circuit/lib.rs
1// Copyright 2022 The Fuchsia Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5use fuchsia_async::Timer;
6use fuchsia_sync::Mutex;
7use futures::channel::mpsc::Sender;
8use futures::channel::oneshot;
9use futures::future::{Either, poll_fn};
10use futures::stream::StreamExt as _;
11use futures::{FutureExt, SinkExt as _};
12use std::collections::HashMap;
13use std::future::Future;
14use std::pin::pin;
15use std::sync::{Arc, Weak};
16use std::task::Poll;
17use std::time::Duration;
18
19pub const CIRCUIT_VERSION: u8 = 0;
20
21mod error;
22mod protocol;
23#[cfg(test)]
24mod test;
25
26mod connection;
27pub mod multi_stream;
28pub mod stream;
29
30use protocol::{EncodableString, Identify, NodeState};
31
32pub use connection::{Connection, ConnectionNode};
33pub use error::{Error, Result};
34pub use protocol::Quality;
35
36use crate::protocol::ProtocolMessage;
37
38/// A list of other nodes we can see on the mesh. For each such node we retain a vector of senders
39/// which allow us to establish new streams with that node. Each sender in the vector corresponds to
40/// a different path we could take to the desired peer. For each sender we also store the sum of all
41/// quality values for hops to that peer (see `header::NodeState::Online`).
42struct PeerMap {
43 /// The actual map of peers itself.
44 peers: HashMap<EncodableString, Vec<(Sender<(stream::Reader, stream::Writer)>, Quality)>>,
45 /// This value increments once every time the peer map changes. Consequently, we can track
46 /// changes in this number to determine when a routing refresh is necessary.
47 generation: usize,
48 /// This allows the router task to wait for this structure to update. Put simply, any time we
49 /// increment `generation`, we should remove this sender from the struct and fire it if it is
50 /// present.
51 wakeup: Option<oneshot::Sender<()>>,
52 /// Control channels for various peer nodes.
53 ///
54 /// Every time we directly connect to a new node, we start a stream called the control stream,
55 /// which we use to send handshake messages and routing updates. Once we've written the
56 /// handshake message, the write side of that control stream ends up here, and this is where we
57 /// send routing updates.
58 ///
59 /// If we have a routing task, then any time the peer map updates, we will send updated node
60 /// states to each channel contained in this `Vec`. The `HashMap` contains the state of the peer
61 /// map the last time we sent info and is used to determine what updates need to be sent.
62 ///
63 /// If we don't have a routing task, this should be empty. In that case we're a "leaf node" and
64 /// we don't send any routing information to peers at all.
65 control_channels: Vec<(stream::Writer, HashMap<EncodableString, Quality>)>,
66}
67
68impl PeerMap {
69 /// Create a new peer map.
70 fn new() -> Self {
71 PeerMap {
72 peers: HashMap::new(),
73
74 // Start with generation 1 so the routing task can start with generation 0. This means
75 // the routing task is out of sync as soon as it starts, so it will immediately trigger
76 // an update.
77 generation: 1,
78
79 wakeup: None,
80 control_channels: Vec::new(),
81 }
82 }
83
84 /// Increment the generation field and fire the wakeup sender if present.
85 ///
86 /// In short: this signals to the routing task that the peer map has been modified, so that it
87 /// can update neighboring nodes with new routing information.
88 fn increment_generation(&mut self) {
89 self.generation += 1;
90 self.wakeup.take().map(|x| {
91 let _ = x.send(());
92 });
93 }
94
95 /// Get the list of peers mutably, and signal the routing task that we have modified it.
96 fn peers(
97 &mut self,
98 ) -> &mut HashMap<EncodableString, Vec<(Sender<(stream::Reader, stream::Writer)>, Quality)>>
99 {
100 self.increment_generation();
101 &mut self.peers
102 }
103
104 /// Reduces our peer map to a simpler form which contains only the name of each node we can see
105 /// and the quality rating of the fastest connection we have to that node.
106 fn condense_routes(&self) -> HashMap<EncodableString, Quality> {
107 let mut ret = HashMap::new();
108
109 for (key, value) in &self.peers {
110 if value.is_empty() {
111 continue;
112 }
113
114 ret.insert(key.clone(), value[0].1);
115 }
116
117 ret
118 }
119
120 /// Adds a control channel to `control_channels` and sends an initial route update for that
121 /// channel.
