fuchsia_audio_codec/
stream_processor.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use anyhow::{format_err, Context as _, Error};
use fidl::endpoints::ClientEnd;
use fidl_fuchsia_media::*;
use fidl_fuchsia_mediacodec::*;
use fidl_fuchsia_sysmem2::*;
use fuchsia_stream_processors::*;
use fuchsia_sync::{Mutex, RwLock};
use futures::future::{maybe_done, MaybeDone};
use futures::io::{self, AsyncWrite};
use futures::stream::{FusedStream, Stream};
use futures::task::{Context, Poll, Waker};
use futures::{ready, Future, StreamExt};
use std::collections::{HashSet, VecDeque};
use std::mem;
use std::pin::Pin;
use std::sync::Arc;
use tracing::{trace, warn};

use crate::buffer_collection_constraints::buffer_collection_constraints_default;
use crate::sysmem_allocator::{BufferName, SysmemAllocatedBuffers, SysmemAllocation};

fn fidl_error_to_io_error(e: fidl::Error) -> io::Error {
    io::Error::new(io::ErrorKind::Other, format_err!("Fidl Error: {}", e))
}

#[derive(Debug)]
/// Listener is a three-valued Option that captures the waker that a listener needs to be woken
/// upon when it polls the future instead of at registration time.
enum Listener {
    /// No one is listening.
    None,
    /// Someone is listening, but either have been woken and not repolled, or never polled yet.
    New,
    /// Someone is listening, and can be woken with the waker.
    Some(Waker),
}

impl Listener {
    /// Adds a waker to be awoken with `Listener::wake`.
    /// Panics if no one is listening.
    fn register(&mut self, waker: Waker) {
        *self = match mem::replace(self, Listener::None) {
            Listener::None => panic!("Polled a listener with no pollers"),
            _ => Listener::Some(waker),
        };
    }

    /// If a listener has polled, wake the listener and replace it with New.
    /// Noop if no one has registered.
    fn wake(&mut self) {
        if let Listener::None = self {
            return;
        }
        match mem::replace(self, Listener::New) {
            Listener::None => panic!("Should have been polled"),
            Listener::Some(waker) => waker.wake(),
            Listener::New => {}
        }
    }

    /// Get a reference to the waker, if there is one waiting.
    fn waker(&self) -> Option<&Waker> {
        if let Listener::Some(ref waker) = self {
            Some(waker)
        } else {
            None
        }
    }
}

impl Default for Listener {
    fn default() -> Self {
        Listener::None
    }
}

/// A queue of encoded packets, to be sent to the `listener` when it polls next.
struct OutputQueue {
    /// The listener. Woken when a packet arrives after a previous poll() returned Pending.
    listener: Listener,
    /// A queue of encoded packets to be delivered to the receiver.
    queue: VecDeque<Packet>,
    /// True when the stream has received an end-of-stream message. The stream will return None
    /// after the `queue` is empty.
    ended: bool,
}

impl OutputQueue {
    /// Adds a packet to the queue and wakes the listener if necessary.
    fn enqueue(&mut self, packet: Packet) {
        self.queue.push_back(packet);
        self.listener.wake();
    }

    /// Signals the end of the stream has happened.
    /// Wakes the listener if necessary.
    fn mark_ended(&mut self) {
        self.ended = true;
        self.listener.wake();
    }

    fn waker(&self) -> Option<&Waker> {
        self.listener.waker()
    }

    /// Wakes the listener so that it will repoll, if it is waiting.
    fn wake(&mut self) {
        self.listener.wake();
    }
}

impl Default for OutputQueue {
    fn default() -> Self {
        OutputQueue { listener: Listener::default(), queue: VecDeque::new(), ended: false }
    }
}

impl Stream for OutputQueue {
    type Item = Packet;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        match self.queue.pop_front() {
            Some(packet) => Poll::Ready(Some(packet)),
            None if self.ended => Poll::Ready(None),
            None => {
                self.listener.register(cx.waker().clone());
                Poll::Pending
            }
        }
    }
}

// The minimum specified by codec is too small to contain the typical pcm frame chunk size for the
// encoder case (1024). Increase to a reasonable amount.
const MIN_INPUT_BUFFER_SIZE: u32 = 4096;
// Go with codec default for output, for frame alignment.
const MIN_OUTPUT_BUFFER_SIZE: u32 = 0;

/// Index of an input buffer to be shared between the client and the StreamProcessor.
#[derive(PartialEq, Eq, Hash, Clone, Debug)]
struct InputBufferIndex(u32);

/// The StreamProcessorInner handles the events that come from the StreamProcessor, mostly related
/// to setup of the buffers and handling the output packets as they arrive.
struct StreamProcessorInner {
    /// The proxy to the stream processor.
    processor: StreamProcessorProxy,
    /// The proxy to the sysmem allocator.
    sysmem_client: AllocatorProxy,
    /// The event stream from the StreamProcessor.  We handle these internally.
    events: StreamProcessorEventStream,
    /// The size in bytes of each input packet
    input_packet_size: u64,
    /// The set of input buffers that are available for writing by the client, without the one
    /// possibly being used by the input_cursor.
    client_owned: HashSet<InputBufferIndex>,
    /// A cursor on the next input buffer location to be written to when new input data arrives.
    input_cursor: Option<(InputBufferIndex, u64)>,
    /// An queue of the indexes of output buffers that have been filled by the processor and a
    /// waiter if someone is waiting on it.
    /// Also holds the output waker, if it is registered.
    output_queue: Mutex<OutputQueue>,
    /// Waker that is waiting on input to be ready.
    input_waker: Option<Waker>,
    /// Allocation for the input buffers.
    input_allocation: MaybeDone<SysmemAllocation>,
    /// Allocation for the output buffers.
    output_allocation: MaybeDone<SysmemAllocation>,
}

