circuit/lib.rs
1// Copyright 2022 The Fuchsia Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5use fuchsia_async::Timer;
6use futures::channel::mpsc::Sender;
7use futures::channel::oneshot;
8use futures::future::{poll_fn, Either};
9use futures::stream::StreamExt as _;
10use futures::{FutureExt, SinkExt as _};
11use std::collections::HashMap;
12use std::future::Future;
13use std::pin::pin;
14use std::sync::{Arc, Mutex, Weak};
15use std::task::Poll;
16use std::time::Duration;
17
18pub const CIRCUIT_VERSION: u8 = 0;
19
20mod error;
21mod protocol;
22#[cfg(test)]
23mod test;
24
25mod connection;
26pub mod multi_stream;
27pub mod stream;
28
29use protocol::{EncodableString, Identify, NodeState};
30
31pub use connection::{Connection, ConnectionNode};
32pub use error::{Error, Result};
33pub use protocol::Quality;
34
35use crate::protocol::ProtocolMessage;
36
37/// A list of other nodes we can see on the mesh. For each such node we retain a vector of senders
38/// which allow us to establish new streams with that node. Each sender in the vector corresponds to
39/// a different path we could take to the desired peer. For each sender we also store the sum of all
40/// quality values for hops to that peer (see `header::NodeState::Online`).
41struct PeerMap {
42 /// The actual map of peers itself.
43 peers: HashMap<EncodableString, Vec<(Sender<(stream::Reader, stream::Writer)>, Quality)>>,
44 /// This value increments once every time the peer map changes. Consequently, we can track
45 /// changes in this number to determine when a routing refresh is necessary.
46 generation: usize,
47 /// This allows the router task to wait for this structure to update. Put simply, any time we
48 /// increment `generation`, we should remove this sender from the struct and fire it if it is
49 /// present.
50 wakeup: Option<oneshot::Sender<()>>,
51 /// Control channels for various peer nodes.
52 ///
53 /// Every time we directly connect to a new node, we start a stream called the control stream,
54 /// which we use to send handshake messages and routing updates. Once we've written the
55 /// handshake message, the write side of that control stream ends up here, and this is where we
56 /// send routing updates.
57 ///
58 /// If we have a routing task, then any time the peer map updates, we will send updated node
59 /// states to each channel contained in this `Vec`. The `HashMap` contains the state of the peer
60 /// map the last time we sent info and is used to determine what updates need to be sent.
61 ///
62 /// If we don't have a routing task, this should be empty. In that case we're a "leaf node" and
63 /// we don't send any routing information to peers at all.
64 control_channels: Vec<(stream::Writer, HashMap<EncodableString, Quality>)>,
65}
66
67impl PeerMap {
68 /// Create a new peer map.
69 fn new() -> Self {
70 PeerMap {
71 peers: HashMap::new(),
72
73 // Start with generation 1 so the routing task can start with generation 0. This means
74 // the routing task is out of sync as soon as it starts, so it will immediately trigger
75 // an update.
76 generation: 1,
77
78 wakeup: None,
79 control_channels: Vec::new(),
80 }
81 }
82
83 /// Increment the generation field and fire the wakeup sender if present.
84 ///
85 /// In short: this signals to the routing task that the peer map has been modified, so that it
86 /// can update neighboring nodes with new routing information.
87 fn increment_generation(&mut self) {
88 self.generation += 1;
89 self.wakeup.take().map(|x| {
90 let _ = x.send(());
91 });
92 }
93
94 /// Get the list of peers mutably, and signal the routing task that we have modified it.
95 fn peers(
96 &mut self,
97 ) -> &mut HashMap<EncodableString, Vec<(Sender<(stream::Reader, stream::Writer)>, Quality)>>
98 {
99 self.increment_generation();
100 &mut self.peers
101 }
102
103 /// Reduces our peer map to a simpler form which contains only the name of each node we can see
104 /// and the quality rating of the fastest connection we have to that node.
