1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
use super::{
    observer::{DelegateObserver, Observer},
    utils::modulus,
};
use crate::utils::{move_uninit_slice, slice_as_uninit_mut, slice_assume_init_mut, slice_assume_init_ref};
use core::{iter::Chain, mem::MaybeUninit, ptr, slice};
#[cfg(feature = "std")]
use std::io::{self, Write};

/// Consumer part of ring buffer.
pub trait Consumer: Observer {
    /// Set read index.
    ///
    /// # Safety
    ///
    /// Index must go only forward, never backward. It is recommended to use [`Self::advance_read_index`] instead.
    ///
    /// All slots with index less than `value` must be uninitialized until write index, all slots with index equal or greater - must be initialized.
    unsafe fn set_read_index(&self, value: usize);

    /// Moves `read` pointer by `count` places forward.
    ///
    /// # Safety
    ///
    /// First `count` items in occupied memory must be moved out or dropped.
    ///
    /// Must not be called concurrently.
    unsafe fn advance_read_index(&self, count: usize) {
        self.set_read_index((self.read_index() + count) % modulus(self));
    }

    /// Provides a direct access to the ring buffer occupied memory.
    /// The difference from [`Self::as_slices`] is that this method provides slices of [`MaybeUninit`], so items may be moved out of slices.  
    ///
    /// Returns a pair of slices of stored items, the second one may be empty.
    /// Elements with lower indices in slice are older. First slice contains older items that second one.
    ///
    /// # Safety
    ///
    /// All items are initialized. Elements must be removed starting from the beginning of first slice.
    /// When all items are removed from the first slice then items must be removed from the beginning of the second slice.
    ///
    /// *This method must be followed by [`Self::advance_read_index`] call with the number of items being removed previously as argument.*
    /// *No other mutating calls allowed before that.*
    fn occupied_slices(&self) -> (&[MaybeUninit<Self::Item>], &[MaybeUninit<Self::Item>]) {
        unsafe { self.unsafe_slices(self.read_index(), self.write_index()) }
    }

    /// Provides a direct mutable access to the ring buffer occupied memory.
    ///
    /// Same as [`Self::occupied_slices`].
    ///
    /// # Safety
    ///
    /// When some item is replaced with uninitialized value then it must not be read anymore.
    unsafe fn occupied_slices_mut(&mut self) -> (&mut [MaybeUninit<Self::Item>], &mut [MaybeUninit<Self::Item>]) {
        self.unsafe_slices_mut(self.read_index(), self.write_index())
    }

    /// Returns a pair of slices which contain, in order, the contents of the ring buffer.
    #[inline]
    fn as_slices(&self) -> (&[Self::Item], &[Self::Item]) {
        unsafe {
            let (left, right) = self.occupied_slices();
            (slice_assume_init_ref(left), slice_assume_init_ref(right))
        }
    }

    /// Returns a pair of mutable slices which contain, in order, the contents of the ring buffer.
    #[inline]
    fn as_mut_slices(&mut self) -> (&mut [Self::Item], &mut [Self::Item]) {
        unsafe {
            let (left, right) = self.occupied_slices_mut();
            (slice_assume_init_mut(left), slice_assume_init_mut(right))
        }
    }

    /// Returns a reference to the eldest item in the ring buffer, if exists.
    #[inline]
    fn first(&self) -> Option<&Self::Item> {
        self.as_slices().0.first()
    }
    /// Returns a mutable reference to the eldest item in the ring buffer, if exists.
    #[inline]
    fn first_mut(&mut self) -> Option<&mut Self::Item> {
        self.as_mut_slices().0.first_mut()
    }
    /// Returns a reference to the most recent item in the ring buffer, if exists.
    ///
    /// *Returned item may not be actually the most recent if there is a concurrent producer activity.*
    fn last(&self) -> Option<&Self::Item> {
        let (first, second) = self.as_slices();
        if second.is_empty() {
            first.last()
        } else {
            second.last()
        }
    }
    /// Returns a mutable reference to the most recent item in the ring buffer, if exists.
    ///
    /// *Returned item may not be actually the most recent if there is a concurrent producer activity.*
    fn last_mut(&mut self) -> Option<&mut Self::Item> {
        let (first, second) = self.as_mut_slices();
        if second.is_empty() {
            first.last_mut()
        } else {
            second.last_mut()
        }
    }

