rand_os/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
// Copyright 2018 Developers of the Rand project.
// Copyright 2013-2015 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Interface to the random number generator of the operating system.
//!
//! [`OsRng`] is the preferred external source of entropy for most applications.
//! Commonly it is used to initialize a user-space RNG, which can then be used
//! to generate random values with much less overhead than `OsRng`.
//!
//! You may prefer to use [`EntropyRng`] instead of `OsRng`. It is unlikely, but
//! not entirely theoretical, for `OsRng` to fail. In such cases [`EntropyRng`]
//! falls back on a good alternative entropy source.
//!
//! [`OsRng::new()`] is guaranteed to be very cheap (after the first successful
//! call), and will never consume more than one file handle per process.
//!
//! # Usage example
//! ```
//! use rand_os::OsRng;
//! use rand_os::rand_core::RngCore;
//!
//! let mut os_rng = OsRng::new().unwrap();
//! let mut key = [0u8; 16];
//! os_rng.fill_bytes(&mut key);
//! let random_u64 = os_rng.next_u64();
//! ```
//!
//! # Platform sources
//!
//! | OS | interface
//! |------------------|---------------------------------------------------------
//! | Linux, Android | [`getrandom`][1] system call if available, otherwise [`/dev/urandom`][2] after reading from `/dev/random` once
//! | Windows | [`RtlGenRandom`][3]
//! | macOS, iOS | [`SecRandomCopyBytes`][4]
//! | FreeBSD | [`kern.arandom`][5]
//! | OpenBSD, Bitrig | [`getentropy`][6]
//! | NetBSD | [`/dev/urandom`][7] after reading from `/dev/random` once
//! | Dragonfly BSD | [`/dev/random`][8]
//! | Solaris, illumos | [`getrandom`][9] system call if available, otherwise [`/dev/random`][10]
//! | Fuchsia OS | [`cprng_draw`][11]
//! | Redox | [`rand:`][12]
//! | CloudABI | [`random_get`][13]
//! | Haiku | `/dev/random` (identical to `/dev/urandom`)
//! | Web browsers | [`Crypto.getRandomValues`][14] (see [Support for WebAssembly and ams.js][14])
//! | Node.js | [`crypto.randomBytes`][15] (see [Support for WebAssembly and ams.js][16])
//!
//! Rand doesn't have a blanket implementation for all Unix-like operating
//! systems that reads from `/dev/urandom`. This ensures all supported operating
//! systems are using the recommended interface and respect maximum buffer
//! sizes.
//!
//! ## Support for WebAssembly and ams.js
//!
//! The three Emscripten targets `asmjs-unknown-emscripten`,
//! `wasm32-unknown-emscripten` and `wasm32-experimental-emscripten` use
//! Emscripten's emulation of `/dev/random` on web browsers and Node.js.
//!
//! The bare WASM target `wasm32-unknown-unknown` tries to call the javascript
//! methods directly, using either `stdweb` or `wasm-bindgen` depending on what
//! features are activated for this crate. Note that if both features are
//! enabled `wasm-bindgen` will be used.
//!
//! ## Early boot
//!
//! It is possible that early in the boot process the OS hasn't had enough time
//! yet to collect entropy to securely seed its RNG, especially on virtual
//! machines.
//!
//! Some operating systems always block the thread until the RNG is securely
//! seeded. This can take anywhere from a few seconds to more than a minute.
//! Others make a best effort to use a seed from before the shutdown and don't
//! document much.
//!
//! A few, Linux, NetBSD and Solaris, offer a choice between blocking, and
//! getting an error. With `try_fill_bytes` we choose to get the error
//! ([`ErrorKind::NotReady`]), while the other methods use a blocking interface.
//!
//! On Linux (when the `genrandom` system call is not available) and on NetBSD
//! reading from `/dev/urandom` never blocks, even when the OS hasn't collected
//! enough entropy yet. As a countermeasure we try to do a single read from
//! `/dev/random` until we know the OS RNG is initialized (and store this in a
//! global static).
//!
//! # Panics and error handling
//!
//! We cannot guarantee that `OsRng` will fail, but if it does, it will likely
//! be either when `OsRng::new()` is first called or when data is first read.
