netstack3_device/
base.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use alloc::collections::HashMap;
use alloc::vec::Vec;
use core::fmt::{Debug, Display};
use core::num::NonZeroU64;

use derivative::Derivative;
use lock_order::lock::{OrderedLockAccess, OrderedLockRef};
use net_types::ethernet::Mac;
use net_types::ip::{Ip, IpVersion, Ipv4, Ipv6};
use netstack3_base::sync::RwLock;
use netstack3_base::{
    Counter, Device, DeviceIdContext, HandleableTimer, Inspectable, Inspector, InstantContext,
    ReferenceNotifiers, TimerBindingsTypes, TimerHandler,
};
use netstack3_filter::FilterBindingsTypes;
use netstack3_ip::nud::{LinkResolutionContext, NudCounters};
use packet::Buf;

use crate::internal::arp::ArpCounters;
use crate::internal::ethernet::{EthernetLinkDevice, EthernetTimerId};
use crate::internal::id::{
    BaseDeviceId, BasePrimaryDeviceId, DeviceId, EthernetDeviceId, EthernetPrimaryDeviceId,
    EthernetWeakDeviceId,
};
use crate::internal::loopback::{LoopbackDeviceId, LoopbackPrimaryDeviceId};
use crate::internal::pure_ip::{PureIpDeviceId, PureIpPrimaryDeviceId};
use crate::internal::queue::rx::ReceiveQueueBindingsContext;
use crate::internal::queue::tx::TransmitQueueBindingsContext;
use crate::internal::socket::{self, HeldSockets};
use crate::internal::state::DeviceStateSpec;

/// Iterator over devices.
///
/// Implements `Iterator<Item=DeviceId<C>>` by pulling from provided loopback
/// and ethernet device ID iterators. This struct only exists as a named type
/// so it can be an associated type on impls of the [`IpDeviceContext`] trait.
pub struct DevicesIter<'s, BT: DeviceLayerTypes> {
    pub(super) ethernet:
        alloc::collections::hash_map::Values<'s, EthernetDeviceId<BT>, EthernetPrimaryDeviceId<BT>>,
    pub(super) pure_ip:
        alloc::collections::hash_map::Values<'s, PureIpDeviceId<BT>, PureIpPrimaryDeviceId<BT>>,
    pub(super) loopback: core::option::Iter<'s, LoopbackPrimaryDeviceId<BT>>,
}

impl<'s, BT: DeviceLayerTypes> Iterator for DevicesIter<'s, BT> {
    type Item = DeviceId<BT>;

    fn next(&mut self) -> Option<Self::Item> {
        let Self { ethernet, pure_ip, loopback } = self;
        ethernet
            .map(|primary| primary.clone_strong().into())
            .chain(pure_ip.map(|primary| primary.clone_strong().into()))
            .chain(loopback.map(|primary| primary.clone_strong().into()))
            .next()
    }
}

/// Supported link layer address types for IPv6.
#[allow(missing_docs)]
pub enum Ipv6DeviceLinkLayerAddr {
    Mac(Mac),
    // Add other link-layer address types as needed.
}

impl AsRef<[u8]> for Ipv6DeviceLinkLayerAddr {
    fn as_ref(&self) -> &[u8] {
        match self {
            Ipv6DeviceLinkLayerAddr::Mac(a) => a.as_ref(),
        }
    }
}

/// The identifier for timer events in the device layer.
#[derive(Derivative)]
#[derivative(
    Clone(bound = ""),
    Eq(bound = ""),
    PartialEq(bound = ""),
    Hash(bound = ""),
    Debug(bound = "")
)]
pub struct DeviceLayerTimerId<BT: DeviceLayerTypes>(DeviceLayerTimerIdInner<BT>);