    /// Removes the eldest item from the ring buffer and returns it.
    ///
    /// Returns `None` if the ring buffer is empty.
    fn try_pop(&mut self) -> Option<Self::Item> {
        if !self.is_empty() {
            let elem = unsafe { self.occupied_slices().0.get_unchecked(0).assume_init_read() };
            unsafe { self.advance_read_index(1) };
            Some(elem)
        } else {
            None
        }
    }

    /// Returns the reference to the eldest item without removing it from the buffer.
    ///
    /// Returns `None` if the ring buffer is empty.
    fn try_peek(&self) -> Option<&Self::Item> {
        if !self.is_empty() {
            Some(unsafe { self.occupied_slices().0.get_unchecked(0).assume_init_ref() })
        } else {
            None
        }
    }

    /// Copies items from the ring buffer to an uninit slice without removing them from the ring buffer.
    ///
    /// Returns a number of items being copied.
    fn peek_slice_uninit(&self, elems: &mut [MaybeUninit<Self::Item>]) -> usize {
        let (left, right) = self.occupied_slices();
        let count = if elems.len() < left.len() {
            move_uninit_slice(elems, unsafe { left.get_unchecked(..elems.len()) });
            elems.len()
        } else {
            let (left_elems, elems) = elems.split_at_mut(left.len());
            move_uninit_slice(left_elems, left);
            left.len()
                + if elems.len() < right.len() {
                    move_uninit_slice(elems, unsafe { right.get_unchecked(..elems.len()) });
                    elems.len()
                } else {
                    move_uninit_slice(unsafe { elems.get_unchecked_mut(..right.len()) }, right);
                    right.len()
                }
        };
        count
    }

    /// Copies items from the ring buffer to a slice without removing them from the ring buffer.
    ///
    /// Returns a number of items being copied.
    fn peek_slice(&self, elems: &mut [Self::Item]) -> usize
    where
        Self::Item: Copy,
    {
        self.peek_slice_uninit(unsafe { slice_as_uninit_mut(elems) })
    }

    /// Removes items from the ring buffer and writes them into an uninit slice.
    ///
    /// Returns count of items been removed.
    fn pop_slice_uninit(&mut self, elems: &mut [MaybeUninit<Self::Item>]) -> usize {
        let count = self.peek_slice_uninit(elems);
        unsafe { self.advance_read_index(count) };
        count
    }

    /// Removes items from the ring buffer and writes them into a slice.
    ///
    /// Returns count of items been removed.
    fn pop_slice(&mut self, elems: &mut [Self::Item]) -> usize
    where
        Self::Item: Copy,
    {
        self.pop_slice_uninit(unsafe { slice_as_uninit_mut(elems) })
    }

    /// Returns an iterator that removes items one by one from the ring buffer.
    fn pop_iter(&mut self) -> PopIter<Self> {
        PopIter::new(self)
    }

    /// Returns a front-to-back iterator containing references to items in the ring buffer.
    ///
    /// This iterator does not remove items out of the ring buffer.
    fn iter(&self) -> Iter<'_, Self> {
        let (left, right) = self.as_slices();
        left.iter().chain(right.iter())
    }

    /// Returns a front-to-back iterator that returns mutable references to items in the ring buffer.
    ///
    /// This iterator does not remove items out of the ring buffer.
    fn iter_mut(&mut self) -> IterMut<'_, Self> {
        let (left, right) = self.as_mut_slices();
        left.iter_mut().chain(right.iter_mut())
    }