//! If you wish to catch errors early, then test reading of at least one byte
//! from `OsRng` via [`try_fill_bytes`]. If this succeeds, it is extremely
//! unlikely that any further errors will occur.
//!
//! Only [`try_fill_bytes`] is able to report the cause of an error; the other
//! [`RngCore`] methods may (depending on the error kind) retry several times,
//! but must eventually panic if the error persists.
//!
//! [`EntropyRng`]: ../rand/rngs/struct.EntropyRng.html
//! [`try_fill_bytes`]: RngCore::try_fill_bytes
//! [`ErrorKind::NotReady`]: rand_core::ErrorKind
//!
//! [1]: http://man7.org/linux/man-pages/man2/getrandom.2.html
//! [2]: http://man7.org/linux/man-pages/man4/urandom.4.html
//! [3]: https://msdn.microsoft.com/en-us/library/windows/desktop/aa387694.aspx
//! [4]: https://developer.apple.com/documentation/security/1399291-secrandomcopybytes?language=objc
//! [5]: https://www.freebsd.org/cgi/man.cgi?query=random&sektion=4
//! [6]: https://man.openbsd.org/getentropy.2
//! [7]: http://netbsd.gw.com/cgi-bin/man-cgi?random+4+NetBSD-current
//! [8]: https://leaf.dragonflybsd.org/cgi/web-man?command=random§ion=4
//! [9]: https://docs.oracle.com/cd/E88353_01/html/E37841/getrandom-2.html
//! [10]: https://docs.oracle.com/cd/E86824_01/html/E54777/random-7d.html
//! [11]: https://fuchsia.googlesource.com/zircon/+/HEAD/docs/syscalls/cprng_draw.md
//! [12]: https://github.com/redox-os/randd/blob/master/src/main.rs
//! [13]: https://github.com/NuxiNL/cloudabi/blob/v0.20/cloudabi.txt#L1826
//! [14]: https://www.w3.org/TR/WebCryptoAPI/#Crypto-method-getRandomValues
//! [15]: https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback
//! [16]: #support-for-webassembly-and-amsjs
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png",
html_favicon_url = "https://www.rust-lang.org/favicon.ico",
html_root_url = "https://rust-random.github.io/rand/")]
#![deny(missing_docs)]
#![deny(missing_debug_implementations)]
#![doc(test(attr(allow(unused_variables), deny(warnings))))]
#![cfg_attr(feature = "stdweb", recursion_limit="128")]
pub extern crate rand_core;
#[cfg(feature = "log")]
#[macro_use] extern crate log;
// We have to do it here because we load macros
#[cfg(all(target_arch = "wasm32", not(target_os = "emscripten"),
feature = "wasm-bindgen"))]
extern crate wasm_bindgen;
#[cfg(all(target_arch = "wasm32", not(target_os = "emscripten"),
not(feature = "wasm-bindgen"),
feature = "stdweb"))]
#[macro_use] extern crate stdweb;
#[cfg(target_env = "sgx")]
extern crate rdrand;
#[cfg(not(feature = "log"))]
#[macro_use]
mod dummy_log;
use std::fmt;
use rand_core::{CryptoRng, RngCore, Error, impls};
/// A random number generator that retrieves randomness straight from the
/// operating system.
#[derive(Clone)]
pub struct OsRng(imp::OsRng);
impl fmt::Debug for OsRng {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
impl OsRng {
/// Create a new `OsRng`.
pub fn new() -> Result<OsRng, Error> {
imp::OsRng::new().map(OsRng)
}
}
impl CryptoRng for OsRng {}
impl RngCore for OsRng {
fn next_u32(&mut self) -> u32 {
impls::next_u32_via_fill(self)
}
fn next_u64(&mut self) -> u64 {
impls::next_u64_via_fill(self)
}
fn fill_bytes(&mut self, dest: &mut [u8]) {
use std::{time, thread};
// We cannot return Err(..), so we try to handle before panicking.
