euclid/
box2d.rs

1// Copyright 2013 The Servo Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution.
3//
4// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
5// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
6// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
7// option. This file may not be copied, modified, or distributed
8// except according to those terms.
9
10use super::UnknownUnit;
11use crate::approxord::{max, min};
12use crate::num::*;
13use crate::point::{point2, Point2D};
14use crate::rect::Rect;
15use crate::scale::Scale;
16use crate::side_offsets::SideOffsets2D;
17use crate::size::Size2D;
18use crate::vector::{vec2, Vector2D};
19
20use num_traits::NumCast;
21#[cfg(feature = "serde")]
22use serde::{Deserialize, Serialize};
23
24use core::borrow::Borrow;
25use core::cmp::PartialOrd;
26use core::fmt;
27use core::hash::{Hash, Hasher};
28use core::ops::{Add, Div, DivAssign, Mul, MulAssign, Sub};
29
30/// A 2d axis aligned rectangle represented by its minimum and maximum coordinates.
31///
32/// # Representation
33///
34/// This struct is similar to [`Rect`], but stores rectangle as two endpoints
35/// instead of origin point and size. Such representation has several advantages over
36/// [`Rect`] representation:
37/// - Several operations are more efficient with `Box2D`, including [`intersection`],
38///   [`union`], and point-in-rect.
39/// - The representation is less susceptible to overflow. With [`Rect`], computation
40///   of second point can overflow for a large range of values of origin and size.
41///   However, with `Box2D`, computation of [`size`] cannot overflow if the coordinates
42///   are signed and the resulting size is unsigned.
43///
44/// A known disadvantage of `Box2D` is that translating the rectangle requires translating
45/// both points, whereas translating [`Rect`] only requires translating one point.
46///
47/// # Empty box
48///
49/// A box is considered empty (see [`is_empty`]) if any of the following is true:
50/// - it's area is empty,
51/// - it's area is negative (`min.x > max.x` or `min.y > max.y`),
52/// - it contains NaNs.
53///
54/// [`Rect`]: struct.Rect.html
55/// [`intersection`]: #method.intersection
56/// [`is_empty`]: #method.is_empty
57/// [`union`]: #method.union
58/// [`size`]: #method.size
59#[repr(C)]
60#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
61#[cfg_attr(
62    feature = "serde",
63    serde(bound(serialize = "T: Serialize", deserialize = "T: Deserialize<'de>"))
64)]
65pub struct Box2D<T, U> {
66    pub min: Point2D<T, U>,
67    pub max: Point2D<T, U>,
68}
69
70impl<T: Hash, U> Hash for Box2D<T, U> {
71    fn hash<H: Hasher>(&self, h: &mut H) {
72        self.min.hash(h);
73        self.max.hash(h);
74    }
75}
76
77impl<T: Copy, U> Copy for Box2D<T, U> {}
78
79impl<T: Clone, U> Clone for Box2D<T, U> {
80    fn clone(&self) -> Self {
81        Self::new(self.min.clone(), self.max.clone())
82    }
83}
84
85impl<T: PartialEq, U> PartialEq for Box2D<T, U> {
86    fn eq(&self, other: &Self) -> bool {
87        self.min.eq(&other.min) && self.max.eq(&other.max)
88    }
89}
90
91impl<T: Eq, U> Eq for Box2D<T, U> {}
92
93impl<T: fmt::Debug, U> fmt::Debug for Box2D<T, U> {
94    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
95        f.debug_tuple("Box2D")
96            .field(&self.min)
97            .field(&self.max)
98            .finish()
99    }
100}
101
102impl<T, U> Box2D<T, U> {
103    /// Constructor.
104    #[inline]
105    pub const fn new(min: Point2D<T, U>, max: Point2D<T, U>) -> Self {
106        Box2D { min, max }
107    }
108}
109
110impl<T, U> Box2D<T, U>
111where
112    T: PartialOrd,
113{
114    /// Returns true if the box has a negative area.
115    ///
116    /// The common interpretation for a negative box is to consider it empty. It can be obtained
117    /// by calculating the intersection of two boxes that do not intersect.