impl StreamProcessorInner {
    /// Handles an event from the StreamProcessor. A number of these events come on stream start to
    /// setup the input and output buffers, and from then on the output packets and end of stream
    /// marker, and the input packets are marked as usable after they are processed.
    fn handle_event(&mut self, evt: StreamProcessorEvent) -> Result<(), Error> {
        match evt {
            StreamProcessorEvent::OnInputConstraints { input_constraints } => {
                let _input_constraints = ValidStreamBufferConstraints::try_from(input_constraints)?;
                let buffer_constraints =
                    Self::buffer_constraints_from_min_size(MIN_INPUT_BUFFER_SIZE);
                let processor = self.processor.clone();
                let mut partial_settings = Self::partial_settings();
                let token_fn = move |token: ClientEnd<BufferCollectionTokenMarker>| {
                    // A sysmem token channel serves both sysmem(1) and sysmem2 token protocols, so
                    // we can convert here until StreamProcessor has a sysmem2 token field.
                    partial_settings.sysmem_token =
                        Some(ClientEnd::<fidl_fuchsia_sysmem::BufferCollectionTokenMarker>::new(
                            token.into_channel(),
                        ));
                    // FIDL failures will be caught via the request stream.
                    if let Err(e) = processor.set_input_buffer_partial_settings(partial_settings) {
                        warn!("Couldn't set input buffer settings: {:?}", e);
                    }
                };
                self.input_allocation = maybe_done(SysmemAllocation::allocate(
                    self.sysmem_client.clone(),
                    BufferName { name: "StreamProcessorInput", priority: 1 },
                    None,
                    buffer_constraints,
                    token_fn,
                )?);
            }
            StreamProcessorEvent::OnOutputConstraints { output_config } => {
                let output_constraints = ValidStreamOutputConstraints::try_from(output_config)?;
                if !output_constraints.buffer_constraints_action_required {
                    return Ok(());
                }
                let buffer_constraints =
                    Self::buffer_constraints_from_min_size(MIN_OUTPUT_BUFFER_SIZE);
                let processor = self.processor.clone();
                let mut partial_settings = Self::partial_settings();
                let token_fn = move |token: ClientEnd<BufferCollectionTokenMarker>| {
                    // A sysmem token channel serves both sysmem(1) and sysmem2 token protocols, so
                    // we can convert here until StreamProcessor has a sysmem2 token field.
                    partial_settings.sysmem_token =
                        Some(ClientEnd::<fidl_fuchsia_sysmem::BufferCollectionTokenMarker>::new(
                            token.into_channel(),
                        ));
                    // FIDL failures will be caught via the request stream.
                    if let Err(e) = processor.set_output_buffer_partial_settings(partial_settings) {
                        warn!("Couldn't set output buffer settings: {:?}", e);
                    }
                };

                self.output_allocation = maybe_done(SysmemAllocation::allocate(
                    self.sysmem_client.clone(),
                    BufferName { name: "StreamProcessorOutput", priority: 1 },
                    None,
                    buffer_constraints,
                    token_fn,
                )?);
            }
            StreamProcessorEvent::OnOutputPacket { output_packet, .. } => {
                let mut lock = self.output_queue.lock();
                lock.enqueue(output_packet);
            }
            StreamProcessorEvent::OnFreeInputPacket {
                free_input_packet: PacketHeader { packet_index: Some(idx), .. },
            } => {
                if !self.client_owned.insert(InputBufferIndex(idx)) {
                    warn!("Freed an input packet that was already freed: {:?}", idx);
                }
                self.setup_input_cursor();
            }
            StreamProcessorEvent::OnOutputEndOfStream { .. } => {
                let mut lock = self.output_queue.lock();
                lock.mark_ended();
            }
            StreamProcessorEvent::OnOutputFormat { .. } => {}
            e => trace!("Unhandled stream processor event: {:?}", e),
        }
        Ok(())
    }

    /// Process one event, and return Poll::Ready if the item has been processed,
    /// and Poll::Pending if no event has been processed and the waker will be woken if
    /// another event happens.
    fn process_event(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Error>> {
        match ready!(self.events.poll_next_unpin(cx)) {
            Some(Err(e)) => Poll::Ready(Err(e.into())),
            Some(Ok(event)) => Poll::Ready(self.handle_event(event)),
            None => Poll::Ready(Err(format_err!("Client disconnected"))),
        }
    }

    fn buffer_constraints_from_min_size(min_buffer_size: u32) -> BufferCollectionConstraints {
        BufferCollectionConstraints {
            buffer_memory_constraints: Some(BufferMemoryConstraints {
                min_size_bytes: Some(min_buffer_size as u64),
                ..Default::default()
            }),
            ..buffer_collection_constraints_default()
        }
    }

    fn partial_settings() -> StreamBufferPartialSettings {
        StreamBufferPartialSettings {
            buffer_lifetime_ordinal: Some(1),
            buffer_constraints_version_ordinal: Some(1),
            sysmem_token: None,
            ..Default::default()
        }
    }

    fn input_buffers(&mut self) -> &mut SysmemAllocatedBuffers {
        Pin::new(&mut self.input_allocation)
            .output_mut()
            .expect("allocation completed")
            .as_mut()
            .expect("succcessful allocation")
    }

    fn output_buffers(&mut self) -> &mut SysmemAllocatedBuffers {
        Pin::new(&mut self.output_allocation)
            .output_mut()
            .expect("allocation completed")
            .as_mut()
            .expect("succcessful allocation")
    }