#[derive(Derivative)]
#[derivative(
    Clone(bound = ""),
    Eq(bound = ""),
    PartialEq(bound = ""),
    Hash(bound = ""),
    Debug(bound = "")
)]
#[allow(missing_docs)]
enum DeviceLayerTimerIdInner<BT: DeviceLayerTypes> {
    Ethernet(EthernetTimerId<EthernetWeakDeviceId<BT>>),
}

impl<BT: DeviceLayerTypes> From<EthernetTimerId<EthernetWeakDeviceId<BT>>>
    for DeviceLayerTimerId<BT>
{
    fn from(id: EthernetTimerId<EthernetWeakDeviceId<BT>>) -> DeviceLayerTimerId<BT> {
        DeviceLayerTimerId(DeviceLayerTimerIdInner::Ethernet(id))
    }
}

impl<CC, BT> HandleableTimer<CC, BT> for DeviceLayerTimerId<BT>
where
    BT: DeviceLayerTypes,
    CC: TimerHandler<BT, EthernetTimerId<EthernetWeakDeviceId<BT>>>,
{
    fn handle(self, core_ctx: &mut CC, bindings_ctx: &mut BT, timer: BT::UniqueTimerId) {
        let Self(id) = self;
        match id {
            DeviceLayerTimerIdInner::Ethernet(id) => core_ctx.handle_timer(bindings_ctx, id, timer),
        }
    }
}

/// The collection of devices within [`DeviceLayerState`].
#[derive(Derivative)]
#[derivative(Default(bound = ""))]
pub struct Devices<BT: DeviceLayerTypes> {
    /// Collection of Ethernet devices.
    pub ethernet: HashMap<EthernetDeviceId<BT>, EthernetPrimaryDeviceId<BT>>,
    /// Collection of PureIP devices.
    pub pure_ip: HashMap<PureIpDeviceId<BT>, PureIpPrimaryDeviceId<BT>>,
    /// The loopback device, if installed.
    pub loopback: Option<LoopbackPrimaryDeviceId<BT>>,
}

impl<BT: DeviceLayerTypes> Devices<BT> {
    /// Gets an iterator over available devices.
    pub fn iter(&self) -> DevicesIter<'_, BT> {
        let Self { ethernet, pure_ip, loopback } = self;
        DevicesIter {
            ethernet: ethernet.values(),
            pure_ip: pure_ip.values(),
            loopback: loopback.iter(),
        }
    }
}

/// The state associated with the device layer.
#[derive(Derivative)]
#[derivative(Default(bound = ""))]
pub struct DeviceLayerState<BT: DeviceLayerTypes> {
    devices: RwLock<Devices<BT>>,
    /// Device layer origin tracker.
    pub origin: OriginTracker,
    /// Collection of all device sockets.
    pub shared_sockets: HeldSockets<BT>,
    /// Common device counters.
    pub counters: DeviceCounters,
    /// Ethernet counters.
    pub ethernet_counters: EthernetDeviceCounters,
    /// PureIp counters.
    pub pure_ip_counters: PureIpDeviceCounters,
    /// IPv4 NUD counters.
    pub nud_v4_counters: NudCounters<Ipv4>,
    /// IPv6 NUD counters.
    pub nud_v6_counters: NudCounters<Ipv6>,
    /// ARP counters.
    pub arp_counters: ArpCounters,
}

impl<BT: DeviceLayerTypes> DeviceLayerState<BT> {
    /// Helper to access NUD counters for an IP version.
    pub fn nud_counters<I: Ip>(&self) -> &NudCounters<I> {
        I::map_ip((), |()| &self.nud_v4_counters, |()| &self.nud_v6_counters)
    }
}

impl<BT: DeviceLayerTypes> OrderedLockAccess<Devices<BT>> for DeviceLayerState<BT> {
    type Lock = RwLock<Devices<BT>>;
    fn ordered_lock_access(&self) -> OrderedLockRef<'_, Self::Lock> {
        OrderedLockRef::new(&self.devices)
    }
}

