termion/async.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
use std::io::{self, Read};
use std::sync::mpsc;
use std::thread;
use sys::tty::get_tty;
/// Construct an asynchronous handle to the TTY standard input, with a delimiter byte.
///
/// This has the same advantages as async_stdin(), but also allows specifying a delimiter byte. The
/// reader will stop reading after consuming the delimiter byte.
pub fn async_stdin_until(delimiter: u8) -> AsyncReader {
let (send, recv) = mpsc::channel();
thread::spawn(move || for i in get_tty().unwrap().bytes() {
match i {
Ok(byte) => {
let end_of_stream = &byte == &delimiter;
let send_error = send.send(Ok(byte)).is_err();
if end_of_stream || send_error { return; }
},
Err(_) => { return; }
}
});
AsyncReader { recv: recv }
}
/// Construct an asynchronous handle to the TTY standard input.
///
/// This allows you to read from standard input _without blocking_ the current thread.
/// Specifically, it works by firing up another thread to handle the event stream, which will then
/// be buffered in a mpsc queue, which will eventually be read by the current thread.
///
/// This will not read the piped standard input, but rather read from the TTY device, since reading
/// asyncronized from piped input would rarely make sense. In other words, if you pipe standard
/// output from another process, it won't be reflected in the stream returned by this function, as
/// this represents the TTY device, and not the piped standard input.
pub fn async_stdin() -> AsyncReader {
let (send, recv) = mpsc::channel();
thread::spawn(move || for i in get_tty().unwrap().bytes() {
if send.send(i).is_err() {
return;
}
});
AsyncReader { recv: recv }
}
/// An asynchronous reader.
///
/// This acts as any other stream, with the exception that reading from it won't block. Instead,
/// the buffer will only be partially updated based on how much the internal buffer holds.
pub struct AsyncReader {
/// The underlying mpsc receiver.
recv: mpsc::Receiver<io::Result<u8>>,
}
// FIXME: Allow constructing an async reader from an arbitrary stream.
impl Read for AsyncReader {
/// Read from the byte stream.
///
/// This will never block, but try to drain the event queue until empty. If the total number of
/// bytes written is lower than the buffer's length, the event queue is empty or that the event
/// stream halted.
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let mut total = 0;
loop {
if total >= buf.len() {
break;
}
match self.recv.try_recv() {
Ok(Ok(b)) => {
buf[total] = b;
total += 1;
}
Ok(Err(e)) => return Err(e),
Err(_) => break,
}
}
Ok(total)
}
}
#[cfg(test)]
mod test {
use super::*;
use std::io::Read;
#[test]
fn test_async_stdin() {
let stdin = async_stdin();
stdin.bytes().next();
}
}