    /// Called when the input_allocation future finishes.
    /// Takes the buffers out of the allocator, and sets up the input cursor to accept data.
    fn input_allocation_complete(&mut self) -> Result<(), Error> {
        let _ = Pin::new(&mut self.input_allocation)
            .output_mut()
            .ok_or_else(|| format_err!("allocation isn't complete"))?;

        let settings = self.input_buffers().settings();
        self.input_packet_size = (*settings.size_bytes.as_ref().unwrap()).try_into()?;
        let buffer_count = self.input_buffers().len();
        for i in 0..buffer_count {
            let _ = self.client_owned.insert(InputBufferIndex(i.try_into()?));
        }
        // allocation is complete, and we can write to the input.
        self.setup_input_cursor();
        Ok(())
    }

    /// Called when the output allocation future finishes.
    /// Takes the buffers out of the allocator, and sets up the output buffers for retrieval of output,
    /// signaling to the processor that the output buffers are set.
    fn output_allocation_complete(&mut self) -> Result<(), Error> {
        let _ = Pin::new(&mut self.output_allocation)
            .output_mut()
            .ok_or_else(|| format_err!("allocation isn't complete"))?;
        self.processor
            .complete_output_buffer_partial_settings(/*buffer_lifetime_ordinal=*/ 1)
            .context("setting output buffer settings")?;
        Ok(())
    }

    /// Poll any of the allocations that are waiting to complete, returning Pending if
    /// any are still waiting to finish, and Ready if one has failed or both have completed.
    fn poll_buffer_allocation(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Error>> {
        if let MaybeDone::Future(_) = self.input_allocation {
            match Pin::new(&mut self.input_allocation).poll(cx) {
                Poll::Ready(()) => {
                    if let Err(e) = self.input_allocation_complete() {
                        return Poll::Ready(Err(e));
                    }
                }
                Poll::Pending => {}
            };
        }
        if let MaybeDone::Future(_) = self.output_allocation {
            match Pin::new(&mut self.output_allocation).poll(cx) {
                Poll::Ready(()) => {
                    if let Err(e) = self.output_allocation_complete() {
                        return Poll::Ready(Err(e));
                    }
                }
                Poll::Pending => {}
            };
        }
        Poll::Pending
    }

    /// Provides the current registered waiting context with priority given to the output waker.
    fn waiting_waker(&self) -> Option<Waker> {
        match (self.output_queue.lock().waker(), &self.input_waker) {
            // No one is waiting.
            (None, None) => None,
            (Some(waker), _) => Some(waker.clone()),
            (_, Some(waker)) => Some(waker.clone()),
        }
    }

    /// Process all the events that are currently available from the StreamProcessor and Allocators,
    /// waking any known waker to be woken when another event arrives.
    /// Returns Ok(()) if this was accomplished or Err() if an error occurred while processing.
    fn poll_events(&mut self) -> Result<(), Error> {
        let waker = loop {
            let waker = match self.waiting_waker() {
                // No one still needs to be woken.  This means all the wakers have been awoke,
                // and will repoll.
                None => return Ok(()),
                Some(waker) => waker,
            };
            match self.process_event(&mut Context::from_waker(&waker)) {
                Poll::Pending => break waker,
                Poll::Ready(Err(e)) => {
                    warn!("Stream processing error: {:?}", e);
                    return Err(e.into());
                }
                // Didn't set the waker to be awoken, so let's try again.
                Poll::Ready(Ok(())) => {}
            }
        };

        if let Poll::Ready(Err(e)) = self.poll_buffer_allocation(&mut Context::from_waker(&waker)) {
            warn!("Stream buffer allocation error: {:?}", e);
            return Err(e.into());
        }
        Ok(())
    }

    fn wake_output(&mut self) {
        self.output_queue.lock().wake();
    }

    fn wake_input(&mut self) {
        if let Some(w) = self.input_waker.take() {
            w.wake();
        }
    }

    /// Attempts to set up a new input cursor, out of the current set of client owned input buffers.
    /// If the cursor is already set, this does nothing.
    fn setup_input_cursor(&mut self) {
        if self.input_cursor.is_some() {
            // Nothing to be done
            return;
        }
        let next_idx = match self.client_owned.iter().next() {
            None => return,
            Some(idx) => idx.clone(),
        };
        let _ = self.client_owned.remove(&next_idx);
        self.input_cursor = Some((next_idx, 0));
        self.wake_input();
    }

    /// Reads an output packet from the output buffers, and marks the packets as recycled so the
    /// output buffer can be reused. Allocates a new vector to hold the data.
    fn read_output_packet(&mut self, packet: Packet) -> Result<Vec<u8>, Error> {
        let packet = ValidPacket::try_from(packet)?;

        let output_size = packet.valid_length_bytes as usize;
        let offset = packet.start_offset as u64;
        let mut output = vec![0; output_size];
        let buf_idx = packet.buffer_index;
        let vmo = self.output_buffers().get_mut(buf_idx).expect("output vmo should exist");
        vmo.read(&mut output, offset)?;
        self.processor.recycle_output_packet(&packet.header.into())?;
        Ok(output)
    }
}