122 fn add_control_channel(&mut self, channel: stream::Writer, quality: Quality) -> Result<()> {
123 let routes = self.condense_routes();
124
125 for (node, &route_quality) in &routes {
126 let quality = quality.combine(route_quality);
127 let state = NodeState::Online(node.clone(), quality);
128
129 channel.write_protocol_message(&state)?;
130 }
131
132 self.control_channels.push((channel, routes));
133
134 Ok(())
135 }
136}
137
138/// Represents a node on the circuit network.
139///
140/// A node can connect to one or more other nodes, and a stream can be established between any two
141/// nodes on the entire connected graph of nodes.
142pub struct Node {
143 /// A unique identifying string for this node.
144 node_id: EncodableString,
145 /// Indicates what protocol we intend to run atop the streams we established, e.g.
146 /// "Overnet-with-FIDL-ABI-1"
147 protocol: EncodableString,
148 /// List of other nodes we can "see" on the network.
149 peers: Arc<Mutex<PeerMap>>,
150 /// If true, we will inform nodes we are connected to of what other nodes we can see, so that
151 /// they might try to forward traffic through us. This also indicates that there is a "router
152 /// process" running for this node which handles said forwarding.
153 has_router: bool,
154
155 /// If another node establishes a connection to this node, we will notify the user by way of
156 /// this sender.
157 incoming_stream_sender: Sender<(stream::Reader, stream::Writer, String)>,
158
159 /// If a new peer becomes available we will send its name through this sender to notify the user.
160 new_peer_sender: Sender<String>,
161}
162
163impl Node {
164 /// Establish a new node.
165 ///
166 /// Any time a new peer becomes visible to this node, the peer's node ID will be sent to
167 /// `new_peer_sender`.
168 ///
169 /// Any time a peer wants to establish a stream with this node, a reader and writer for the new
170 /// stream as well as the peer's node ID will be sent to `incoming_stream_sender`.
171 pub fn new(
172 node_id: &str,
173 protocol: &str,
174 new_peer_sender: Sender<String>,
175 incoming_stream_sender: Sender<(stream::Reader, stream::Writer, String)>,
176 ) -> Result<Node> {
177 let node_id = node_id.to_owned().try_into()?;
178 let protocol = protocol.to_owned().try_into()?;
179
180 Ok(Node {
181 node_id,
182 protocol,
183 new_peer_sender,
184 incoming_stream_sender,
185 peers: Arc::new(Mutex::new(PeerMap::new())),
186 has_router: false,
187 })
188 }
189
190 /// Establish a new node which will forward streams between its peers. The router process
191 /// provided must be polled continuously to provide this forwarding.
192 pub fn new_with_router(
193 node_id: &str,
194 protocol: &str,
195 interval: Duration,
196 new_peer_sender: Sender<String>,
197 incoming_stream_sender: Sender<(stream::Reader, stream::Writer, String)>,
198 ) -> Result<(Node, impl Future<Output = ()> + Send + use<>)> {
199 let mut node = Self::new(node_id, protocol, new_peer_sender, incoming_stream_sender)?;
200 node.has_router = true;
201
202 let weak_peers = Arc::downgrade(&node.peers);
203
204 Ok((node, router(weak_peers, interval)))
205 }
206
207 /// Establish a stream with another node. Data will be sent to the peer with
208 /// `connection_writer`, and received with `connection_reader`.
209 pub async fn connect_to_peer(
210 &self,
211 connection_reader: stream::Reader,
212 connection_writer: stream::Writer,
213 node_id: &str,
214 ) -> Result<()> {
215 if self.node_id == node_id {
216 self.incoming_stream_sender
217 .clone()
218 .send((connection_reader, connection_writer, node_id.to_owned()))
219 .await
220 .map_err(|_| Error::NoSuchPeer(node_id.to_owned()))?;
221 } else {
222 let node_id: EncodableString = node_id.to_owned().try_into()?;
223 // Write the destination node ID and the source node ID (us). Keep in mind because of
224 // the semantics of push_back_protocol_message, these will come off the wire in the
225 // *reverse* of the order we're putting them on here.
226 connection_reader.push_back_protocol_message(&self.node_id)?;
227 connection_reader.push_back_protocol_message(&node_id)?;
228 connect_to_peer(
229 Arc::clone(&self.peers),
230 connection_reader,
231 connection_writer,
232 &node_id,
233 )
234 .await?;
235 }
236
237 Ok(())
238 }
239
240 /// Test function to copy all routes toward one node as routes to another node.
