typed_arena/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
//! The arena, a fast but limited type of allocator.
//!
//! Arenas are a type of allocator that destroy the objects within,
//! all at once, once the arena itself is destroyed.
//! They do not support deallocation of individual objects while the arena itself is still alive.
//! The benefit of an arena is very fast allocation; just a vector push.
//!
//! This is an equivalent of the old
//! [`arena::TypedArena`](https://doc.rust-lang.org/1.1.0/arena/struct.TypedArena.html)
//! type that was once distributed with nightly rustc but has since been
//! removed.
//!
//! It is slightly less efficient, but simpler internally and uses much less unsafe code.
//! It is based on a `Vec<Vec<T>>` instead of raw pointers and manual drops.
//!
//! ## Example
//!
//! ```
//! use typed_arena::Arena;
//!
//! struct Monster {
//!     level: u32,
//! }
//!
//! let monsters = Arena::new();
//!
//! let vegeta = monsters.alloc(Monster { level: 9001 });
//! assert!(vegeta.level > 9000);
//! ```
//!
//! ## Safe Cycles
//!
//! All allocated objects get the same lifetime, so you can safely create cycles
//! between them. This can be useful for certain data structures, such as graphs
//! and trees with parent pointers.
//!
//! ```
//! use std::cell::Cell;
//! use typed_arena::Arena;
//!
//! struct CycleParticipant<'a> {
//!     other: Cell<Option<&'a CycleParticipant<'a>>>,
//! }
//!
//! let arena = Arena::new();
//!
//! let a = arena.alloc(CycleParticipant { other: Cell::new(None) });
//! let b = arena.alloc(CycleParticipant { other: Cell::new(None) });
//!
//! a.other.set(Some(b));
//! b.other.set(Some(a));
//! ```

// Potential optimizations:
// 1) add and stabilize a method for in-place reallocation of vecs.
// 2) add and stabilize placement new.
// 3) use an iterator. This may add far too much unsafe code.

#![deny(missing_docs)]
#![cfg_attr(not(any(feature = "std", test)), no_std)]
#![cfg_attr(not(feature = "std"), feature(alloc))]

#[cfg(not(feature = "std"))]
extern crate alloc;

#[cfg(any(feature = "std", test))]
extern crate core;

#[cfg(not(feature = "std"))]
use alloc::Vec;

use core::cell::RefCell;
use core::cmp;
use core::iter;
use core::mem;
use core::slice;

#[cfg(test)]
mod test;

// Initial size in bytes.
const INITIAL_SIZE: usize = 1024;
// Minimum capacity. Must be larger than 0.
const MIN_CAPACITY: usize = 1;

/// An arena of objects of type `T`.
///
/// ## Example
///
/// ```
/// use typed_arena::Arena;
///
/// struct Monster {
///     level: u32,
/// }
///
/// let monsters = Arena::new();
///
/// let vegeta = monsters.alloc(Monster { level: 9001 });
/// assert!(vegeta.level > 9000);
/// ```
pub struct Arena<T> {
    chunks: RefCell<ChunkList<T>>,
}

struct ChunkList<T> {
    current: Vec<T>,
    rest: Vec<Vec<T>>,
}

impl<T> Arena<T> {
    /// Construct a new arena.
    ///
    /// ## Example
    ///
    /// ```
    /// use typed_arena::Arena;
    ///
    /// let arena = Arena::new();
    /// # arena.alloc(1);
    /// ```
    pub fn new() -> Arena<T> {
        let size = cmp::max(1, mem::size_of::<T>());
        Arena::with_capacity(INITIAL_SIZE / size)
    }

    /// Construct a new arena with capacity for `n` values pre-allocated.
    ///
    /// ## Example
    ///
    /// ```
    /// use typed_arena::Arena;
    ///
    /// let arena = Arena::with_capacity(1337);
    /// # arena.alloc(1);
    /// ```
    pub fn with_capacity(n: usize) -> Arena<T> {
        let n = cmp::max(MIN_CAPACITY, n);
        Arena {
            chunks: RefCell::new(ChunkList {
                current: Vec::with_capacity(n),
                rest: Vec::new(),
            }),
        }
    }

    /// Allocates a value in the arena, and returns a mutable reference
    /// to that value.
    ///
    /// ## Example
    ///
    /// ```
    /// use typed_arena::Arena;
    ///
    /// let arena = Arena::new();
    /// let x = arena.alloc(42);
    /// assert_eq!(*x, 42);
    /// ```
    pub fn alloc(&self, value: T) -> &mut T {
        &mut self.alloc_extend(iter::once(value))[0]
    }