/// Struct representing a CodecFactory .
/// Input sent to the encoder via `StreamProcessor::write_bytes` is queued for delivery, and delivered
/// whenever a packet is full or `StreamProcessor::send_packet` is called.  Output can be retrieved using
/// an `StreamProcessorStream` from `StreamProcessor::take_output_stream`.
pub struct StreamProcessor {
    inner: Arc<RwLock<StreamProcessorInner>>,
}

/// An StreamProcessorStream is a Stream of processed data from a stream processor.
/// Returned from `StreamProcessor::take_output_stream`.
pub struct StreamProcessorOutputStream {
    inner: Arc<RwLock<StreamProcessorInner>>,
}

impl StreamProcessor {
    /// Create a new StreamProcessor given the proxy.
    /// Takes the event stream of the proxy.
    fn create(processor: StreamProcessorProxy, sysmem_client: AllocatorProxy) -> Self {
        let events = processor.take_event_stream();
        Self {
            inner: Arc::new(RwLock::new(StreamProcessorInner {
                processor,
                sysmem_client,
                events,
                input_packet_size: 0,
                client_owned: HashSet::new(),
                input_cursor: None,
                output_queue: Default::default(),
                input_waker: None,
                input_allocation: maybe_done(SysmemAllocation::pending()),
                output_allocation: maybe_done(SysmemAllocation::pending()),
            })),
        }
    }

    /// Create a new StreamProcessor encoder, with the given `input_domain` and `encoder_settings`.  See
    /// stream_processor.fidl for descriptions of these parameters.  This is only meant for audio
    /// encoding.
    pub fn create_encoder(
        input_domain: DomainFormat,
        encoder_settings: EncoderSettings,
    ) -> Result<StreamProcessor, Error> {
        let sysmem_client = fuchsia_component::client::connect_to_protocol::<AllocatorMarker>()
            .context("Connecting to sysmem")?;

        let format_details = FormatDetails {
            domain: Some(input_domain),
            encoder_settings: Some(encoder_settings),
            format_details_version_ordinal: Some(1),
            mime_type: Some("audio/pcm".to_string()),
            oob_bytes: None,
            pass_through_parameters: None,
            timebase: None,
            ..Default::default()
        };

        let encoder_params = CreateEncoderParams {
            input_details: Some(format_details),
            require_hw: Some(false),
            ..Default::default()
        };

        let codec_svc = fuchsia_component::client::connect_to_protocol::<CodecFactoryMarker>()
            .context("Failed to connect to Codec Factory")?;

        let (processor, stream_processor_serverend) = fidl::endpoints::create_proxy();

        codec_svc.create_encoder(&encoder_params, stream_processor_serverend)?;

        Ok(StreamProcessor::create(processor, sysmem_client))
    }

    /// Create a new StreamProcessor decoder, with the given `mime_type` and optional `oob_bytes`.  See
    /// stream_processor.fidl for descriptions of these parameters.  This is only meant for audio
    /// decoding.
    pub fn create_decoder(
        mime_type: &str,
        oob_bytes: Option<Vec<u8>>,
    ) -> Result<StreamProcessor, Error> {
        let sysmem_client = fuchsia_component::client::connect_to_protocol::<AllocatorMarker>()
            .context("Connecting to sysmem")?;

        let format_details = FormatDetails {
            mime_type: Some(mime_type.to_string()),
            oob_bytes: oob_bytes,
            format_details_version_ordinal: Some(1),
            encoder_settings: None,
            domain: None,
            pass_through_parameters: None,
            timebase: None,
            ..Default::default()
        };

        let decoder_params = CreateDecoderParams {
            input_details: Some(format_details),
            permit_lack_of_split_header_handling: Some(true),
            ..Default::default()
        };

        let codec_svc = fuchsia_component::client::connect_to_protocol::<CodecFactoryMarker>()
            .context("Failed to connect to Codec Factory")?;

        let (processor, stream_processor_serverend) = fidl::endpoints::create_proxy();

        codec_svc.create_decoder(&decoder_params, stream_processor_serverend)?;

        Ok(StreamProcessor::create(processor, sysmem_client))
    }

    /// Take a stream object which will produce the output of the processor.
    /// Only one StreamProcessorOutputStream object can exist at a time, and this will return an Error if it is
    /// already taken.
    pub fn take_output_stream(&mut self) -> Result<StreamProcessorOutputStream, Error> {
        {
            let read = self.inner.read();
            let mut lock = read.output_queue.lock();
            if let Listener::None = lock.listener {
                lock.listener = Listener::New;
            } else {
                return Err(format_err!("Output stream already taken"));
            }
        }
        Ok(StreamProcessorOutputStream { inner: self.inner.clone() })
    }

    /// Deliver input to the stream processor.  Returns the number of bytes delivered.
    fn write_bytes(&mut self, bytes: &[u8]) -> Result<usize, io::Error> {
        let mut bytes_idx = 0;
        while bytes.len() > bytes_idx {
            {
                let mut write = self.inner.write();
                let (idx, size) = match write.input_cursor.take() {
                    None => return Ok(bytes_idx),
                    Some(x) => x,
                };
                let space_left = write.input_packet_size - size;
                let left_to_write = bytes.len() - bytes_idx;
                let buffer_vmo = write.input_buffers().get_mut(idx.0).expect("need buffer vmo");
                if space_left as usize > left_to_write {
                    let write_buf = &bytes[bytes_idx..];
                    let write_len = write_buf.len();
                    buffer_vmo.write(write_buf, size)?;
                    bytes_idx += write_len;
                    write.input_cursor = Some((idx, size + write_len as u64));
                    assert!(bytes.len() == bytes_idx);
                    return Ok(bytes_idx);
                }
                let end_idx = bytes_idx + space_left as usize;
                let write_buf = &bytes[bytes_idx..end_idx];
                let write_len = write_buf.len();
                buffer_vmo.write(write_buf, size)?;
                bytes_idx += write_len;
                // this buffer is done, ship it!
                assert_eq!(size + write_len as u64, write.input_packet_size);
                write.input_cursor = Some((idx, write.input_packet_size));
            }
            self.send_packet()?;
        }
        Ok(bytes_idx)
    }