241 #[cfg(test)]
242 pub fn route_via(&self, to: &str, via: &str) {
243 let to = EncodableString::try_from(to.to_owned()).unwrap();
244 let via = EncodableString::try_from(via.to_owned()).unwrap();
245 let mut peers = self.peers.lock();
246 let new_list = peers.peers.get(&via).unwrap().clone();
247 peers.peers.insert(to, new_list);
248 }
249
250 /// Connect to another node.
251 ///
252 /// This establishes the internal state to link this node directly to another one, there by
253 /// joining it to the circuit network. To actually perform the networking necessary to create
254 /// such a link, a back end will have to service the streams given to this function via
255 /// its arguments. To keep the link running, the returned future must also be polled to
256 /// completion. Depending on configuration, it may complete swiftly or may poll for the entire
257 /// lifetime of the link.
258 ///
259 /// When we link to another node, we immediately start a "control stream" that performs a
260 /// handshake and sends routing messages. The reader and writer passed in through
261 /// `control_stream` will be used to service this stream. If `control_stream` is `None` the
262 /// first stream emitted from `new_stream_receiver` will be used.
263 ///
264 /// When the local node needs to create a new stream to the linked node, it will send a reader
265 /// and writer to `new_stream_sender`.
266 ///
267 /// When the linked node wants to create a new stream to this node, the back end may send a
268 /// reader and writer through `new_stream_receiver`, as well as a `oneshot::Sender` which will
269 /// be used to report if the link is established successfully or if an error occurs.
270 ///
271 /// The returned future will continue to poll for the lifetime of the link and return the error
272 /// that terminated it.
273 pub fn link_node<F>(
274 &self,
275 control_stream: Option<(stream::Reader, stream::Writer)>,
276 new_stream_sender: Sender<(stream::Reader, stream::Writer)>,
277 mut new_stream_receiver: F,
278 quality: Quality,
279 ) -> impl Future<Output = Result<()>> + Send + use<F>
280 where
281 F: futures::Stream<Item = (stream::Reader, stream::Writer, oneshot::Sender<Result<()>>)>
282 + Unpin
283 + Send,
284 {
285 let has_router = self.has_router;
286 let peers = Arc::clone(&self.peers);
287 let node_id = self.node_id.clone();
288 let protocol = self.protocol.clone();
289 let (new_stream_receiver_sender, new_stream_receiver_receiver) = oneshot::channel();
290 let (control_reader_sender, control_reader_receiver) = oneshot::channel();
291 let new_streams_loop =
292 self.handle_new_streams(new_stream_receiver_receiver, new_stream_sender.clone());
293 let control_stream_loop =
294 self.handle_control_stream(control_reader_receiver, new_stream_sender.clone(), quality);
295
296 // Runs all necessary background processing for a connection. Tasks include:
297 // 1) Fetch a control stream from the new_stream_receiver if we don't have one from
298 // control_stream already.
299 // 2) Send a handshake message to the other node.
300 // 3) Wait for and validate the handshake from the peer.
301 // 4) Receive updated routing information from the peer and update the peer map accordingly.
302 // 5) When the peer tries to open a new stream to us, either forward that stream to another
303 // node or, if it's destined for us directly, consume the initial handshake from it and send
304 // it out to be processed by the user.
305 async move {
306 let (control_reader, control_writer) = if let Some(control_stream) = control_stream {
307 control_stream
308 } else {
309 let (reader, writer, error_sender) =
310 new_stream_receiver.next().await.ok_or_else(|| {
311 Error::ConnectionClosed(Some(
312 "Client stopped listening for new streams".to_owned(),
313 ))
314 })?;
315 let _ = error_sender.send(Ok(()));
316 (reader, writer)
317 };
318
319 let _ = new_stream_receiver_sender.send(new_stream_receiver);
320
321 let header = Identify::new(protocol.clone());
322 control_writer.write_protocol_message(&header)?;
323
324 let state = NodeState::Online(node_id.clone(), Quality::SELF);
325 control_writer.write_protocol_message(&state)?;
326
327 if has_router {
328 peers
329 .lock()
330 .add_control_channel(control_writer, quality)
331 .expect("We just created this channel!");
332 } else {
333 // No router means no further routing messages. Just let 'er go.