118    #[inline]
119    pub fn is_negative(&self) -> bool {
120        self.max.x < self.min.x || self.max.y < self.min.y
121    }
122
123    /// Returns true if the size is zero, negative or NaN.
124    #[inline]
125    pub fn is_empty(&self) -> bool {
126        !(self.max.x > self.min.x && self.max.y > self.min.y)
127    }
128
129    /// Returns `true` if the two boxes intersect.
130    #[inline]
131    pub fn intersects(&self, other: &Self) -> bool {
132        self.min.x < other.max.x
133            && self.max.x > other.min.x
134            && self.min.y < other.max.y
135            && self.max.y > other.min.y
136    }
137
138    /// Returns `true` if this box contains the point. Points are considered
139    /// in the box if they are on the front, left or top faces, but outside if they
140    /// are on the back, right or bottom faces.
141    #[inline]
142    pub fn contains(&self, p: Point2D<T, U>) -> bool {
143        self.min.x <= p.x && p.x < self.max.x && self.min.y <= p.y && p.y < self.max.y
144    }
145
146    /// Returns `true` if this box contains the interior of the other box. Always
147    /// returns `true` if other is empty, and always returns `false` if other is
148    /// nonempty but this box is empty.
149    #[inline]
150    pub fn contains_box(&self, other: &Self) -> bool {
151        other.is_empty()
152            || (self.min.x <= other.min.x
153                && other.max.x <= self.max.x
154                && self.min.y <= other.min.y
155                && other.max.y <= self.max.y)
156    }
157}
158
159impl<T, U> Box2D<T, U>
160where
161    T: Copy + PartialOrd,
162{
163    #[inline]
164    pub fn to_non_empty(&self) -> Option<Self> {
165        if self.is_empty() {
166            return None;
167        }
168
169        Some(*self)
170    }
171
172    /// Computes the intersection of two boxes, returning `None` if the boxes do not intersect.
173    #[inline]
174    pub fn intersection(&self, other: &Self) -> Option<Self> {
175        let b = self.intersection_unchecked(other);
176
177        if b.is_empty() {
178            return None;
179        }
180
181        Some(b)
182    }
183
184    /// Computes the intersection of two boxes without check whether they do intersect.
185    ///
186    /// The result is a negative box if the boxes do not intersect.
187    /// This can be useful for computing the intersection of more than two boxes, as
188    /// it is possible to chain multiple intersection_unchecked calls and check for
189    /// empty/negative result at the end.
190    #[inline]
191    pub fn intersection_unchecked(&self, other: &Self) -> Self {
192        Box2D {
193            min: point2(max(self.min.x, other.min.x), max(self.min.y, other.min.y)),
194            max: point2(min(self.max.x, other.max.x), min(self.max.y, other.max.y)),
195        }
196    }
197
198    #[inline]
199    pub fn union(&self, other: &Self) -> Self {
200        Box2D {
201            min: point2(min(self.min.x, other.min.x), min(self.min.y, other.min.y)),
202            max: point2(max(self.max.x, other.max.x), max(self.max.y, other.max.y)),
203        }
204    }
205}
206
207impl<T, U> Box2D<T, U>
208where
209    T: Copy + Add<T, Output = T>,
210{
211    /// Returns the same box, translated by a vector.
212    #[inline]
213    pub fn translate(&self, by: Vector2D<T, U>) -> Self {
214        Box2D {
215            min: self.min + by,
216            max: self.max + by,
217        }
218    }
219}
220
221impl<T, U> Box2D<T, U>
222where
223    T: Copy + Sub<T, Output = T>,
224{
225    #[inline]
226    pub fn size(&self) -> Size2D<T, U> {
227        (self.max - self.min).to_size()
228    }
229
230    #[inline]
231    pub fn width(&self) -> T {
232        self.max.x - self.min.x
233    }
234
235    #[inline]
236    pub fn height(&self) -> T {
237        self.max.y - self.min.y
238    }
239
240    #[inline]
241    pub fn to_rect(&self) -> Rect<T, U> {
242        Rect {
243            origin: self.min,
244            size: self.size(),
245        }
246    }
247}
248
249impl<T, U> Box2D<T, U>
250where
251    T: Copy + Add<T, Output = T> + Sub<T, Output = T>,
252{
253    /// Inflates the box by the specified sizes on each side respectively.