    /// Flush the input buffer to the processor, relinquishing the ownership of the buffer
    /// currently in the input cursor, and picking a new input buffer.  If there is no input
    /// buffer left, the input cursor is left as None.
    pub fn send_packet(&mut self) -> Result<(), io::Error> {
        let mut write = self.inner.write();
        if write.input_cursor.is_none() {
            // Nothing to flush, nothing can have been written to an empty input cursor.
            return Ok(());
        }
        let (idx, size) = write.input_cursor.take().expect("input cursor is none");
        if size == 0 {
            // Can't send empty packet to processor.
            write.input_cursor = Some((idx, size));
            return Ok(());
        }
        let packet = Packet {
            header: Some(PacketHeader {
                buffer_lifetime_ordinal: Some(1),
                packet_index: Some(idx.0),
                ..Default::default()
            }),
            buffer_index: Some(idx.0),
            stream_lifetime_ordinal: Some(1),
            start_offset: Some(0),
            valid_length_bytes: Some(size as u32),
            start_access_unit: Some(true),
            known_end_access_unit: Some(true),
            ..Default::default()
        };
        write.processor.queue_input_packet(&packet).map_err(fidl_error_to_io_error)?;
        // pick another buffer for the input cursor
        write.setup_input_cursor();
        Ok(())
    }

    /// Test whether it is possible to write to the StreamProcessor. If there are no input buffers
    /// available, returns Poll::Pending and arranges for the input task to receive a
    /// notification when an input buffer may be available or the encoder is closed.
    fn poll_writable(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), io::Error>> {
        let mut write = self.inner.write();
        // Drop the current input waker, since we have a new one.
        // If the output waker is set, it should already be queued to be woken for the codec.
        write.input_waker = None;
        if write.input_cursor.is_some() {
            return Poll::Ready(Ok(()));
        }
        write.input_waker = Some(cx.waker().clone());
        // This can:
        //  - wake the input waker (somehow received a input packet)
        //  - poll with the output waker, setting it up to be woken
        //  - poll with the input waker to be woken
        if let Err(e) = write.poll_events() {
            return Poll::Ready(Err(io::Error::new(io::ErrorKind::Other, e)));
        }
        Poll::Pending
    }

    pub fn close(&mut self) -> Result<(), io::Error> {
        self.send_packet()?;

        let mut write = self.inner.write();

        write.processor.queue_input_end_of_stream(1).map_err(fidl_error_to_io_error)?;
        // TODO: indicate this another way so that we can send an error if someone tries to write
        // it after it's closed.
        write.input_cursor = None;
        write.wake_input();
        write.wake_output();
        Ok(())
    }
}

impl AsyncWrite for StreamProcessor {
    fn poll_write(
        mut self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        ready!(self.poll_writable(cx))?;
        match self.write_bytes(buf) {
            Ok(written) => Poll::Ready(Ok(written)),
            Err(e) => Poll::Ready(Err(e.into())),
        }
    }

    fn poll_flush(mut self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
        Poll::Ready(self.send_packet())
    }

    fn poll_close(mut self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> {
        Poll::Ready(self.send_packet())
    }
}

impl Stream for StreamProcessorOutputStream {
    type Item = Result<Vec<u8>, Error>;

    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        let mut write = self.inner.write();
        // If we have a item ready, just return it.
        let packet = {
            let mut queue = write.output_queue.lock();
            match queue.poll_next_unpin(cx) {
                Poll::Ready(Some(packet)) => Some(Some(packet)),
                Poll::Ready(None) => Some(None),
                Poll::Pending => {
                    // The waker has been set for when the queue gets data.
                    // We also need to set the same waker if an event happens.
                    None
                }
            }
        };
        // We always need to set a waker for the events loop (this may be the same waker as above,
        // or the input waker if the stream returned a packet)
        if let Err(e) = write.poll_events() {
            return Poll::Ready(Some(Err(e.into())));
        }
        match packet {
            Some(Some(packet)) => Poll::Ready(Some(write.read_output_packet(packet))),
            Some(None) => Poll::Ready(None),
            None => Poll::Pending,
        }
    }
}

impl FusedStream for StreamProcessorOutputStream {
    fn is_terminated(&self) -> bool {
        self.inner.read().output_queue.lock().ended
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use async_test_helpers::run_while;
    use byteorder::{ByteOrder, NativeEndian};
    use fixture::fixture;
    use fuchsia_async as fasync;
    use futures::io::AsyncWriteExt;
    use futures::FutureExt;
    use futures_test::task::new_count_waker;
    use sha2::{Digest as _, Sha256};
    use std::fs::File;
    use std::io::{Read, Write};
    use std::pin::pin;

    use stream_processor_test::ExpectedDigest;

    const PCM_SAMPLE_SIZE: usize = 2;