    /// Removes at most `count` and at least `min(count, Self::len())` items from the buffer and safely drops them.
    ///
    /// If there is no concurring producer activity then exactly `min(count, Self::len())` items are removed.
    ///
    /// Returns the number of deleted items.
    ///
    /// ```
    /// # extern crate ringbuf;
    /// # use ringbuf::{LocalRb, storage::Array, traits::*};
    /// # fn main() {
    /// let mut rb = LocalRb::<Array<i32, 8>>::default();
    ///
    /// assert_eq!(rb.push_iter(0..8), 8);
    ///
    /// assert_eq!(rb.skip(4), 4);
    /// assert_eq!(rb.skip(8), 4);
    /// assert_eq!(rb.skip(4), 0);
    /// # }
    /// ```
    fn skip(&mut self, count: usize) -> usize {
        unsafe {
            let (left, right) = self.occupied_slices_mut();
            for elem in left.iter_mut().chain(right.iter_mut()).take(count) {
                ptr::drop_in_place(elem.as_mut_ptr());
            }
            let actual_count = usize::min(count, left.len() + right.len());
            self.advance_read_index(actual_count);
            actual_count
        }
    }

    /// Removes all items from the buffer and safely drops them.
    ///
    /// Returns the number of deleted items.
    fn clear(&mut self) -> usize {
        unsafe {
            let (left, right) = self.occupied_slices_mut();
            for elem in left.iter_mut().chain(right.iter_mut()) {
                ptr::drop_in_place(elem.as_mut_ptr());
            }
            let count = left.len() + right.len();
            self.advance_read_index(count);
            count
        }
    }

    #[cfg(feature = "std")]
    /// Removes at most first `count` bytes from the ring buffer and writes them into a [`Write`] instance.
    /// If `count` is `None` then as much as possible bytes will be written.
    ///
    /// Returns:
    ///
    /// + `None`: ring buffer is full or `count` is `0`. In this case `write` isn't called at all.
    /// + `Some(Ok(n))`: `write` succeeded. `n` is number of bytes been written. `n == 0` means that `write` also returned `0`.
    /// + `Some(Err(e))`: `write` is failed and `e` is original error. In this case it is guaranteed that no items was written to the writer.
    ///    To achieve this we write only one contiguous slice at once. So this call may write less than `occupied_len` items even if the writer is ready to get more.
    fn write_into<S: Write>(&mut self, writer: &mut S, count: Option<usize>) -> Option<io::Result<usize>>
    where
        Self: Consumer<Item = u8>,
    {
        let (left, _) = self.occupied_slices();
        let count = usize::min(count.unwrap_or(left.len()), left.len());
        if count == 0 {
            return None;
        }
        let left_init = unsafe { slice_assume_init_ref(&left[..count]) };

        let write_count = match writer.write(left_init) {
            Ok(n) => n,
            Err(e) => return Some(Err(e)),
        };
        assert!(write_count <= count);
        unsafe { self.advance_read_index(write_count) };
        Some(Ok(write_count))
    }
}

/// Owning ring buffer iterator.
pub struct IntoIter<C: Consumer + ?Sized> {
    inner: C,
}

impl<C: Consumer> IntoIter<C> {
    pub fn new(inner: C) -> Self {
        Self { inner }
    }
    pub fn into_inner(self) -> C {
        self.inner
    }
}

impl<C: Consumer> Iterator for IntoIter<C> {
    type Item = C::Item;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.inner.try_pop()
    }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.inner.occupied_len(), None)
    }
}

/// An iterator that removes items from the ring buffer.
///
/// Producer will see removed items only when iterator is dropped or [`PopIter::commit`] is called.
pub struct PopIter<'a, C: Consumer + ?Sized> {
    inner: &'a C,
    iter: Chain<slice::Iter<'a, MaybeUninit<C::Item>>, slice::Iter<'a, MaybeUninit<C::Item>>>,
    count: usize,
    len: usize,
}

impl<'a, C: Consumer + ?Sized> Drop for PopIter<'a, C> {
    fn drop(&mut self) {
        self.commit();
    }
}

impl<'a, C: Consumer + ?Sized> PopIter<'a, C> {
    /// Create an iterator.
    pub fn new(inner: &'a mut C) -> Self {
        let (len, iter) = {
            let (left, right) = inner.occupied_slices();
            (left.len() + right.len(), left.iter().chain(right))
        };
        Self {
            inner,
            iter,
            count: 0,
            len,
        }
    }

    /// Send information about removed items to the ring buffer.
    pub fn commit(&mut self) {
        unsafe { self.inner.advance_read_index(self.count) };
        self.count = 0;
    }
}

impl<'a, C: Consumer> Iterator for PopIter<'a, C> {
    type Item = C::Item;

