elliptic_curve/
macros.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
/// Provides both inherent and trait impls for a field element type which are
/// backed by a core set of arithmetic functions specified as macro arguments.
///
/// # Inherent impls
/// - `const ZERO: Self`
/// - `const ONE: Self` (multiplicative identity)
/// - `pub fn from_be_bytes`
/// - `pub fn from_be_slice`
/// - `pub fn from_le_bytes`
/// - `pub fn from_le_slice`
/// - `pub fn from_uint`
/// - `fn from_uint_unchecked`
/// - `pub fn to_be_bytes`
/// - `pub fn to_le_bytes`
/// - `pub fn to_canonical`
/// - `pub fn is_odd`
/// - `pub fn is_zero`
/// - `pub fn double`
///
/// NOTE: field implementations must provide their own inherent impls of
/// the following methods in order for the code generated by this macro to
/// compile:
///
/// - `pub fn invert`
/// - `pub fn sqrt`
///
/// # Trait impls
/// - `AsRef<$arr>`
/// - `ConditionallySelectable`
/// - `ConstantTimeEq`
/// - `ConstantTimeGreater`
/// - `ConstantTimeLess`
/// - `Default`
/// - `DefaultIsZeroes`
/// - `Eq`
/// - `Field`
/// - `PartialEq`
///
/// ## Ops
/// - `Add`
/// - `AddAssign`
/// - `Sub`
/// - `SubAssign`
/// - `Mul`
/// - `MulAssign`
/// - `Neg`
#[macro_export]
macro_rules! impl_field_element {
    (
        $fe:tt,
        $bytes:ty,
        $uint:ty,
        $modulus:expr,
        $arr:ty,
        $from_mont:ident,
        $to_mont:ident,
        $add:ident,
        $sub:ident,
        $mul:ident,
        $neg:ident,
        $square:ident
    ) => {
        impl $fe {
            /// Zero element.
            pub const ZERO: Self = Self(<$uint>::ZERO);

            /// Multiplicative identity.
            pub const ONE: Self = Self::from_uint_unchecked(<$uint>::ONE);

            /// Create a [`
            #[doc = stringify!($fe)]
            /// `] from a canonical big-endian representation.
            pub fn from_be_bytes(repr: $bytes) -> $crate::subtle::CtOption<Self> {
                use $crate::bigint::ArrayEncoding as _;
                Self::from_uint(<$uint>::from_be_byte_array(repr))
            }

            /// Decode [`
            #[doc = stringify!($fe)]
            /// `] from a big endian byte slice.
            pub fn from_be_slice(slice: &[u8]) -> $crate::Result<Self> {
                <$uint as $crate::bigint::Encoding>::Repr::try_from(slice)
                    .ok()
                    .and_then(|array| Self::from_be_bytes(array.into()).into())
                    .ok_or($crate::Error)
            }

            /// Create a [`
            #[doc = stringify!($fe)]
            /// `] from a canonical little-endian representation.
            pub fn from_le_bytes(repr: $bytes) -> $crate::subtle::CtOption<Self> {
                use $crate::bigint::ArrayEncoding as _;
                Self::from_uint(<$uint>::from_le_byte_array(repr))
            }

            /// Decode [`
            #[doc = stringify!($fe)]
            /// `] from a little endian byte slice.
            pub fn from_le_slice(slice: &[u8]) -> $crate::Result<Self> {
                <$uint as $crate::bigint::Encoding>::Repr::try_from(slice)
                    .ok()
                    .and_then(|array| Self::from_le_bytes(array.into()).into())
                    .ok_or($crate::Error)
            }

            /// Decode [`
            #[doc = stringify!($fe)]
            /// `]
            /// from [`
            #[doc = stringify!($uint)]
            /// `] converting it into Montgomery form:
            ///
            /// ```text
            /// w * R^2 * R^-1 mod p = wR mod p
            /// ```
            pub fn from_uint(uint: $uint) -> $crate::subtle::CtOption<Self> {
                use $crate::subtle::ConstantTimeLess as _;
                let is_some = uint.ct_lt(&$modulus);
                $crate::subtle::CtOption::new(Self::from_uint_unchecked(uint), is_some)
            }

            /// Parse a [`
            #[doc = stringify!($fe)]
            /// `] from big endian hex-encoded bytes.
            ///
            /// Does *not* perform a check that the field element does not overflow the order.
            ///
            /// This method is primarily intended for defining internal constants.
            #[allow(dead_code)]
            pub(crate) const fn from_be_hex(hex: &str) -> Self {
                Self::from_uint_unchecked(<$uint>::from_be_hex(hex))
            }