/// Counters for ethernet devices.
#[derive(Default)]
pub struct EthernetDeviceCounters {
    /// Count of incoming frames dropped due to an unsupported ethertype.
    pub recv_unsupported_ethertype: Counter,
    /// Count of incoming frames dropped due to an empty ethertype.
    pub recv_no_ethertype: Counter,
}

impl Inspectable for EthernetDeviceCounters {
    fn record<I: Inspector>(&self, inspector: &mut I) {
        inspector.record_child("Ethernet", |inspector| {
            let Self { recv_no_ethertype, recv_unsupported_ethertype } = self;
            inspector.record_child("Rx", |inspector| {
                inspector.record_counter("NoEthertype", recv_no_ethertype);
                inspector.record_counter("UnsupportedEthertype", recv_unsupported_ethertype);
            });
        })
    }
}

/// Counters for pure IP devices.
#[derive(Default)]
pub struct PureIpDeviceCounters {}

impl Inspectable for PureIpDeviceCounters {
    fn record<I: Inspector>(&self, _inspector: &mut I) {}
}

/// Device layer counters.
#[derive(Default)]
pub struct DeviceCounters {
    /// Count of outgoing frames which enter the device layer (but may or may
    /// not have been dropped prior to reaching the wire).
    pub send_total_frames: Counter,
    /// Count of frames sent.
    pub send_frame: Counter,
    /// Count of frames that failed to send because of a full Tx queue.
    pub send_queue_full: Counter,
    /// Count of frames that failed to send because of a serialization error.
    pub send_serialize_error: Counter,
    /// Count of frames received.
    pub recv_frame: Counter,
    /// Count of incoming frames dropped due to a parsing error.
    pub recv_parse_error: Counter,
    /// Count of incoming frames containing an IPv4 packet delivered.
    pub recv_ipv4_delivered: Counter,
    /// Count of incoming frames containing an IPv6 packet delivered.
    pub recv_ipv6_delivered: Counter,
    /// Count of sent frames containing an IPv4 packet.
    pub send_ipv4_frame: Counter,
    /// Count of sent frames containing an IPv6 packet.
    pub send_ipv6_frame: Counter,
    /// Count of frames that failed to send because there was no Tx queue.
    pub send_dropped_no_queue: Counter,
    /// Count of frames that were dropped during Tx queue dequeuing.
    pub send_dropped_dequeue: Counter,
}

impl DeviceCounters {
    /// Either `send_ipv4_frame` or `send_ipv6_frame` depending on `I`.
    pub fn send_frame<I: Ip>(&self) -> &Counter {
        match I::VERSION {
            IpVersion::V4 => &self.send_ipv4_frame,
            IpVersion::V6 => &self.send_ipv6_frame,
        }
    }
}

impl Inspectable for DeviceCounters {
    fn record<I: Inspector>(&self, inspector: &mut I) {
        let Self {
            recv_frame,
            recv_ipv4_delivered,
            recv_ipv6_delivered,
            recv_parse_error,
            send_dropped_no_queue,
            send_frame,
            send_ipv4_frame,
            send_ipv6_frame,
            send_queue_full,
            send_serialize_error,
            send_total_frames,
            send_dropped_dequeue,
        } = self;
        inspector.record_child("Rx", |inspector| {
            inspector.record_counter("TotalFrames", recv_frame);
            inspector.record_counter("Malformed", recv_parse_error);
            inspector.record_counter("Ipv4Delivered", recv_ipv4_delivered);
            inspector.record_counter("Ipv6Delivered", recv_ipv6_delivered);
        });
        inspector.record_child("Tx", |inspector| {
            inspector.record_counter("TotalFrames", send_total_frames);
            inspector.record_counter("Sent", send_frame);
            inspector.record_counter("SendIpv4Frame", send_ipv4_frame);
            inspector.record_counter("SendIpv6Frame", send_ipv6_frame);
            inspector.record_counter("NoQueue", send_dropped_no_queue);
            inspector.record_counter("QueueFull", send_queue_full);
            inspector.record_counter("SerializeError", send_serialize_error);
            inspector.record_counter("DequeueDrop", send_dropped_dequeue);
        });
    }
}
/// Light-weight tracker for recording the source of some instance.
///
/// This should be held as a field in a parent type that is cloned into each
/// child instance. Then, the origin of a child instance can be verified by
/// asserting equality against the parent's field.
///
/// This is only enabled in debug builds; in non-debug builds, all
/// `OriginTracker` instances are identical so all operations are no-ops.
// TODO(https://fxbug.dev/320078167): Move this and OriginTrackerContext out of
// the device module and apply to more places.
#[derive(Clone, Debug, PartialEq)]
pub struct OriginTracker(#[cfg(debug_assertions)] u64);