    #[derive(Clone, Debug)]
    pub struct PcmAudio {
        pcm_format: PcmFormat,
        buffer: Vec<u8>,
    }

    impl PcmAudio {
        pub fn create_saw_wave(pcm_format: PcmFormat, frame_count: usize) -> Self {
            const FREQUENCY: f32 = 20.0;
            const AMPLITUDE: f32 = 0.2;

            let pcm_frame_size = PCM_SAMPLE_SIZE * pcm_format.channel_map.len();
            let samples_per_frame = pcm_format.channel_map.len();
            let sample_count = frame_count * samples_per_frame;

            let mut buffer = vec![0; frame_count * pcm_frame_size];

            for i in 0..sample_count {
                let frame = (i / samples_per_frame) as f32;
                let value =
                    ((frame * FREQUENCY / (pcm_format.frames_per_second as f32)) % 1.0) * AMPLITUDE;
                let sample = (value * i16::max_value() as f32) as i16;

                let mut sample_bytes = [0; std::mem::size_of::<i16>()];
                NativeEndian::write_i16(&mut sample_bytes, sample);

                let offset = i * PCM_SAMPLE_SIZE;
                buffer[offset] = sample_bytes[0];
                buffer[offset + 1] = sample_bytes[1];
            }

            Self { pcm_format, buffer }
        }

        pub fn frame_size(&self) -> usize {
            self.pcm_format.channel_map.len() * PCM_SAMPLE_SIZE
        }
    }

    // Note: stolen from audio_encoder_test, update to stream_processor_test lib when this gets
    // moved.
    pub struct BytesValidator {
        pub output_file: Option<&'static str>,
        pub expected_digest: ExpectedDigest,
    }

    impl BytesValidator {
        fn write_and_hash(&self, mut file: impl Write, bytes: &[u8]) -> Result<(), Error> {
            let mut hasher = Sha256::default();

            file.write_all(&bytes)?;
            hasher.update(&bytes);

            let digest: [u8; 32] = hasher.finalize().into();
            if self.expected_digest.bytes != digest {
                return Err(format_err!(
                    "Expected {}; got {}",
                    self.expected_digest,
                    hex::encode(digest)
                ))
                .into();
            }

            Ok(())
        }

        fn output_file(&self) -> Result<impl Write, Error> {
            Ok(if let Some(file) = self.output_file {
                Box::new(std::fs::File::create(file)?) as Box<dyn Write>
            } else {
                Box::new(std::io::sink()) as Box<dyn Write>
            })
        }

        fn validate(&self, bytes: &[u8]) -> Result<(), Error> {
            self.write_and_hash(self.output_file()?, &bytes)
        }
    }

    #[fuchsia::test]
    fn encode_sbc() {
        let mut exec = fasync::TestExecutor::new();

        let pcm_format = PcmFormat {
            pcm_mode: AudioPcmMode::Linear,
            bits_per_sample: 16,
            frames_per_second: 44100,
            channel_map: vec![AudioChannelId::Cf],
        };

        let sub_bands = SbcSubBands::SubBands4;
        let block_count = SbcBlockCount::BlockCount8;

        let input_frames = 3000;

        let pcm_audio = PcmAudio::create_saw_wave(pcm_format.clone(), input_frames);

        let sbc_encoder_settings = EncoderSettings::Sbc(SbcEncoderSettings {
            sub_bands,
            block_count,
            allocation: SbcAllocation::AllocLoudness,
            channel_mode: SbcChannelMode::Mono,
            bit_pool: 59, // Recommended from the SBC spec for these parameters.
        });

        let input_domain = DomainFormat::Audio(AudioFormat::Uncompressed(
            AudioUncompressedFormat::Pcm(pcm_format),
        ));

        let mut encoder = StreamProcessor::create_encoder(input_domain, sbc_encoder_settings)
            .expect("to create Encoder");

        let frames_per_packet: usize = 8; // Randomly chosen by fair d10 roll.
        let packet_size = pcm_audio.frame_size() * frames_per_packet;
        let mut packets = pcm_audio.buffer.as_slice().chunks(packet_size);
        let first_packet = packets.next().unwrap();

        // Write an initial frame to the encoder.
        // This is required to get past allocating the input/output buffers.
        let written =
            exec.run_singlethreaded(&mut encoder.write(first_packet)).expect("successful write");
        assert_eq!(written, first_packet.len());

        let mut encoded_stream = encoder.take_output_stream().expect("Stream should be taken");

        // Shouldn't be able to take the stream twice
        assert!(encoder.take_output_stream().is_err());

        // Polling the encoded stream before the encoder has started up should wake it when
        // output starts happening, set up the poll here.
        let encoded_fut = pin!(encoded_stream.next());

        let (waker, encoder_fut_wake_count) = new_count_waker();
        let mut counting_ctx = Context::from_waker(&waker);

        assert!(encoded_fut.poll(&mut counting_ctx).is_pending());

        let mut frames_sent = first_packet.len() / pcm_audio.frame_size();

        for packet in packets {
            let mut written_fut = encoder.write(&packet);

            let written_bytes =
                exec.run_singlethreaded(&mut written_fut).expect("to write to encoder");

            assert_eq!(packet.len(), written_bytes);
            frames_sent += packet.len() / pcm_audio.frame_size();
        }

        encoder.close().expect("stream should always be closable");

        assert_eq!(input_frames, frames_sent);

        // When an unprocessed event has happened on the stream, even if intervening events have been
        // procesed by the input processes, it should wake the output future to process the events.
        let woke_count = encoder_fut_wake_count.get();
        while encoder_fut_wake_count.get() == woke_count {
            let _ = exec.run_until_stalled(&mut futures::future::pending::<()>());
        }
        assert_eq!(encoder_fut_wake_count.get(), woke_count + 1);