334 std::mem::drop(control_writer);
335 }
336
337 // Start by reading and validating a handshake message from the stream.
338 let header = control_reader.read_protocol_message::<Identify>().await?;
339
340 if header.circuit_version != CIRCUIT_VERSION {
341 return Err(Error::VersionMismatch);
342 } else if header.protocol != protocol {
343 return Err(Error::ProtocolMismatch);
344 }
345
346 control_reader_sender.send(control_reader).map_err(|_| {
347 Error::ConnectionClosed(Some("Control stream handler disappeared".to_owned()))
348 })?;
349
350 let control_stream_loop = pin!(control_stream_loop);
351 let new_streams_loop = pin!(new_streams_loop);
352
353 let ret = match futures::future::select(control_stream_loop, new_streams_loop).await {
354 Either::Left((result, new_streams)) => {
355 if matches!(result, Ok(()) | Err(Error::ConnectionClosed(_))) {
356 new_streams.await;
357 }
358 result
359 }
360 Either::Right(((), read_control)) => read_control.now_or_never().unwrap_or(Ok(())),
361 };
362
363 {
364 let mut peers = peers.lock();
365 let peers = peers.peers();
366 for peer_list in peers.values_mut() {
367 peer_list.retain(|x| !x.0.same_receiver(&new_stream_sender));
368 }
369 }
370
371 ret
372 }
373 }
374
375 /// Handles messages we receive on a control stream, i.e. routing updates. `new_stream_sender`
376 /// is a channel by which streams destined for another peer can be forwarded to the node on the
377 /// other end of this control stream. The routing table will associate that sender with any
378 /// peers that can be reached via that node.
379 ///
380 /// The returned future will poll until the control stream hangs up or a protocol error occurs.
381 fn handle_control_stream(
382 &self,
383 control_reader: oneshot::Receiver<stream::Reader>,
384 new_stream_sender: Sender<(stream::Reader, stream::Writer)>,
385 quality: Quality,
386 ) -> impl Future<Output = Result<()>> + Send + use<> {
387 let peers = Arc::clone(&self.peers);
388 let new_stream_sender = new_stream_sender;
389 let node_id = self.node_id.clone();
390 let mut new_peer_sender = self.new_peer_sender.clone();
391
392 async move {
393 let control_reader = control_reader.await.map_err(|_| {
394 Error::ConnectionClosed(Some(
395 "Reader never given to control stream handler".to_string(),
396 ))
397 })?;
398 loop {
399 let state = control_reader.read_protocol_message::<NodeState>().await?;
400 match state {
401 NodeState::Online(peer, path_quality) => {
402 if peer == node_id {
403 continue;
404 }
405
406 let quality = path_quality.combine(quality);
407 let peer_string = peer.to_string();
408 let should_send = {
409 let mut peers = peers.lock();
410 let peers = peers.peers();
411 let peer_list = peers.entry(peer).or_insert_with(Vec::new);
412 let should_send = peer_list.is_empty();
413 peer_list.retain(|x| !x.0.same_receiver(&new_stream_sender));
414 peer_list.push((new_stream_sender.clone(), quality));
415 peer_list.sort_by_key(|x| x.1);
416 should_send
417 };
418 if should_send {
419 let _ = new_peer_sender.send(peer_string).await;
420 }
421 }
422 NodeState::Offline(peer) => {
423 let mut peers = peers.lock();
424 let peers = peers.peers();
425 let peer_list = peers.get_mut(&peer);
426
427 if let Some(peer_list) = peer_list {
428 peer_list.retain(|x| !x.0.same_receiver(&new_stream_sender));
429 }
430 }
431 }
432 }
433 }
434 }
435
436 /// Handles requests for new streams. The `new_stream_receiver` provides a reader and writer for
437 /// every stream that gets established to or through this node, as well as a `Result` sender so
438 /// we can indicate if we have any trouble handling this stream. The `new_stream_sender` allows
439 /// us to connect back to the connecting node. If we don't have routing info for the incoming
440 /// node we will establish a new route via that stream when the connection arrives.
441 ///
442 /// For each incoming stream, we read a bit of protocol header out of it and either accept it or
443 /// forward it to another peer.
444 ///
445 /// The returned future will poll until the back end hangs up the other end of the receiver.