254    #[inline]
255    #[must_use]
256    pub fn inflate(&self, width: T, height: T) -> Self {
257        Box2D {
258            min: point2(self.min.x - width, self.min.y - height),
259            max: point2(self.max.x + width, self.max.y + height),
260        }
261    }
262
263    /// Calculate the size and position of an inner box.
264    ///
265    /// Subtracts the side offsets from all sides. The horizontal, vertical
266    /// and applicate offsets must not be larger than the original side length.
267    pub fn inner_box(&self, offsets: SideOffsets2D<T, U>) -> Self {
268        Box2D {
269            min: self.min + vec2(offsets.left, offsets.top),
270            max: self.max - vec2(offsets.right, offsets.bottom),
271        }
272    }
273
274    /// Calculate the b and position of an outer box.
275    ///
276    /// Add the offsets to all sides. The expanded box is returned.
277    pub fn outer_box(&self, offsets: SideOffsets2D<T, U>) -> Self {
278        Box2D {
279            min: self.min - vec2(offsets.left, offsets.top),
280            max: self.max + vec2(offsets.right, offsets.bottom),
281        }
282    }
283}
284
285impl<T, U> Box2D<T, U>
286where
287    T: Copy + Zero + PartialOrd,
288{
289    /// Creates a Box2D of the given size, at offset zero.
290    #[inline]
291    pub fn from_size(size: Size2D<T, U>) -> Self {
292        let zero = Point2D::zero();
293        let point = size.to_vector().to_point();
294        Box2D::from_points(&[zero, point])
295    }
296
297    /// Returns the smallest box containing all of the provided points.
298    pub fn from_points<I>(points: I) -> Self
299    where
300        I: IntoIterator,
301        I::Item: Borrow<Point2D<T, U>>,
302    {
303        let mut points = points.into_iter();
304
305        let (mut min_x, mut min_y) = match points.next() {
306            Some(first) => first.borrow().to_tuple(),
307            None => return Box2D::zero(),
308        };
309
310        let (mut max_x, mut max_y) = (min_x, min_y);
311        for point in points {
312            let p = point.borrow();
313            if p.x < min_x {
314                min_x = p.x
315            }
316            if p.x > max_x {
317                max_x = p.x
318            }
319            if p.y < min_y {
320                min_y = p.y
321            }
322            if p.y > max_y {
323                max_y = p.y
324            }
325        }
326
327        Box2D {
328            min: point2(min_x, min_y),
329            max: point2(max_x, max_y),
330        }
331    }
332}
333
334impl<T, U> Box2D<T, U>
335where
336    T: Copy + One + Add<Output = T> + Sub<Output = T> + Mul<Output = T>,
337{
338    /// Linearly interpolate between this box and another box.
339    #[inline]
340    pub fn lerp(&self, other: Self, t: T) -> Self {
341        Self::new(self.min.lerp(other.min, t), self.max.lerp(other.max, t))
342    }
343}
344
345impl<T, U> Box2D<T, U>
346where
347    T: Copy + One + Add<Output = T> + Div<Output = T>,
348{
349    pub fn center(&self) -> Point2D<T, U> {
350        let two = T::one() + T::one();
351        (self.min + self.max.to_vector()) / two
352    }
353}
354
355impl<T, U> Box2D<T, U>
356where
357    T: Copy + Mul<T, Output = T> + Sub<T, Output = T>,
358{
359    #[inline]
360    pub fn area(&self) -> T {
361        let size = self.size();
362        size.width * size.height
363    }
364}
365
366impl<T, U> Box2D<T, U>
367where
368    T: Zero,
369{
370    /// Constructor, setting all sides to zero.
