<U,I> {
    type Item = u16;
    fn next(&mut self) -> Option<Self::Item> {
        if self.prev_second == 0 {
            self.inner.next().map(|u16c| {
                let (first, second) = u16c.borrow().to_tuple();
                self.prev_second = second.unwrap_or(0);
                first
            })
        } else {
            let prev_second = self.prev_second;
            self.prev_second = 0;
            Some(prev_second)
        }
    }
    fn size_hint(&self) -> (usize,Option<usize>) {
        // Doesn't need to handle unlikely overflows correctly because
        // size_hint() cannot be relied upon anyway. (the trait isn't unsafe)
        let (min, max) = self.inner.size_hint();
        let add = if self.prev_second == 0 {0} else {1};
        (min.wrapping_add(add), max.map(|max| max.wrapping_mul(2).wrapping_add(add) ))
    }
}



/// An iterator over the codepoints in a `str` represented as `Utf16Char`.
#[derive(Clone)]
pub struct Utf16CharIndices<'a>{
    str: &'a str,
    index: usize,
}
impl<'a> From<&'a str> for Utf16CharIndices<'a> {
    fn from(s: &str) -> Utf16CharIndices {
        Utf16CharIndices{str: s, index: 0}
    }
}
impl<'a> Utf16CharIndices<'a> {
    /// Extract the remainder of the source `str`.
    ///
    /// # Examples
    ///
    /// ```
    /// use encode_unicode::{StrExt, Utf16Char};
    /// let mut iter = "abc".utf16char_indices();
    /// assert_eq!(iter.next_back(), Some((2, Utf16Char::from('c'))));
    /// assert_eq!(iter.next(), Some((0, Utf16Char::from('a'))));
    /// assert_eq!(iter.as_str(), "b");
    /// ```
    pub fn as_str(&self) -> &'a str {
        &self.str[self.index..]
    }
}
impl<'a> Iterator for Utf16CharIndices<'a> {
    type Item = (usize,Utf16Char);
    fn next(&mut self) -> Option<(usize,Utf16Char)> {
        match Utf16Char::from_str_start(&self.str[self.index..]) {
            Ok((u16c, bytes)) => {
                let item = (self.index, u16c);
                self.index += bytes;
                Some(item)
            },
            Err(EmptyStrError) => None
        }
    }
    fn size_hint(&self) -> (usize,Option<usize>) {
        let len = self.str.len() - self.index;
        // For len+3 to overflow, the slice must fill all but two bytes of
        // addressable memory, and size_hint() doesn't need to be correct.
        (len.wrapping_add(3)/4, Some(len))
    }
}
impl<'a> DoubleEndedIterator for Utf16CharIndices<'a> {
    fn next_back(&mut self) -> Option<(usize,Utf16Char)> {
        if self.index < self.str.len() {
            let rev = self.str.bytes().rev();
            let len = 1 + rev.take_while(|b| b & 0b1100_0000 == 0b1000_0000 ).count();
            let starts = self.str.len() - len;
            let (u16c,_) = Utf16Char::from_str_start(&self.str[starts..]).unwrap();
            self.str = &self.str[..starts];
            Some((starts, u16c))
        } else {
            None
        }
    }
}
impl<'a> fmt::Debug for Utf16CharIndices<'a> {
    fn fmt(&self,  fmtr: &mut fmt::Formatter) -> fmt::Result {
        fmtr.debug_tuple("Utf16CharIndices")
            .field(&self.index)
            .field(&self.as_str())
            .finish()
    }
}


/// An iterator over the codepoints in a `str` represented as `Utf16Char`.
#[derive(Clone)]
pub struct Utf16Chars<'a>(Utf16CharIndices<'a>);
impl<'a> From<&'a str> for Utf16Chars<'a> {
    fn from(s: &str) -> Utf16Chars {
        Utf16Chars(Utf16CharIndices::from(s))
    }
}
impl<'a> Utf16Chars<'a> {
    /// Extract the remainder of the source `str`.
    ///
    /// # Examples
    ///
    /// ```
    /// use encode_unicode::{StrExt, Utf16Char};
    /// let mut iter = "abc".utf16chars();
    /// assert_eq!(iter.next(), Some(Utf16Char::from('a')));
    /// assert_eq!(iter.next_back(), Some(Utf16Char::from('c')));
    /// assert_eq!(iter.as_str(), "b");
    /// ```
    pub fn as_str(&self) -> &'a str {
        self.0.as_str()
    }
}
impl<'a> Iterator for Utf16Chars<'a> {
    type Item = Utf16Char;
    fn next(&mut self) -> Option<Utf16Char> {
        self.0.next().map(|(_,u16c)| u16c )
    }
    fn size_hint(&self) -> (usize,Option<usize>) {
        self.0.size_hint()
    }
}
impl<'a> DoubleEndedIterator for Utf16Chars<'a> {
    fn next_back(&mut self) -> Option<Utf16Char> {
        self.0.next_back().map(|(_,u16c)| u16c )
    }
}
impl<'a> fmt::Debug for Utf16Chars<'a> {
    fn fmt(&self,  fmtr: &mut fmt::Formatter) -> fmt::Result {
        fmtr.debug_tuple("Utf16Chars")
            .field(&self.as_str())
            .finish()
    }
}