            /// Parse a [`
            #[doc = stringify!($fe)]
            /// `] from little endian hex-encoded bytes.
            ///
            /// Does *not* perform a check that the field element does not overflow the order.
            ///
            /// This method is primarily intended for defining internal constants.
            #[allow(dead_code)]
            pub(crate) const fn from_le_hex(hex: &str) -> Self {
                Self::from_uint_unchecked(<$uint>::from_le_hex(hex))
            }

            /// Decode [`
            #[doc = stringify!($fe)]
            /// `] from [`
            #[doc = stringify!($uint)]
            /// `] converting it into Montgomery form.
            ///
            /// Does *not* perform a check that the field element does not overflow the order.
            ///
            /// Used incorrectly this can lead to invalid results!
            pub(crate) const fn from_uint_unchecked(w: $uint) -> Self {
                Self(<$uint>::from_words($to_mont(w.as_words())))
            }

            /// Returns the big-endian encoding of this [`
            #[doc = stringify!($fe)]
            /// `].
            pub fn to_be_bytes(self) -> $bytes {
                use $crate::bigint::ArrayEncoding as _;
                self.to_canonical().to_be_byte_array()
            }

            /// Returns the little-endian encoding of this [`
            #[doc = stringify!($fe)]
            /// `].
            pub fn to_le_bytes(self) -> $bytes {
                use $crate::bigint::ArrayEncoding as _;
                self.to_canonical().to_le_byte_array()
            }

            /// Translate [`
            #[doc = stringify!($fe)]
            /// `] out of the Montgomery domain, returning a [`
            #[doc = stringify!($uint)]
            /// `] in canonical form.
            #[inline]
            pub const fn to_canonical(self) -> $uint {
                <$uint>::from_words($from_mont(self.0.as_words()))
            }

            /// Determine if this [`
            #[doc = stringify!($fe)]
            /// `] is odd in the SEC1 sense: `self mod 2 == 1`.
            ///
            /// # Returns
            ///
            /// If odd, return `Choice(1)`.  Otherwise, return `Choice(0)`.
            pub fn is_odd(&self) -> Choice {
                use $crate::bigint::Integer;
                self.to_canonical().is_odd()
            }

            /// Determine if this [`
            #[doc = stringify!($fe)]
            /// `] is even in the SEC1 sense: `self mod 2 == 0`.
            ///
            /// # Returns
            ///
            /// If even, return `Choice(1)`.  Otherwise, return `Choice(0)`.
            pub fn is_even(&self) -> Choice {
                !self.is_odd()
            }

            /// Determine if this [`
            #[doc = stringify!($fe)]
            /// `] is zero.
            ///
            /// # Returns
            ///
            /// If zero, return `Choice(1)`.  Otherwise, return `Choice(0)`.
            pub fn is_zero(&self) -> Choice {
                self.ct_eq(&Self::ZERO)
            }

            /// Add elements.
            pub const fn add(&self, rhs: &Self) -> Self {
                Self(<$uint>::from_words($add(
                    self.0.as_words(),
                    rhs.0.as_words(),
                )))
            }

            /// Double element (add it to itself).
            #[must_use]
            pub const fn double(&self) -> Self {
                self.add(self)
            }

            /// Subtract elements.
            pub const fn sub(&self, rhs: &Self) -> Self {
                Self(<$uint>::from_words($sub(
                    self.0.as_words(),
                    rhs.0.as_words(),
                )))
            }

            /// Multiply elements.
            pub const fn mul(&self, rhs: &Self) -> Self {
                Self(<$uint>::from_words($mul(
                    self.0.as_words(),
                    rhs.0.as_words(),
                )))
            }

            /// Negate element.
            pub const fn neg(&self) -> Self {
                Self(<$uint>::from_words($neg(self.0.as_words())))
            }