371    pub fn zero() -> Self {
372        Box2D::new(Point2D::zero(), Point2D::zero())
373    }
374}
375
376impl<T: Copy + Mul, U> Mul<T> for Box2D<T, U> {
377    type Output = Box2D<T::Output, U>;
378
379    #[inline]
380    fn mul(self, scale: T) -> Self::Output {
381        Box2D::new(self.min * scale, self.max * scale)
382    }
383}
384
385impl<T: Copy + MulAssign, U> MulAssign<T> for Box2D<T, U> {
386    #[inline]
387    fn mul_assign(&mut self, scale: T) {
388        *self *= Scale::new(scale);
389    }
390}
391
392impl<T: Copy + Div, U> Div<T> for Box2D<T, U> {
393    type Output = Box2D<T::Output, U>;
394
395    #[inline]
396    fn div(self, scale: T) -> Self::Output {
397        Box2D::new(self.min / scale, self.max / scale)
398    }
399}
400
401impl<T: Copy + DivAssign, U> DivAssign<T> for Box2D<T, U> {
402    #[inline]
403    fn div_assign(&mut self, scale: T) {
404        *self /= Scale::new(scale);
405    }
406}
407
408impl<T: Copy + Mul, U1, U2> Mul<Scale<T, U1, U2>> for Box2D<T, U1> {
409    type Output = Box2D<T::Output, U2>;
410
411    #[inline]
412    fn mul(self, scale: Scale<T, U1, U2>) -> Self::Output {
413        Box2D::new(self.min * scale, self.max * scale)
414    }
415}
416
417impl<T: Copy + MulAssign, U> MulAssign<Scale<T, U, U>> for Box2D<T, U> {
418    #[inline]
419    fn mul_assign(&mut self, scale: Scale<T, U, U>) {
420        self.min *= scale;
421        self.max *= scale;
422    }
423}
424
425impl<T: Copy + Div, U1, U2> Div<Scale<T, U1, U2>> for Box2D<T, U2> {
426    type Output = Box2D<T::Output, U1>;
427
428    #[inline]
429    fn div(self, scale: Scale<T, U1, U2>) -> Self::Output {
430        Box2D::new(self.min / scale, self.max / scale)
431    }
432}
433
434impl<T: Copy + DivAssign, U> DivAssign<Scale<T, U, U>> for Box2D<T, U> {
435    #[inline]
436    fn div_assign(&mut self, scale: Scale<T, U, U>) {
437        self.min /= scale;
438        self.max /= scale;
439    }
440}
441
442impl<T, U> Box2D<T, U>
443where
444    T: Copy,
445{
446    /// Drop the units, preserving only the numeric value.
447    #[inline]
448    pub fn to_untyped(&self) -> Box2D<T, UnknownUnit> {
449        Box2D::new(self.min.to_untyped(), self.max.to_untyped())
450    }
451
452    /// Tag a unitless value with units.
453    #[inline]
454    pub fn from_untyped(c: &Box2D<T, UnknownUnit>) -> Box2D<T, U> {
455        Box2D::new(Point2D::from_untyped(c.min), Point2D::from_untyped(c.max))
456    }
457
458    /// Cast the unit
459    #[inline]
460    pub fn cast_unit<V>(&self) -> Box2D<T, V> {
461        Box2D::new(self.min.cast_unit(), self.max.cast_unit())
462    }
463
464    #[inline]
465    pub fn scale<S: Copy>(&self, x: S, y: S) -> Self
466    where
467        T: Mul<S, Output = T>,
468    {
469        Box2D {
470            min: point2(self.min.x * x, self.min.y * y),
471            max: point2(self.max.x * x, self.max.y * y),
472        }
473    }
474}
475
476impl<T: NumCast + Copy, U> Box2D<T, U> {
477    /// Cast from one numeric representation to another, preserving the units.
478    ///
479    /// When casting from floating point to integer coordinates, the decimals are truncated
480    /// as one would expect from a simple cast, but this behavior does not always make sense
481    /// geometrically. Consider using round(), round_in or round_out() before casting.
482    #[inline]
483    pub fn cast<NewT: NumCast>(&self) -> Box2D<NewT, U> {
484        Box2D::new(self.min.cast(), self.max.cast())
485    }
486
487    /// Fallible cast from one numeric representation to another, preserving the units.