impl Default for OriginTracker {
    fn default() -> Self {
        Self::new()
    }
}

impl OriginTracker {
    /// Creates a new `OriginTracker` that isn't derived from any other
    /// instance.
    ///
    /// In debug builds, this creates a unique `OriginTracker` that won't be
    /// equal to any instances except those cloned from it. In non-debug builds
    /// all `OriginTracker` instances are identical.
    #[cfg_attr(not(debug_assertions), inline)]
    fn new() -> Self {
        Self(
            #[cfg(debug_assertions)]
            {
                static COUNTER: core::sync::atomic::AtomicU64 =
                    core::sync::atomic::AtomicU64::new(0);
                COUNTER.fetch_add(1, core::sync::atomic::Ordering::Relaxed)
            },
        )
    }
}

/// A trait abstracting a context containing an [`OriginTracker`].
///
/// This allows API structs to extract origin from contexts when creating
/// resources.
pub trait OriginTrackerContext {
    /// Gets the origin tracker for this context.
    fn origin_tracker(&mut self) -> OriginTracker;
}

/// A context providing facilities to store and remove primary device IDs.
///
/// This allows the device layer APIs to be written generically on `D`.
pub trait DeviceCollectionContext<D: Device + DeviceStateSpec, BT: DeviceLayerTypes>:
    DeviceIdContext<D>
{
    /// Adds `device` to the device collection.
    fn insert(&mut self, device: BasePrimaryDeviceId<D, BT>);

    /// Removes `device` from the collection, if it exists.
    fn remove(&mut self, device: &BaseDeviceId<D, BT>) -> Option<BasePrimaryDeviceId<D, BT>>;
}

/// Provides abstractions over the frame metadata received from bindings for
/// implementers of [`Device`].
///
/// This trait allows [`api::DeviceApi`] to provide a single entrypoint for
/// frames from bindings.
pub trait DeviceReceiveFrameSpec {
    /// The frame metadata for ingress frames, where `D` is a device identifier.
    type FrameMetadata<D>;
}

/// Provides associated types used in the device layer.
pub trait DeviceLayerStateTypes: InstantContext + FilterBindingsTypes {
    /// The state associated with loopback devices.
    type LoopbackDeviceState: Send + Sync + DeviceClassMatcher<Self::DeviceClass>;

    /// The state associated with ethernet devices.
    type EthernetDeviceState: Send + Sync + DeviceClassMatcher<Self::DeviceClass>;

    /// The state associated with pure IP devices.
    type PureIpDeviceState: Send + Sync + DeviceClassMatcher<Self::DeviceClass>;

    /// An opaque identifier that is available from both strong and weak device
    /// references.
    type DeviceIdentifier: Send + Sync + Debug + Display + DeviceIdAndNameMatcher;
}

/// Provides matching functionality for the device class of a device installed
/// in the netstack.
pub trait DeviceClassMatcher<DeviceClass> {
    /// Returns whether the provided device class matches the class of the
    /// device.
    fn device_class_matches(&self, device_class: &DeviceClass) -> bool;
}

