chacha20/backends/sse2.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
use crate::{Block, StreamClosure, Unsigned, STATE_WORDS};
use cipher::{
consts::{U1, U64},
BlockSizeUser, ParBlocksSizeUser, StreamBackend,
};
use core::marker::PhantomData;
#[cfg(target_arch = "x86")]
use core::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64::*;
#[inline]
#[target_feature(enable = "sse2")]
pub(crate) unsafe fn inner<R, F>(state: &mut [u32; STATE_WORDS], f: F)
where
R: Unsigned,
F: StreamClosure<BlockSize = U64>,
{
let state_ptr = state.as_ptr() as *const __m128i;
let mut backend = Backend::<R> {
v: [
_mm_loadu_si128(state_ptr.add(0)),
_mm_loadu_si128(state_ptr.add(1)),
_mm_loadu_si128(state_ptr.add(2)),
_mm_loadu_si128(state_ptr.add(3)),
],
_pd: PhantomData,
};
f.call(&mut backend);
state[12] = _mm_cvtsi128_si32(backend.v[3]) as u32;
}
struct Backend<R: Unsigned> {
v: [__m128i; 4],
_pd: PhantomData<R>,
}
impl<R: Unsigned> BlockSizeUser for Backend<R> {
type BlockSize = U64;
}
impl<R: Unsigned> ParBlocksSizeUser for Backend<R> {
type ParBlocksSize = U1;
}
impl<R: Unsigned> StreamBackend for Backend<R> {
#[inline(always)]
fn gen_ks_block(&mut self, block: &mut Block) {
unsafe {
let res = rounds::<R>(&self.v);
self.v[3] = _mm_add_epi32(self.v[3], _mm_set_epi32(0, 0, 0, 1));
let block_ptr = block.as_mut_ptr() as *mut __m128i;
for i in 0..4 {
_mm_storeu_si128(block_ptr.add(i), res[i]);
}
}
}
}
#[inline]
#[target_feature(enable = "sse2")]
unsafe fn rounds<R: Unsigned>(v: &[__m128i; 4]) -> [__m128i; 4] {
let mut res = *v;
for _ in 0..R::USIZE {
double_quarter_round(&mut res);
}
for i in 0..4 {
res[i] = _mm_add_epi32(res[i], v[i]);
}
res
}
#[inline]
#[target_feature(enable = "sse2")]
unsafe fn double_quarter_round(v: &mut [__m128i; 4]) {
add_xor_rot(v);
rows_to_cols(v);
add_xor_rot(v);
cols_to_rows(v);
}
/// The goal of this function is to transform the state words from:
/// ```text
/// [a0, a1, a2, a3] [ 0, 1, 2, 3]
/// [b0, b1, b2, b3] == [ 4, 5, 6, 7]
/// [c0, c1, c2, c3] [ 8, 9, 10, 11]
/// [d0, d1, d2, d3] [12, 13, 14, 15]
/// ```
///
/// to:
/// ```text
/// [a0, a1, a2, a3] [ 0, 1, 2, 3]
/// [b1, b2, b3, b0] == [ 5, 6, 7, 4]
/// [c2, c3, c0, c1] [10, 11, 8, 9]
/// [d3, d0, d1, d2] [15, 12, 13, 14]
/// ```
///
/// so that we can apply [`add_xor_rot`] to the resulting columns, and have it compute the
/// "diagonal rounds" (as defined in RFC 7539) in parallel. In practice, this shuffle is
/// non-optimal: the last state word to be altered in `add_xor_rot` is `b`, so the shuffle
/// blocks on the result of `b` being calculated.