105 fn condense_routes(&self) -> HashMap<EncodableString, Quality> {
106 let mut ret = HashMap::new();
107
108 for (key, value) in &self.peers {
109 if value.is_empty() {
110 continue;
111 }
112
113 ret.insert(key.clone(), value[0].1);
114 }
115
116 ret
117 }
118
119 /// Adds a control channel to `control_channels` and sends an initial route update for that
120 /// channel.
121 fn add_control_channel(&mut self, channel: stream::Writer, quality: Quality) -> Result<()> {
122 let routes = self.condense_routes();
123
124 for (node, &route_quality) in &routes {
125 let quality = quality.combine(route_quality);
126 let state = NodeState::Online(node.clone(), quality);
127
128 channel.write_protocol_message(&state)?;
129 }
130
131 self.control_channels.push((channel, routes));
132
133 Ok(())
134 }
135}
136
137/// Represents a node on the circuit network.
138///
139/// A node can connect to one or more other nodes, and a stream can be established between any two
140/// nodes on the entire connected graph of nodes.
141pub struct Node {
142 /// A unique identifying string for this node.
143 node_id: EncodableString,
144 /// Indicates what protocol we intend to run atop the streams we established, e.g.
145 /// "Overnet-with-FIDL-ABI-1"
146 protocol: EncodableString,
147 /// List of other nodes we can "see" on the network.
148 peers: Arc<Mutex<PeerMap>>,
149 /// If true, we will inform nodes we are connected to of what other nodes we can see, so that
150 /// they might try to forward traffic through us. This also indicates that there is a "router
151 /// process" running for this node which handles said forwarding.
152 has_router: bool,
153
154 /// If another node establishes a connection to this node, we will notify the user by way of
155 /// this sender.
156 incoming_stream_sender: Sender<(stream::Reader, stream::Writer, String)>,
157
158 /// If a new peer becomes available we will send its name through this sender to notify the user.
159 new_peer_sender: Sender<String>,
160}
161
162impl Node {
163 /// Establish a new node.
164 ///
165 /// Any time a new peer becomes visible to this node, the peer's node ID will be sent to
166 /// `new_peer_sender`.
167 ///
168 /// Any time a peer wants to establish a stream with this node, a reader and writer for the new
169 /// stream as well as the peer's node ID will be sent to `incoming_stream_sender`.
170 pub fn new(
171 node_id: &str,
172 protocol: &str,
173 new_peer_sender: Sender<String>,
174 incoming_stream_sender: Sender<(stream::Reader, stream::Writer, String)>,
175 ) -> Result<Node> {
176 let node_id = node_id.to_owned().try_into()?;
177 let protocol = protocol.to_owned().try_into()?;
178
179 Ok(Node {
180 node_id,
181 protocol,
182 new_peer_sender,
183 incoming_stream_sender,
184 peers: Arc::new(Mutex::new(PeerMap::new())),
185 has_router: false,
186 })
187 }
188
189 /// Establish a new node which will forward streams between its peers. The router process
190 /// provided must be polled continuously to provide this forwarding.
191 pub fn new_with_router(
192 node_id: &str,
193 protocol: &str,
194 interval: Duration,
195 new_peer_sender: Sender<String>,
196 incoming_stream_sender: Sender<(stream::Reader, stream::Writer, String)>,
197 ) -> Result<(Node, impl Future<Output = ()> + Send)> {
198 let mut node = Self::new(node_id, protocol, new_peer_sender, incoming_stream_sender)?;
199 node.has_router = true;
200
201 let weak_peers = Arc::downgrade(&node.peers);
202
203 Ok((node, router(weak_peers, interval)))
204 }
205
206 /// Establish a stream with another node. Data will be sent to the peer with
207 /// `connection_writer`, and received with `connection_reader`.