446 fn handle_new_streams<F>(
447 &self,
448 new_stream_receiver_receiver: oneshot::Receiver<F>,
449 new_stream_sender: Sender<(stream::Reader, stream::Writer)>,
450 ) -> impl Future<Output = ()> + use<F>
451 where
452 F: futures::Stream<Item = (stream::Reader, stream::Writer, oneshot::Sender<Result<()>>)>
453 + Unpin,
454 {
455 let peers = Arc::clone(&self.peers);
456 let mut incoming_stream_sender = self.incoming_stream_sender.clone();
457 let mut new_peer_sender = self.new_peer_sender.clone();
458 let node_id = self.node_id.clone();
459
460 async move {
461 let mut new_stream_receiver = if let Ok(x) = new_stream_receiver_receiver.await {
462 x
463 } else {
464 return;
465 };
466
467 while let Some((reader, writer, result_sender)) = new_stream_receiver.next().await {
468 let _ = result_sender.send(
469 async {
470 let dest = reader
471 .read(EncodableString::MIN_SIZE, |buf| {
472 EncodableString::try_from_bytes(buf).map(|(dest, size)| {
473 if dest == node_id {
474 // If the destination is this node, discard the string
475 // itself (we know where we are, so we don't need it)
476 // and return as usual.
477 (None, size)
478 } else {
479 // If the destination node is another node, return a
480 // size of zero, which tells the reader to leave the
481 // destination string in the stream. When we forward the
482 // stream, the node we forward it to will be able to
483 // read the destination again.
484 (Some(dest), 0)
485 }
486 })
487 })
488 .await?;
489
490 if let Some(dest) = dest {
491 connect_to_peer(Arc::clone(&peers), reader, writer, &dest).await?;
492 } else {
493 let src = reader.read_protocol_message::<EncodableString>().await?;
494 let send_new_peer = {
495 let mut peers = peers.lock();
496 let peer_list =
497 peers.peers.entry(src.clone()).or_insert_with(Vec::new);
498 if !peer_list.iter().any(|x| x.0.same_receiver(&new_stream_sender))
499 {
500 peer_list.push((new_stream_sender.clone(), Quality::UNKNOWN));
501 peers.increment_generation();
502 true
503 } else {
504 false
505 }
506 };
507
508 if send_new_peer {
509 let _ = new_peer_sender.send(src.to_string()).await;
510 }
511
512 incoming_stream_sender
513 .send((reader, writer, src.to_string()))
514 .await
515 .map_err(|_| {
516 Error::ConnectionClosed(Some(
517 "Incoming stream dispatcher disappeared".to_owned(),
518 ))
519 })?;
520 }
521 Ok(())
522 }
523 .await,
524 );
525 }
526 }
527 }
528
529 /// Get the node ID of this node.
530 pub fn node_id(&self) -> &str {
531 self.node_id.as_str()
532 }
533}
534
535/// Given the reader and writer for an incoming connection, forward that
536/// connection to another node.
537async fn connect_to_peer(
538 peers: Arc<Mutex<PeerMap>>,
539 peer_reader: stream::Reader,
540 peer_writer: stream::Writer,
541 node_id: &EncodableString,
542) -> Result<()> {
543 let mut peer_channels = Some((peer_reader, peer_writer));
544 let mut peer_sender: Option<Sender<(stream::Reader, stream::Writer)>> = None;
545
546 poll_fn(|ctx| {
547 // If we found a place to send the new stream during the last poll, but
548 // it gave us pending, we have to keep that sender's clone around so our
549 // waker is remembered and we get woken up. We could just drop it here
550 // and repeat the whole discovery again, which would cost compute but
551 // make us more responsive to changes in the network topology by a
552 // smidge. Instead we'll try the same link again, and keep trying until
553 // it succeeds or breaks.
554 if let Some(sender) = &mut peer_sender {
555 match sender.poll_ready(ctx) {
556 Poll::Ready(Ok(())) => {
557 sender
558 .start_send(peer_channels.take().unwrap())
559 .expect("Should be guaranteed to succeed!");
560 return Poll::Ready(());
561 }
562 Poll::Ready(Err(_)) => peer_sender = None,
563 Poll::Pending => {
564 return Poll::Pending;
565 }
566 }
567 }
568
569 let mut peers = peers.lock();
570
571 // For each peer we have a list of channels to which we can send our
572 // reader and writer, each representing a connection which will become
573 // the next link in the circuit. The list is sorted by connection
574 // quality, getting worse toward the end of the list, so we want to send
575 // our reader and writer to the first one we can.