        // Get data from the output now.
        let mut encoded = Vec::new();

        loop {
            let mut encoded_fut = encoded_stream.next();

            match exec.run_singlethreaded(&mut encoded_fut) {
                Some(Ok(enc_data)) => {
                    assert!(!enc_data.is_empty());
                    encoded.extend_from_slice(&enc_data);
                }
                Some(Err(e)) => {
                    panic!("Unexpected error when polling encoded data: {}", e);
                }
                None => {
                    break;
                }
            }
        }

        // Match the encoded data to the known hash.
        let expected_digest = ExpectedDigest::new(
            "Sbc: 44.1kHz/Loudness/Mono/bitpool 56/blocks 8/subbands 4",
            "5c65a88bda3f132538966d87df34aa8675f85c9892b7f9f5571f76f3c7813562",
        );
        let hash_validator = BytesValidator { output_file: None, expected_digest };

        assert_eq!(6110, encoded.len(), "Encoded size should be equal");

        let validated = hash_validator.validate(encoded.as_slice());
        assert!(validated.is_ok(), "Failed hash: {:?}", validated);
    }

    fn fix_sbc_test_file<F>(_name: &str, test: F)
    where
        F: FnOnce(Vec<u8>) -> (),
    {
        const SBC_TEST_FILE: &str = "/pkg/data/s16le44100mono.sbc";

        let mut sbc_data = Vec::new();
        let _ = File::open(SBC_TEST_FILE)
            .expect("open test file")
            .read_to_end(&mut sbc_data)
            .expect("read test file");

        test(sbc_data)
    }

    #[fixture(fix_sbc_test_file)]
    #[fuchsia::test]
    fn decode_sbc(sbc_data: Vec<u8>) {
        let mut exec = fasync::TestExecutor::new();

        const SBC_FRAME_SIZE: usize = 72;
        const INPUT_FRAMES: usize = 23;

        // SBC codec info corresponding to Mono reference stream.
        let oob_data = Some([0x82, 0x00, 0x00, 0x00].to_vec());
        let mut decoder =
            StreamProcessor::create_decoder("audio/sbc", oob_data).expect("to create decoder");

        let mut decoded_stream = decoder.take_output_stream().expect("Stream should be taken");

        // Shouldn't be able to take the stream twice
        assert!(decoder.take_output_stream().is_err());

        let mut frames_sent = 0;

        let frames_per_packet: usize = 1; // Randomly chosen by fair d10 roll.
        let packet_size = SBC_FRAME_SIZE * frames_per_packet;

        for frames in sbc_data.as_slice().chunks(packet_size) {
            let mut written_fut = decoder.write(&frames);

            let written_bytes =
                exec.run_singlethreaded(&mut written_fut).expect("to write to decoder");

            assert_eq!(frames.len(), written_bytes);
            frames_sent += frames.len() / SBC_FRAME_SIZE;
        }

        assert_eq!(INPUT_FRAMES, frames_sent);

        let mut flush_fut = pin!(decoder.flush());
        exec.run_singlethreaded(&mut flush_fut).expect("to flush the decoder");

        decoder.close().expect("stream should always be closable");

        // Get data from the output now.
        let mut decoded = Vec::new();

        loop {
            let mut decoded_fut = decoded_stream.next();

            match exec.run_singlethreaded(&mut decoded_fut) {
                Some(Ok(dec_data)) => {
                    assert!(!dec_data.is_empty());
                    decoded.extend_from_slice(&dec_data);
                }
                Some(Err(e)) => {
                    panic!("Unexpected error when polling decoded data: {}", e);
                }
                None => {
                    break;
                }
            }
        }

        // Match the decoded data to the known hash.
        let expected_digest = ExpectedDigest::new(
            "Pcm: 44.1kHz/16bit/Mono",
            "ff2e7afea51217886d3df15b9a623b4e49c9bd9bd79c58ac01bc94c5511e08d6",
        );
        let hash_validator = BytesValidator { output_file: None, expected_digest };

        assert_eq!(256 * INPUT_FRAMES, decoded.len(), "Decoded size should be equal");

        let validated = hash_validator.validate(decoded.as_slice());
        assert!(validated.is_ok(), "Failed hash: {:?}", validated);
    }

    #[fixture(fix_sbc_test_file)]
    #[fuchsia::test]
    fn decode_sbc_wakes_output_to_process_events(sbc_data: Vec<u8>) {
        let mut exec = fasync::TestExecutor::new();
        const SBC_FRAME_SIZE: usize = 72;

        // SBC codec info corresponding to Mono reference stream.
        let oob_data = Some([0x82, 0x00, 0x00, 0x00].to_vec());
        let mut decoder =
            StreamProcessor::create_decoder("audio/sbc", oob_data).expect("to create decoder");

        let mut chunks = sbc_data.as_slice().chunks(SBC_FRAME_SIZE);
        let next_frame = chunks.next().unwrap();

        // Write an initial frame to the encoder.
        // This is required to get past allocating the input/output buffers.
        let written =
            exec.run_singlethreaded(&mut decoder.write(next_frame)).expect("successful write");
        assert_eq!(written, next_frame.len());

        let mut decoded_stream = decoder.take_output_stream().expect("Stream should be taken");