            /// Compute modular square.
            #[must_use]
            pub const fn square(&self) -> Self {
                Self(<$uint>::from_words($square(self.0.as_words())))
            }
        }

        impl AsRef<$arr> for $fe {
            fn as_ref(&self) -> &$arr {
                self.0.as_ref()
            }
        }

        impl Default for $fe {
            fn default() -> Self {
                Self::ZERO
            }
        }

        impl Eq for $fe {}

        impl PartialEq for $fe {
            fn eq(&self, rhs: &Self) -> bool {
                self.0.ct_eq(&(rhs.0)).into()
            }
        }

        impl $crate::subtle::ConditionallySelectable for $fe {
            fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self {
                Self(<$uint>::conditional_select(&a.0, &b.0, choice))
            }
        }

        impl $crate::subtle::ConstantTimeEq for $fe {
            fn ct_eq(&self, other: &Self) -> $crate::subtle::Choice {
                self.0.ct_eq(&other.0)
            }
        }

        impl $crate::subtle::ConstantTimeGreater for $fe {
            fn ct_gt(&self, other: &Self) -> $crate::subtle::Choice {
                self.0.ct_gt(&other.0)
            }
        }

        impl $crate::subtle::ConstantTimeLess for $fe {
            fn ct_lt(&self, other: &Self) -> $crate::subtle::Choice {
                self.0.ct_lt(&other.0)
            }
        }

        impl $crate::zeroize::DefaultIsZeroes for $fe {}

        impl $crate::ff::Field for $fe {
            fn random(mut rng: impl $crate::rand_core::RngCore) -> Self {
                // NOTE: can't use ScalarCore::random due to CryptoRng bound
                let mut bytes = <$bytes>::default();

                loop {
                    rng.fill_bytes(&mut bytes);
                    if let Some(fe) = Self::from_be_bytes(bytes).into() {
                        return fe;
                    }
                }
            }

            fn zero() -> Self {
                Self::ZERO
            }

            fn one() -> Self {
                Self::ONE
            }

            fn is_zero(&self) -> Choice {
                Self::ZERO.ct_eq(self)
            }

            #[must_use]
            fn square(&self) -> Self {
                self.square()
            }

            #[must_use]
            fn double(&self) -> Self {
                self.double()
            }

            fn invert(&self) -> CtOption<Self> {
                self.invert()
            }

            fn sqrt(&self) -> CtOption<Self> {
                self.sqrt()
            }
        }

        $crate::impl_field_op!($fe, $uint, Add, add, $add);
        $crate::impl_field_op!($fe, $uint, Sub, sub, $sub);
        $crate::impl_field_op!($fe, $uint, Mul, mul, $mul);

        impl AddAssign<$fe> for $fe {
            #[inline]
            fn add_assign(&mut self, other: $fe) {
                *self = *self + other;
            }
        }

        impl AddAssign<&$fe> for $fe {
            #[inline]
            fn add_assign(&mut self, other: &$fe) {
                *self = *self + other;
            }
        }

        impl SubAssign<$fe> for $fe {
            #[inline]
            fn sub_assign(&mut self, other: $fe) {
                *self = *self - other;
            }
        }

        impl SubAssign<&$fe> for $fe {
            #[inline]
            fn sub_assign(&mut self, other: &$fe) {
                *self = *self - other;
            }
        }

        impl MulAssign<&$fe> for $fe {
            #[inline]
            fn mul_assign(&mut self, other: &$fe) {
                *self = *self * other;
            }
        }

        impl MulAssign for $fe {
            #[inline]
            fn mul_assign(&mut self, other: $fe) {
                *self = *self * other;
            }
        }

        impl Neg for $fe {
            type Output = $fe;

            #[inline]
            fn neg(self) -> $fe {
                Self($neg(self.as_ref()).into())
            }
        }
    };
}

/// Emit impls for a `core::ops` trait for all combinations of reference types,
/// which thunk to the given function.
#[macro_export]
macro_rules! impl_field_op {
    ($fe:tt, $uint:ty, $op:tt, $op_fn:ident, $func:ident) => {
        impl ::core::ops::$op for $fe {
            type Output = $fe;

            #[inline]
            fn $op_fn(self, rhs: $fe) -> $fe {
                $fe($func(self.as_ref(), rhs.as_ref()).into())
            }
        }

        impl ::core::ops::$op<&$fe> for $fe {
            type Output = $fe;

            #[inline]
            fn $op_fn(self, rhs: &$fe) -> $fe {
                $fe($func(self.as_ref(), rhs.as_ref()).into())
            }
        }

        impl ::core::ops::$op<&$fe> for &$fe {
            type Output = $fe;

            #[inline]
            fn $op_fn(self, rhs: &$fe) -> $fe {
                $fe($func(self.as_ref(), rhs.as_ref()).into())
            }
        }
    };
}