const MAX_RETRY_PERIOD: u32 = 10; // max 10s
const WAIT_DUR_MS: u32 = 100; // retry every 100ms
let wait_dur = time::Duration::from_millis(WAIT_DUR_MS as u64);
const RETRY_LIMIT: u32 = (MAX_RETRY_PERIOD * 1000) / WAIT_DUR_MS;
const TRANSIENT_RETRIES: u32 = 8;
let mut err_count = 0;
let mut error_logged = false;
// Maybe block until the OS RNG is initialized
let mut read = 0;
if let Ok(n) = self.0.test_initialized(dest, true) { read = n };
let dest = &mut dest[read..];
loop {
if let Err(e) = self.try_fill_bytes(dest) {
if err_count >= RETRY_LIMIT {
error!("OsRng failed too many times; last error: {}", e);
panic!("OsRng failed too many times; last error: {}", e);
}
if e.kind.should_wait() {
if !error_logged {
warn!("OsRng failed; waiting up to {}s and retrying. Error: {}",
MAX_RETRY_PERIOD, e);
error_logged = true;
}
err_count += 1;
thread::sleep(wait_dur);
continue;
} else if e.kind.should_retry() {
if !error_logged {
warn!("OsRng failed; retrying up to {} times. Error: {}",
TRANSIENT_RETRIES, e);
error_logged = true;
}
err_count += (RETRY_LIMIT + TRANSIENT_RETRIES - 1)
/ TRANSIENT_RETRIES; // round up
continue;
} else {
error!("OsRng failed: {}", e);
panic!("OsRng fatal error: {}", e);
}
}
break;
}
}
fn try_fill_bytes(&mut self, dest: &mut [u8]) -> Result<(), Error> {
// Some systems do not support reading 0 random bytes.
// (And why waste a system call?)
if dest.len() == 0 { return Ok(()); }
let read = self.0.test_initialized(dest, false)?;
let dest = &mut dest[read..];
let max = self.0.max_chunk_size();
if dest.len() <= max {
trace!("OsRng: reading {} bytes via {}",
dest.len(), self.0.method_str());
} else {
trace!("OsRng: reading {} bytes via {} in {} chunks of {} bytes",
dest.len(), self.0.method_str(), (dest.len() + max) / max, max);
}
for slice in dest.chunks_mut(max) {
self.0.fill_chunk(slice)?;
}
Ok(())
}
}
trait OsRngImpl where Self: Sized {
// Create a new `OsRng` platform interface.
fn new() -> Result<Self, Error>;
// Fill a chunk with random bytes.
fn fill_chunk(&mut self, dest: &mut [u8]) -> Result<(), Error>;
// Test whether the OS RNG is initialized. This method may not be possible
// to support cheaply (or at all) on all operating systems.
//
// If `blocking` is set, this will cause the OS the block execution until
// its RNG is initialized.
//
// Random values that are read while this are stored in `dest`, the amount
// of read bytes is returned.
fn test_initialized(&mut self, _dest: &mut [u8], _blocking: bool)
-> Result<usize, Error> { Ok(0) }
// Maximum chunk size supported.
fn max_chunk_size(&self) -> usize { ::std::usize::MAX }
// Name of the OS interface (used for logging).