        // Polling the decoded stream before the decoder has started up should wake it when
        // output starts happening, set up the poll here.
        let decoded_fut = pin!(decoded_stream.next());

        let (waker, decoder_fut_wake_count) = new_count_waker();
        let mut counting_ctx = Context::from_waker(&waker);

        assert!(decoded_fut.poll(&mut counting_ctx).is_pending());

        // Send only one frame. This is not eneough to automatically cause output to be generated
        // by pushing data.
        let frame = chunks.next().unwrap();
        let mut written_fut = decoder.write(&frame);
        let written_bytes = exec.run_singlethreaded(&mut written_fut).expect("to write to decoder");
        assert_eq!(frame.len(), written_bytes);

        let mut flush_fut = pin!(decoder.flush());
        exec.run_singlethreaded(&mut flush_fut).expect("to flush the decoder");

        // When an unprocessed event has happened on the stream, even if intervening events have been
        // procesed by the input processes, it should wake the output future to process the events.
        assert_eq!(decoder_fut_wake_count.get(), 0);
        while decoder_fut_wake_count.get() == 0 {
            let _ = exec.run_until_stalled(&mut futures::future::pending::<()>());
        }
        assert_eq!(decoder_fut_wake_count.get(), 1);

        let mut decoded = Vec::new();
        // Drops the previous decoder future, which is fine.
        let mut decoded_fut = decoded_stream.next();

        match exec.run_singlethreaded(&mut decoded_fut) {
            Some(Ok(dec_data)) => {
                assert!(!dec_data.is_empty());
                decoded.extend_from_slice(&dec_data);
            }
            x => panic!("Expected decoded frame, got {:?}", x),
        }

        assert_eq!(512, decoded.len(), "Decoded size should be equal to one frame");
    }

    #[fixture(fix_sbc_test_file)]
    #[fuchsia::test]
    fn decode_sbc_wakes_input_to_process_events(sbc_data: Vec<u8>) {
        let mut exec = fasync::TestExecutor::new();
        const SBC_FRAME_SIZE: usize = 72;

        // SBC codec info corresponding to Mono reference stream.
        let oob_data = Some([0x82, 0x00, 0x00, 0x00].to_vec());
        let mut decoder =
            StreamProcessor::create_decoder("audio/sbc", oob_data).expect("to create decoder");

        let mut decoded_stream = decoder.take_output_stream().expect("Stream should be taken");

        let decoded_fut = pin!(decoded_stream.next());

        let mut chunks = sbc_data.as_slice().chunks(SBC_FRAME_SIZE);
        let next_frame = chunks.next().unwrap();

        // Write an initial frame to the encoder.
        // This is to get past allocating the input/output buffers stage.
        // TODO(https://fxbug.dev/42081385): Both futures need to be polled here even though it's only the
        // writer we really care about because currently decoded_fut is needed to drive the
        // allocation process.
        let (written_res, mut decoded_fut) =
            run_while(&mut exec, decoded_fut, decoder.write(next_frame));
        assert_eq!(written_res.expect("initial write should succeed"), next_frame.len());

        // Write to the encoder until we cannot write anymore, because there are no input buffers
        // available.  This should happen when all the input buffers are full and and the input
        // buffers are waiting to be written.
        let (waker, write_fut_wake_count) = new_count_waker();
        let mut counting_ctx = Context::from_waker(&waker);

        let mut wake_count_before_stall = 0;
        for frame in chunks {
            wake_count_before_stall = write_fut_wake_count.get();
            let mut written_fut = decoder.write(&frame);
            if written_fut.poll_unpin(&mut counting_ctx).is_pending() {
                // The poll_unpin can wake the input waker if an event arrived for it, meaning we should
                // continue filling.
                if write_fut_wake_count.get() != wake_count_before_stall {
                    continue;
                }
                // We should have never been woken until now, because we always were ready before,
                // and the output waker is not registered (so can't progress)
                break;
            }
            // Flush the packet, to make input buffers get spent faster.
            let mut flush_fut = pin!(decoder.flush());
            exec.run_singlethreaded(&mut flush_fut).expect("to flush the decoder");
        }

        // We should be able to get a decoded output, once the codec does it's thing.
        let decoded_frame = exec.run_singlethreaded(&mut decoded_fut);
        assert_eq!(512, decoded_frame.unwrap().unwrap().len(), "Decoded frame size wrong");

        // Fill the input buffer again so the input waker is registered.
        let chunks = sbc_data.as_slice().chunks(SBC_FRAME_SIZE);
        for frame in chunks {
            wake_count_before_stall = write_fut_wake_count.get();
            let mut written_fut = decoder.write(&frame);
            if written_fut.poll_unpin(&mut counting_ctx).is_pending() {
                // The poll_unpin can wake the input waker if an event arrived for it, meaning we should
                // continue filling.
                if write_fut_wake_count.get() != wake_count_before_stall {
                    continue;
                }
                break;
            }
            // Flush the packet, to make input buffers get spent faster.
            let mut flush_fut = pin!(decoder.flush());
            exec.run_singlethreaded(&mut flush_fut).expect("to flush the decoder");
        }

        // The input waker should be the one waiting on events from the codec and get woken up,
        // even if an output event happens.
        // At some point, we will get an event from the encoder, with no output waker set, and this
        // should wake the input waker, which is waiting to be woken up.
        while write_fut_wake_count.get() == wake_count_before_stall {
            let _ = exec.run_until_stalled(&mut futures::future::pending::<()>());
        }

        // Note: at this point, we may not be able to write another frame, but the waiter should
        // repoll, and set the waker again.
    }
}