488    ///
489    /// When casting from floating point to integer coordinates, the decimals are truncated
490    /// as one would expect from a simple cast, but this behavior does not always make sense
491    /// geometrically. Consider using round(), round_in or round_out() before casting.
492    pub fn try_cast<NewT: NumCast>(&self) -> Option<Box2D<NewT, U>> {
493        match (self.min.try_cast(), self.max.try_cast()) {
494            (Some(a), Some(b)) => Some(Box2D::new(a, b)),
495            _ => None,
496        }
497    }
498
499    // Convenience functions for common casts
500
501    /// Cast into an `f32` box.
502    #[inline]
503    pub fn to_f32(&self) -> Box2D<f32, U> {
504        self.cast()
505    }
506
507    /// Cast into an `f64` box.
508    #[inline]
509    pub fn to_f64(&self) -> Box2D<f64, U> {
510        self.cast()
511    }
512
513    /// Cast into an `usize` box, truncating decimals if any.
514    ///
515    /// When casting from floating point boxes, it is worth considering whether
516    /// to `round()`, `round_in()` or `round_out()` before the cast in order to
517    /// obtain the desired conversion behavior.
518    #[inline]
519    pub fn to_usize(&self) -> Box2D<usize, U> {
520        self.cast()
521    }
522
523    /// Cast into an `u32` box, truncating decimals if any.
524    ///
525    /// When casting from floating point boxes, it is worth considering whether
526    /// to `round()`, `round_in()` or `round_out()` before the cast in order to
527    /// obtain the desired conversion behavior.
528    #[inline]
529    pub fn to_u32(&self) -> Box2D<u32, U> {
530        self.cast()
531    }
532
533    /// Cast into an `i32` box, truncating decimals if any.
534    ///
535    /// When casting from floating point boxes, it is worth considering whether
536    /// to `round()`, `round_in()` or `round_out()` before the cast in order to
537    /// obtain the desired conversion behavior.
538    #[inline]
539    pub fn to_i32(&self) -> Box2D<i32, U> {
540        self.cast()
541    }
542
543    /// Cast into an `i64` box, truncating decimals if any.
544    ///
545    /// When casting from floating point boxes, it is worth considering whether
546    /// to `round()`, `round_in()` or `round_out()` before the cast in order to
547    /// obtain the desired conversion behavior.
548    #[inline]
549    pub fn to_i64(&self) -> Box2D<i64, U> {
550        self.cast()
551    }
552}
553
554impl<T, U> Box2D<T, U>
555where
556    T: Round,
557{
558    /// Return a box with edges rounded to integer coordinates, such that
559    /// the returned box has the same set of pixel centers as the original
560    /// one.
561    /// Values equal to 0.5 round up.
562    /// Suitable for most places where integral device coordinates
563    /// are needed, but note that any translation should be applied first to
564    /// avoid pixel rounding errors.
565    /// Note that this is *not* rounding to nearest integer if the values are negative.
566    /// They are always rounding as floor(n + 0.5).
567    #[must_use]
568    pub fn round(&self) -> Self {
569        Box2D::new(self.min.round(), self.max.round())
570    }
571}
572
573impl<T, U> Box2D<T, U>
574where
575    T: Floor + Ceil,
576{
577    /// Return a box with faces/edges rounded to integer coordinates, such that
578    /// the original box contains the resulting box.
579    #[must_use]
580    pub fn round_in(&self) -> Self {
581        let min = self.min.ceil();
582        let max = self.max.floor();
583        Box2D { min, max }
584    }
585
586    /// Return a box with faces/edges rounded to integer coordinates, such that
587    /// the original box is contained in the resulting box.