fn method_str(&self) -> &'static str;
}
#[cfg(any(target_os = "linux", target_os = "android",
target_os = "netbsd", target_os = "dragonfly",
target_os = "solaris", target_os = "redox",
target_os = "haiku", target_os = "emscripten"))]
mod random_device;
macro_rules! mod_use {
($cond:meta, $module:ident) => {
#[$cond]
mod $module;
#[$cond]
use $module as imp;
}
}
mod_use!(cfg(target_os = "android"), linux_android);
mod_use!(cfg(target_os = "bitrig"), openbsd_bitrig);
mod_use!(cfg(target_os = "cloudabi"), cloudabi);
mod_use!(cfg(target_os = "dragonfly"), dragonfly_haiku_emscripten);
mod_use!(cfg(target_os = "emscripten"), dragonfly_haiku_emscripten);
mod_use!(cfg(target_os = "freebsd"), freebsd);
mod_use!(cfg(target_os = "fuchsia"), fuchsia);
mod_use!(cfg(target_os = "haiku"), dragonfly_haiku_emscripten);
mod_use!(cfg(target_os = "ios"), macos);
mod_use!(cfg(target_os = "linux"), linux_android);
mod_use!(cfg(target_os = "macos"), macos);
mod_use!(cfg(target_os = "netbsd"), netbsd);
mod_use!(cfg(target_os = "openbsd"), openbsd_bitrig);
mod_use!(cfg(target_os = "redox"), redox);
mod_use!(cfg(target_os = "solaris"), solaris);
mod_use!(cfg(windows), windows);
mod_use!(cfg(target_env = "sgx"), sgx);
mod_use!(
cfg(all(
target_arch = "wasm32",
not(target_os = "emscripten"),
feature = "wasm-bindgen"
)),
wasm32_bindgen
);
mod_use!(
cfg(all(
target_arch = "wasm32",
not(target_os = "emscripten"),
not(feature = "wasm-bindgen"),
feature = "stdweb",
)),
wasm32_stdweb
);
/// Per #678 we use run-time failure where WASM bindings are missing
#[cfg(all(
target_arch = "wasm32",
not(target_os = "emscripten"),
not(feature = "wasm-bindgen"),
not(feature = "stdweb"),
))]
mod imp {
use rand_core::{Error, ErrorKind};
use super::OsRngImpl;
#[derive(Clone, Debug)]
pub struct OsRng;
impl OsRngImpl for OsRng {
fn new() -> Result<OsRng, Error> {
Err(Error::new(ErrorKind::Unavailable,
"OsRng: support for wasm32 requires emscripten, stdweb or wasm-bindgen"))
}
fn fill_chunk(&mut self, _dest: &mut [u8]) -> Result<(), Error> {
unimplemented!()
}
fn method_str(&self) -> &'static str { unimplemented!() }
}
}
#[cfg(not(any(
target_os = "android",
target_os = "bitrig",
target_os = "cloudabi",
target_os = "dragonfly",
target_os = "emscripten",
target_os = "freebsd",
target_os = "fuchsia",
target_os = "haiku",
target_os = "ios",
target_os = "linux",
target_os = "macos",
target_os = "netbsd",
target_os = "openbsd",
target_os = "redox",
target_os = "solaris",
windows,
target_arch = "wasm32",
target_env = "sgx"
)))]
compile_error!("OS RNG support is not available for this platform");
// Due to rustwasm/wasm-bindgen#201 this can't be defined in the inner os
// modules, so hack around it for now and place it at the root.
#[cfg(all(feature = "wasm-bindgen", target_arch = "wasm32"))]
#[doc(hidden)]
#[allow(missing_debug_implementations)]
pub mod __wbg_shims {
// `extern { type Foo; }` isn't supported on 1.22 syntactically, so use a
// macro to work around that.
macro_rules! rust_122_compat {
($($t:tt)*) => ($($t)*)
}
rust_122_compat! {
extern crate wasm_bindgen;
pub use wasm_bindgen::prelude::*;
#[wasm_bindgen]
extern "C" {
pub type Function;
#[wasm_bindgen(constructor)]
pub fn new(s: &str) -> Function;
#[wasm_bindgen(method)]
pub fn call(this: &Function, self_: &JsValue) -> JsValue;
pub type This;
#[wasm_bindgen(method, getter, structural, js_name = self)]
pub fn self_(me: &This) -> JsValue;
#[wasm_bindgen(method, getter, structural)]
pub fn crypto(me: &This) -> JsValue;
#[derive(Clone, Debug)]
pub type BrowserCrypto;
// TODO: these `structural` annotations here ideally wouldn't be here to
// avoid a JS shim, but for now with feature detection they're
// unavoidable.
#[wasm_bindgen(method, js_name = getRandomValues, structural, getter)]
pub fn get_random_values_fn(me: &BrowserCrypto) -> JsValue;
#[wasm_bindgen(method, js_name = getRandomValues, structural)]
pub fn get_random_values(me: &BrowserCrypto, buf: &mut [u8]);
#[wasm_bindgen(js_name = require)]
pub fn node_require(s: &str) -> NodeCrypto;
#[derive(Clone, Debug)]
pub type NodeCrypto;
#[wasm_bindgen(method, js_name = randomFillSync, structural)]
pub fn random_fill_sync(me: &NodeCrypto, buf: &mut [u8]);
}
}
}