/// Provides matching functionality for the ID and name of a device installed in
/// the netstack.
pub trait DeviceIdAndNameMatcher {
    /// Returns whether the provided ID matches the ID of the device.
    fn id_matches(&self, id: &NonZeroU64) -> bool;

    /// Returns whether the provided name matches the name of the device.
    fn name_matches(&self, name: &str) -> bool;
}

/// Provides associated types used in the device layer.
///
/// This trait groups together state types used throughout the device layer. It
/// is blanket-implemented for all types that implement
/// [`socket::DeviceSocketTypes`] and [`DeviceLayerStateTypes`].
pub trait DeviceLayerTypes:
    DeviceLayerStateTypes
    + socket::DeviceSocketTypes
    + LinkResolutionContext<EthernetLinkDevice>
    + TimerBindingsTypes
    + ReferenceNotifiers
    + 'static
{
}
impl<
        BC: DeviceLayerStateTypes
            + socket::DeviceSocketTypes
            + LinkResolutionContext<EthernetLinkDevice>
            + TimerBindingsTypes
            + ReferenceNotifiers
            + 'static,
    > DeviceLayerTypes for BC
{
}

/// An event dispatcher for the device layer.
pub trait DeviceLayerEventDispatcher:
    DeviceLayerTypes
    + ReceiveQueueBindingsContext<LoopbackDeviceId<Self>>
    + TransmitQueueBindingsContext<EthernetDeviceId<Self>>
    + TransmitQueueBindingsContext<LoopbackDeviceId<Self>>
    + TransmitQueueBindingsContext<PureIpDeviceId<Self>>
    + Sized
{
    /// The transmit queue dequeueing context used by bindings.
    ///
    /// `DequeueContext` is a passthrough type from bindings (i.e. entirely
    /// opaque to core) when using `TransmitQueueApi` to trigger the transmit
    /// queue to send frames to the underlying devices.
    type DequeueContext;

    /// Send a frame to an Ethernet device driver.
    ///
    /// See [`DeviceSendFrameError`] for the ways this call may fail; all other
    /// errors are silently ignored and reported as success. Implementations are
    /// expected to gracefully handle non-conformant but correctable input, e.g.
    /// by padding too-small frames.
    ///
    /// `dequeue_context` is `Some` iff this is called from the context of
    /// operating the transmit queue via `TransmitQueueApi`.
    fn send_ethernet_frame(
        &mut self,
        device: &EthernetDeviceId<Self>,
        frame: Buf<Vec<u8>>,
        dequeue_context: Option<&mut Self::DequeueContext>,
    ) -> Result<(), DeviceSendFrameError>;

    /// Send an IP packet to an IP device driver.
    ///
    /// See [`DeviceSendFrameError`] for the ways this call may fail; all other
    /// errors are silently ignored and reported as success. Implementations are
    /// expected to gracefully handle non-conformant but correctable input, e.g.
    /// by padding too-small frames.
    ///
    /// `dequeue_context` is `Some` iff this is called from the context of
    /// operating the transmit queue via `TransmitQueueApi`.
    fn send_ip_packet(
        &mut self,
        device: &PureIpDeviceId<Self>,
        packet: Buf<Vec<u8>>,
        ip_version: IpVersion,
        dequeue_context: Option<&mut Self::DequeueContext>,
    ) -> Result<(), DeviceSendFrameError>;
}

/// An error encountered when sending a frame.
#[derive(Debug, PartialEq, Eq)]
pub enum DeviceSendFrameError {
    /// The device doesn't have available buffers to send frames.
    NoBuffers,
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn origin_tracker() {
        let tracker = OriginTracker::new();
        if cfg!(debug_assertions) {
            assert_ne!(tracker, OriginTracker::new());
        } else {
            assert_eq!(tracker, OriginTracker::new());
        }
        assert_eq!(tracker.clone(), tracker);
    }
}