588    #[must_use]
589    pub fn round_out(&self) -> Self {
590        let min = self.min.floor();
591        let max = self.max.ceil();
592        Box2D { min, max }
593    }
594}
595
596impl<T, U> From<Size2D<T, U>> for Box2D<T, U>
597where
598    T: Copy + Zero + PartialOrd,
599{
600    fn from(b: Size2D<T, U>) -> Self {
601        Self::from_size(b)
602    }
603}
604
605#[cfg(test)]
606mod tests {
607    use crate::default::Box2D;
608    use crate::side_offsets::SideOffsets2D;
609    use crate::{point2, size2, vec2, Point2D};
610    //use super::*;
611
612    #[test]
613    fn test_size() {
614        let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
615        assert_eq!(b.size().width, 20.0);
616        assert_eq!(b.size().height, 20.0);
617    }
618
619    #[test]
620    fn test_width_height() {
621        let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
622        assert!(b.width() == 20.0);
623        assert!(b.height() == 20.0);
624    }
625
626    #[test]
627    fn test_center() {
628        let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
629        assert_eq!(b.center(), Point2D::zero());
630    }
631
632    #[test]
633    fn test_area() {
634        let b = Box2D::new(point2(-10.0, -10.0), point2(10.0, 10.0));
635        assert_eq!(b.area(), 400.0);
636    }
637
638    #[test]
639    fn test_from_points() {
640        let b = Box2D::from_points(&[point2(50.0, 160.0), point2(100.0, 25.0)]);
641        assert_eq!(b.min, point2(50.0, 25.0));
642        assert_eq!(b.max, point2(100.0, 160.0));
643    }
644
645    #[test]
646    fn test_round_in() {
647        let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_in();
648        assert_eq!(b.min.x, -25.0);
649        assert_eq!(b.min.y, -40.0);
650        assert_eq!(b.max.x, 60.0);
651        assert_eq!(b.max.y, 36.0);
652    }
653
654    #[test]
655    fn test_round_out() {
656        let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round_out();
657        assert_eq!(b.min.x, -26.0);
658        assert_eq!(b.min.y, -41.0);
659        assert_eq!(b.max.x, 61.0);
660        assert_eq!(b.max.y, 37.0);
661    }
662
663    #[test]
664    fn test_round() {
665        let b = Box2D::from_points(&[point2(-25.5, -40.4), point2(60.3, 36.5)]).round();
666        assert_eq!(b.min.x, -25.0);
667        assert_eq!(b.min.y, -40.0);
668        assert_eq!(b.max.x, 60.0);
669        assert_eq!(b.max.y, 37.0);
670    }
671
672    #[test]
673    fn test_from_size() {
674        let b = Box2D::from_size(size2(30.0, 40.0));
675        assert!(b.min == Point2D::zero());
676        assert!(b.size().width == 30.0);
677        assert!(b.size().height == 40.0);
678    }
679
680    #[test]
681    fn test_inner_box() {
682        let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]);
683        let b = b.inner_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0));
684        assert_eq!(b.max.x, 80.0);
685        assert_eq!(b.max.y, 155.0);
686        assert_eq!(b.min.x, 60.0);
687        assert_eq!(b.min.y, 35.0);
688    }
689
690    #[test]
691    fn test_outer_box() {
692        let b = Box2D::from_points(&[point2(50.0, 25.0), point2(100.0, 160.0)]);
693        let b = b.outer_box(SideOffsets2D::new(10.0, 20.0, 5.0, 10.0));
694        assert_eq!(b.max.x, 120.0);
695        assert_eq!(b.max.y, 165.0);
696        assert_eq!(b.min.x, 40.0);
697        assert_eq!(b.min.y, 15.0);
698    }
699
700    #[test]
701    fn test_translate() {
702        let size = size2(15.0, 15.0);
703        let mut center = (size / 2.0).to_vector().to_point();
704        let b = Box2D::from_size(size);
705        assert_eq!(b.center(), center);
706        let translation = vec2(10.0, 2.5);
707        let b = b.translate(translation);
708        center += translation;
709        assert_eq!(b.center(), center);
710        assert_eq!(b.max.x, 25.0);
711        assert_eq!(b.max.y, 17.5);
712        assert_eq!(b.min.x, 10.0);