    /// Uses the contents of an iterator to allocate values in the arena.
    /// Returns a mutable slice that contains these values.
    ///
    /// ## Example
    ///
    /// ```
    /// use typed_arena::Arena;
    ///
    /// let arena = Arena::new();
    /// let abc = arena.alloc_extend("abcdefg".chars().take(3));
    /// assert_eq!(abc, ['a', 'b', 'c']);
    /// ```
    pub fn alloc_extend<I>(&self, iterable: I) -> &mut [T]
        where I: IntoIterator<Item = T>
    {
        let mut iter = iterable.into_iter();

        let mut chunks = self.chunks.borrow_mut();

        let iter_min_len = iter.size_hint().0;
        let mut next_item_index;
        if chunks.current.len() + iter_min_len > chunks.current.capacity() {
            chunks.reserve(iter_min_len);
            chunks.current.extend(iter);
            next_item_index = 0;
        } else {
            next_item_index = chunks.current.len();
            let mut i = 0;
            while let Some(elem) = iter.next() {
                if chunks.current.len() == chunks.current.capacity() {
                    // The iterator was larger than we could fit into the current chunk.
                    let chunks = &mut *chunks;
                    // Create a new chunk into which we can freely push the entire iterator into
                    chunks.reserve(i + 1);
                    let previous_chunk = chunks.rest.last_mut().unwrap();
                    let previous_chunk_len = previous_chunk.len();
                    // Move any elements we put into the previous chunk into this new chunk
                    chunks.current.extend(previous_chunk.drain(previous_chunk_len - i..));
                    chunks.current.push(elem);
                    // And the remaining elements in the iterator
                    chunks.current.extend(iter);
                    next_item_index = 0;
                    break;
                } else {
                    chunks.current.push(elem);
                }
                i += 1;
            }
        }
        let new_slice_ref = {
            let new_slice_ref = &mut chunks.current[next_item_index..];

            // Extend the lifetime from that of `chunks_borrow` to that of `self`.
            // This is OK because we’re careful to never move items
            // by never pushing to inner `Vec`s beyond their initial capacity.
            // The returned reference is unique (`&mut`):
            // the `Arena` never gives away references to existing items.
            unsafe { mem::transmute::<&mut [T], &mut [T]>(new_slice_ref) }
        };

        new_slice_ref
    }

    /// Allocates space for a given number of values, but doesn't initialize it.
    ///
    /// ## Unsafety and Undefined Behavior
    ///
    /// The same caveats that apply to
    /// [`std::mem::uninitialized`](https://doc.rust-lang.org/nightly/std/mem/fn.uninitialized.html)
    /// apply here:
    ///
    /// > **This is incredibly dangerous and should not be done lightly. Deeply
    /// consider initializing your memory with a default value instead.**
    ///
    /// In particular, it is easy to trigger undefined behavior by allocating
    /// uninitialized values, failing to properly initialize them, and then the
    /// `Arena` will attempt to drop them when it is dropped. Initializing an
    /// uninitialized value is trickier than it might seem: a normal assignment
    /// to a field will attempt to drop the old, uninitialized value, which
    /// almost certainly also triggers undefined behavior. You must also
    /// consider all the places where your code might "unexpectedly" drop values
    /// earlier than it "should" because of unwinding during panics.
    pub unsafe fn alloc_uninitialized(&self, num: usize) -> *mut [T] {
        let mut chunks = self.chunks.borrow_mut();

        if chunks.current.len() + num > chunks.current.capacity() {
            chunks.reserve(num);
        }

        // At this point, the current chunk must have free capacity.
        let next_item_index = chunks.current.len();
        chunks.current.set_len(next_item_index + num);
        // Extend the lifetime...
        &mut chunks.current[next_item_index..] as *mut _
    }

    /// Returns unused space.
    ///
    /// *This unused space is still not considered "allocated".* Therefore, it
    /// won't be dropped unless there are further calls to `alloc`,
    /// `alloc_uninitialized`, or `alloc_extend` which is why the method is
    /// safe.
    pub fn uninitialized_array(&self) -> *mut [T] {
        let chunks = self.chunks.borrow();
        let len = chunks.current.capacity() - chunks.current.len();
        let next_item_index = chunks.current.len();
        let slice = &chunks.current[next_item_index..];
        unsafe { slice::from_raw_parts_mut(slice.as_ptr() as *mut T, len) as *mut _ }
    }

    /// Convert this `Arena` into a `Vec<T>`.
    ///
    /// Items in the resulting `Vec<T>` appear in the order that they were
    /// allocated in.
    ///
    /// ## Example
    ///
    /// ```
    /// use typed_arena::Arena;
    ///
    /// let arena = Arena::new();
    ///
    /// arena.alloc("a");
    /// arena.alloc("b");
    /// arena.alloc("c");
    ///
    /// let easy_as_123 = arena.into_vec();
    ///
    /// assert_eq!(easy_as_123, vec!["a", "b", "c"]);
    /// ```
    pub fn into_vec(self) -> Vec<T> {
        let mut chunks = self.chunks.into_inner();
        // keep order of allocation in the resulting Vec
        let n = chunks.rest.iter().fold(chunks.current.len(), |a, v| a + v.len());
        let mut result = Vec::with_capacity(n);
        for mut vec in chunks.rest {
            result.append(&mut vec);
        }
        result.append(&mut chunks.current);
        result
    }
}

impl<T> ChunkList<T> {
    #[inline(never)]
    #[cold]
    fn reserve(&mut self, additional: usize) {
        let double_cap = self.current.capacity().checked_mul(2).expect("capacity overflow");
        let required_cap = additional.checked_next_power_of_two().expect("capacity overflow");
        let new_capacity = cmp::max(double_cap, required_cap);
        let chunk = mem::replace(&mut self.current, Vec::with_capacity(new_capacity));
        self.rest.push(chunk);
    }
}