    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().map(|item| {
            self.count += 1;
            unsafe { item.assume_init_read() }
        })
    }
    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let remain = self.len - self.count;
        (remain, Some(remain))
    }
}

impl<'a, C: Consumer> ExactSizeIterator for PopIter<'a, C> {}

/// Iterator over ring buffer contents.
///
/// *Please do not rely on actual type, it may change in future.*
#[allow(type_alias_bounds)]
pub type Iter<'a, C: Consumer> = Chain<slice::Iter<'a, C::Item>, slice::Iter<'a, C::Item>>;

/// Mutable iterator over ring buffer contents.
///
/// *Please do not rely on actual type, it may change in future.*
#[allow(type_alias_bounds)]
pub type IterMut<'a, C: Consumer> = Chain<slice::IterMut<'a, C::Item>, slice::IterMut<'a, C::Item>>;

/// Trait used for delegating producer methods.
pub trait DelegateConsumer: DelegateObserver
where
    Self::Base: Consumer,
{
}
impl<D: DelegateConsumer> Consumer for D
where
    D::Base: Consumer,
{
    #[inline]
    unsafe fn set_read_index(&self, value: usize) {
        self.base().set_read_index(value)
    }
    #[inline]
    unsafe fn advance_read_index(&self, count: usize) {
        self.base().advance_read_index(count)
    }

    #[inline]
    fn occupied_slices(&self) -> (&[core::mem::MaybeUninit<Self::Item>], &[core::mem::MaybeUninit<Self::Item>]) {
        self.base().occupied_slices()
    }

    #[inline]
    unsafe fn occupied_slices_mut(&mut self) -> (&mut [core::mem::MaybeUninit<Self::Item>], &mut [core::mem::MaybeUninit<Self::Item>]) {
        self.base_mut().occupied_slices_mut()
    }

    #[inline]
    fn as_slices(&self) -> (&[Self::Item], &[Self::Item]) {
        self.base().as_slices()
    }

    #[inline]
    fn as_mut_slices(&mut self) -> (&mut [Self::Item], &mut [Self::Item]) {
        self.base_mut().as_mut_slices()
    }

    #[inline]
    fn try_pop(&mut self) -> Option<Self::Item> {
        self.base_mut().try_pop()
    }

    #[inline]
    fn pop_slice(&mut self, elems: &mut [Self::Item]) -> usize
    where
        Self::Item: Copy,
    {
        self.base_mut().pop_slice(elems)
    }

    #[inline]
    fn iter(&self) -> Iter<'_, Self> {
        self.base().iter()
    }

    #[inline]
    fn iter_mut(&mut self) -> IterMut<'_, Self> {
        self.base_mut().iter_mut()
    }

    #[inline]
    fn skip(&mut self, count: usize) -> usize {
        self.base_mut().skip(count)
    }

    #[inline]
    fn clear(&mut self) -> usize {
        self.base_mut().clear()
    }
}

macro_rules! impl_consumer_traits {
    ($type:ident $(< $( $param:tt $( : $first_bound:tt $(+ $next_bound:tt )* )? ),+ >)?) => {
        impl $(< $( $param $( : $first_bound $(+ $next_bound )* )? ),+ >)? core::iter::IntoIterator for $type $(< $( $param ),+ >)? where Self: Sized {
            type Item = <Self as $crate::traits::Observer>::Item;
            type IntoIter = $crate::traits::consumer::IntoIter<Self>;
            fn into_iter(self) -> Self::IntoIter {
                $crate::traits::consumer::IntoIter::new(self)
            }
        }

        #[cfg(feature = "std")]
        impl $(< $( $param $( : $first_bound $(+ $next_bound )* )? ),+ >)? std::io::Read for $type $(< $( $param ),+ >)?
        where
            Self: $crate::traits::Consumer<Item = u8>,
        {
            fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
                let n = self.pop_slice(buf);
                if n == 0 {
                    Err(std::io::ErrorKind::WouldBlock.into())
                } else {
                    Ok(n)
                }
            }
        }
    };
}
pub(crate) use impl_consumer_traits;