713        assert_eq!(b.min.y, 2.5);
714    }
715
716    #[test]
717    fn test_union() {
718        let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(0.0, 20.0)]);
719        let b2 = Box2D::from_points(&[point2(0.0, 20.0), point2(20.0, -20.0)]);
720        let b = b1.union(&b2);
721        assert_eq!(b.max.x, 20.0);
722        assert_eq!(b.max.y, 20.0);
723        assert_eq!(b.min.x, -20.0);
724        assert_eq!(b.min.y, -20.0);
725    }
726
727    #[test]
728    fn test_intersects() {
729        let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]);
730        let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]);
731        assert!(b1.intersects(&b2));
732    }
733
734    #[test]
735    fn test_intersection_unchecked() {
736        let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]);
737        let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]);
738        let b = b1.intersection_unchecked(&b2);
739        assert_eq!(b.max.x, 10.0);
740        assert_eq!(b.max.y, 20.0);
741        assert_eq!(b.min.x, -10.0);
742        assert_eq!(b.min.y, -20.0);
743    }
744
745    #[test]
746    fn test_intersection() {
747        let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(10.0, 20.0)]);
748        let b2 = Box2D::from_points(&[point2(-10.0, 20.0), point2(15.0, -20.0)]);
749        assert!(b1.intersection(&b2).is_some());
750
751        let b1 = Box2D::from_points(&[point2(-15.0, -20.0), point2(-10.0, 20.0)]);
752        let b2 = Box2D::from_points(&[point2(10.0, 20.0), point2(15.0, -20.0)]);
753        assert!(b1.intersection(&b2).is_none());
754    }
755
756    #[test]
757    fn test_scale() {
758        let b = Box2D::from_points(&[point2(-10.0, -10.0), point2(10.0, 10.0)]);
759        let b = b.scale(0.5, 0.5);
760        assert_eq!(b.max.x, 5.0);
761        assert_eq!(b.max.y, 5.0);
762        assert_eq!(b.min.x, -5.0);
763        assert_eq!(b.min.y, -5.0);
764    }
765
766    #[test]
767    fn test_lerp() {
768        let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(-10.0, -10.0)]);
769        let b2 = Box2D::from_points(&[point2(10.0, 10.0), point2(20.0, 20.0)]);
770        let b = b1.lerp(b2, 0.5);
771        assert_eq!(b.center(), Point2D::zero());
772        assert_eq!(b.size().width, 10.0);
773        assert_eq!(b.size().height, 10.0);
774    }
775
776    #[test]
777    fn test_contains() {
778        let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]);
779        assert!(b.contains(point2(-15.3, 10.5)));
780    }
781
782    #[test]
783    fn test_contains_box() {
784        let b1 = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]);
785        let b2 = Box2D::from_points(&[point2(-14.3, -16.5), point2(6.7, 17.6)]);
786        assert!(b1.contains_box(&b2));
787    }
788
789    #[test]
790    fn test_inflate() {
791        let b = Box2D::from_points(&[point2(-20.0, -20.0), point2(20.0, 20.0)]);
792        let b = b.inflate(10.0, 5.0);
793        assert_eq!(b.size().width, 60.0);
794        assert_eq!(b.size().height, 50.0);
795        assert_eq!(b.center(), Point2D::zero());
796    }
797
798    #[test]
799    fn test_is_empty() {
800        for i in 0..2 {
801            let mut coords_neg = [-20.0, -20.0];
802            let mut coords_pos = [20.0, 20.0];
803            coords_neg[i] = 0.0;
804            coords_pos[i] = 0.0;
805            let b = Box2D::from_points(&[Point2D::from(coords_neg), Point2D::from(coords_pos)]);
806            assert!(b.is_empty());
807        }
808    }
809
810    #[test]
811    fn test_nan_empty() {
812        use std::f32::NAN;
813        assert!(Box2D { min: point2(NAN, 2.0), max: point2(1.0, 3.0) }.is_empty());
814        assert!(Box2D { min: point2(0.0, NAN), max: point2(1.0, 2.0) }.is_empty());
815        assert!(Box2D { min: point2(1.0, -2.0), max: point2(NAN, 2.0) }.is_empty());
816        assert!(Box2D { min: point2(1.0, -2.0), max: point2(0.0, NAN) }.is_empty());
817    }
818}