576 let Some(peer_list) = peers.peers.get_mut(node_id) else {
577 return Poll::Ready(());
578 };
579
580 let mut changed = false;
581
582 // Go through each potential connection and send to the first one which
583 // will handle the connection. We may discover the first few we try have
584 // hung up and gone away, so we'll delete those from the list and try
585 // the next one.
586 //
587 // If the channel used to send to the fastest available connection is
588 // full, we pause and retry when it is ready. We *could* continue down
589 // the list to find another connection, but we don't; we assume waiting
590 // for a faster connection to be serviceable locally nets better
591 // performance in the long run than sending on a slower connection that
592 // can be serviced right away.
593 peer_list.retain_mut(|x| {
594 if peer_sender.is_none() && peer_channels.is_some() {
595 let mut sender = x.0.clone();
596 match sender.poll_ready(ctx) {
597 Poll::Ready(Ok(())) => {
598 sender
599 .start_send(peer_channels.take().unwrap())
600 .expect("Should be guaranteed to succeed!");
601 true
602 }
603 Poll::Ready(Err(_)) => {
604 changed = true;
605 false
606 }
607 Poll::Pending => {
608 peer_sender = Some(sender);
609 true
610 }
611 }
612 } else {
613 true
614 }
615 });
616
617 // If this is true, we cleared out some stale connections from the
618 // routing table. Send a routing update to update our neighbors about
619 // how this might affect connectivity.
620 if changed {
621 peers.increment_generation();
622 }
623
624 // The peer sender is where we register our waker. If we don't have one
625 // we didn't register a waker and should return now.
626 if peer_sender.is_none() { Poll::Ready(()) } else { Poll::Pending }
627 })
628 .await;
629
630 // Our iteration above should have taken channels and sent them along to the
631 // connection that will handle them. If they're still here we didn't find a
632 // channel.
633 if peer_channels.is_none() { Ok(()) } else { Err(Error::NoSuchPeer(node_id.to_string())) }
634}
635
636/// Given an old and a new condensed routing table, create a serialized list of
637/// `NodeState`s which will update a node on what has changed between them.
638fn route_updates(
639 old_routes: &HashMap<EncodableString, Quality>,
640 new_routes: &HashMap<EncodableString, Quality>,
641) -> Vec<u8> {
642 let mut ret = Vec::new();
643
644 for (node, &quality) in new_routes {
645 if let Some(&old_quality) = old_routes.get(node) {
646 if old_quality == quality {
647 continue;
648 }
649 }
650
651 NodeState::Online(node.clone(), quality).write_bytes_vec(&mut ret);
652 }
653
654 for old_node in old_routes.keys() {
655 if !new_routes.contains_key(old_node) {
656 NodeState::Offline(old_node.clone()).write_bytes_vec(&mut ret);
657 }
658 }
659
660 ret
661}
662
663/// Router process. Notifies each peer every time the router table is updated. The given `interval`
664/// allows these updates to be rate-limited; there will always be at least `interval` time between
665/// updates.
666async fn router(peers: Weak<Mutex<PeerMap>>, interval: Duration) {
667 let mut generation = 0;
668
669 loop {
670 let mut wake_receiver = None;
671 {
672 let peers = if let Some(peers) = peers.upgrade() {
673 peers
674 } else {
675 return;
676 };
677 let mut peers = peers.lock();
678
679 if peers.generation <= generation {
680 let (sender, receiver) = oneshot::channel();
681 peers.wakeup = Some(sender);
682 wake_receiver = Some(receiver);
683 } else {
684 let new_routes = peers.condense_routes();
685
686 peers.control_channels.retain_mut(|(sender, routes)| {
687 let msgs = route_updates(routes, &new_routes);
688
689 if sender
690 .write(msgs.len(), |buf| {
691 buf[..msgs.len()].copy_from_slice(&msgs);
692 Ok(msgs.len())
693 })
694 .is_ok()
695 {
696 *routes = new_routes.clone();
697 true
698 } else {
699 false
700 }
701 });
702
703 generation = peers.generation;
704 }
705 }
706
707 if let Some(receiver) = wake_receiver {
708 let _ = receiver.await;
709 } else {
710 Timer::new(interval).await
711 }
712 }
713}