///
/// We can optimize this by observing that the four quarter rounds in `add_xor_rot` are
/// data-independent: they only access a single column of the state, and thus the order of
/// the columns does not matter. We therefore instead shuffle the other three state words,
/// to obtain the following equivalent layout:
/// ```text
/// [a3, a0, a1, a2] [ 3, 0, 1, 2]
/// [b0, b1, b2, b3] == [ 4, 5, 6, 7]
/// [c1, c2, c3, c0] [ 9, 10, 11, 8]
/// [d2, d3, d0, d1] [14, 15, 12, 13]
/// ```
///
/// See https://github.com/sneves/blake2-avx2/pull/4 for additional details. The earliest
/// known occurrence of this optimization is in floodyberry's SSE4 ChaCha code from 2014:
/// - https://github.com/floodyberry/chacha-opt/blob/0ab65cb99f5016633b652edebaf3691ceb4ff753/chacha_blocks_ssse3-64.S#L639-L643
#[inline]
#[target_feature(enable = "sse2")]
unsafe fn rows_to_cols([a, _, c, d]: &mut [__m128i; 4]) {
// c >>>= 32; d >>>= 64; a >>>= 96;
*c = _mm_shuffle_epi32(*c, 0b_00_11_10_01); // _MM_SHUFFLE(0, 3, 2, 1)
*d = _mm_shuffle_epi32(*d, 0b_01_00_11_10); // _MM_SHUFFLE(1, 0, 3, 2)
*a = _mm_shuffle_epi32(*a, 0b_10_01_00_11); // _MM_SHUFFLE(2, 1, 0, 3)
}
/// The goal of this function is to transform the state words from:
/// ```text
/// [a3, a0, a1, a2] [ 3, 0, 1, 2]
/// [b0, b1, b2, b3] == [ 4, 5, 6, 7]
/// [c1, c2, c3, c0] [ 9, 10, 11, 8]
/// [d2, d3, d0, d1] [14, 15, 12, 13]
/// ```
///
/// to:
/// ```text
/// [a0, a1, a2, a3] [ 0, 1, 2, 3]
/// [b0, b1, b2, b3] == [ 4, 5, 6, 7]
/// [c0, c1, c2, c3] [ 8, 9, 10, 11]
/// [d0, d1, d2, d3] [12, 13, 14, 15]
/// ```
///
/// reversing the transformation of [`rows_to_cols`].
#[inline]
#[target_feature(enable = "sse2")]
unsafe fn cols_to_rows([a, _, c, d]: &mut [__m128i; 4]) {
// c <<<= 32; d <<<= 64; a <<<= 96;
*c = _mm_shuffle_epi32(*c, 0b_10_01_00_11); // _MM_SHUFFLE(2, 1, 0, 3)
*d = _mm_shuffle_epi32(*d, 0b_01_00_11_10); // _MM_SHUFFLE(1, 0, 3, 2)
*a = _mm_shuffle_epi32(*a, 0b_00_11_10_01); // _MM_SHUFFLE(0, 3, 2, 1)
}
#[inline]
#[target_feature(enable = "sse2")]
unsafe fn add_xor_rot([a, b, c, d]: &mut [__m128i; 4]) {
// a += b; d ^= a; d <<<= (16, 16, 16, 16);
*a = _mm_add_epi32(*a, *b);
*d = _mm_xor_si128(*d, *a);
*d = _mm_xor_si128(_mm_slli_epi32(*d, 16), _mm_srli_epi32(*d, 16));
// c += d; b ^= c; b <<<= (12, 12, 12, 12);
*c = _mm_add_epi32(*c, *d);
*b = _mm_xor_si128(*b, *c);
*b = _mm_xor_si128(_mm_slli_epi32(*b, 12), _mm_srli_epi32(*b, 20));
// a += b; d ^= a; d <<<= (8, 8, 8, 8);
*a = _mm_add_epi32(*a, *b);
*d = _mm_xor_si128(*d, *a);
*d = _mm_xor_si128(_mm_slli_epi32(*d, 8), _mm_srli_epi32(*d, 24));
// c += d; b ^= c; b <<<= (7, 7, 7, 7);
*c = _mm_add_epi32(*c, *d);
*b = _mm_xor_si128(*b, *c);
*b = _mm_xor_si128(_mm_slli_epi32(*b, 7), _mm_srli_epi32(*b, 25));
}