208 pub async fn connect_to_peer(
209 &self,
210 connection_reader: stream::Reader,
211 connection_writer: stream::Writer,
212 node_id: &str,
213 ) -> Result<()> {
214 if self.node_id == node_id {
215 self.incoming_stream_sender
216 .clone()
217 .send((connection_reader, connection_writer, node_id.to_owned()))
218 .await
219 .map_err(|_| Error::NoSuchPeer(node_id.to_owned()))?;
220 } else {
221 let node_id: EncodableString = node_id.to_owned().try_into()?;
222 // Write the destination node ID and the source node ID (us). Keep in mind because of
223 // the semantics of push_back_protocol_message, these will come off the wire in the
224 // *reverse* of the order we're putting them on here.
225 connection_reader.push_back_protocol_message(&self.node_id)?;
226 connection_reader.push_back_protocol_message(&node_id)?;
227 connect_to_peer(
228 Arc::clone(&self.peers),
229 connection_reader,
230 connection_writer,
231 &node_id,
232 )
233 .await?;
234 }
235
236 Ok(())
237 }
238
239 /// Test function to copy all routes toward one node as routes to another node.
240 #[cfg(test)]
241 pub fn route_via(&self, to: &str, via: &str) {
242 let to = EncodableString::try_from(to.to_owned()).unwrap();
243 let via = EncodableString::try_from(via.to_owned()).unwrap();
244 let mut peers = self.peers.lock().unwrap();
245 let new_list = peers.peers.get(&via).unwrap().clone();
246 peers.peers.insert(to, new_list);
247 }
248
249 /// Connect to another node.
250 ///
251 /// This establishes the internal state to link this node directly to another one, there by
252 /// joining it to the circuit network. To actually perform the networking necessary to create
253 /// such a link, a back end will have to service the streams given to this function via
254 /// its arguments. To keep the link running, the returned future must also be polled to
255 /// completion. Depending on configuration, it may complete swiftly or may poll for the entire
256 /// lifetime of the link.
257 ///
258 /// When we link to another node, we immediately start a "control stream" that performs a
259 /// handshake and sends routing messages. The reader and writer passed in through
260 /// `control_stream` will be used to service this stream. If `control_stream` is `None` the
261 /// first stream emitted from `new_stream_receiver` will be used.
262 ///
263 /// When the local node needs to create a new stream to the linked node, it will send a reader
264 /// and writer to `new_stream_sender`.
265 ///
266 /// When the linked node wants to create a new stream to this node, the back end may send a
267 /// reader and writer through `new_stream_receiver`, as well as a `oneshot::Sender` which will
268 /// be used to report if the link is established successfully or if an error occurs.
269 ///
270 /// The returned future will continue to poll for the lifetime of the link and return the error
271 /// that terminated it.
272 pub fn link_node(
273 &self,
274 control_stream: Option<(stream::Reader, stream::Writer)>,
275 new_stream_sender: Sender<(stream::Reader, stream::Writer)>,
276 mut new_stream_receiver: impl futures::Stream<Item = (stream::Reader, stream::Writer, oneshot::Sender<Result<()>>)>
277 + Unpin
278 + Send,
279 quality: Quality,
280 ) -> impl Future<Output = Result<()>> + Send {
281 let has_router = self.has_router;
282 let peers = Arc::clone(&self.peers);
283 let node_id = self.node_id.clone();
284 let protocol = self.protocol.clone();
285 let (new_stream_receiver_sender, new_stream_receiver_receiver) = oneshot::channel();
286 let (control_reader_sender, control_reader_receiver) = oneshot::channel();
287 let new_streams_loop =
288 self.handle_new_streams(new_stream_receiver_receiver, new_stream_sender.clone());
289 let control_stream_loop =
290 self.handle_control_stream(control_reader_receiver, new_stream_sender.clone(), quality);
291
292 // Runs all necessary background processing for a connection. Tasks include:
293 // 1) Fetch a control stream from the new_stream_receiver if we don't have one from
294 // control_stream already.
295 // 2) Send a handshake message to the other node.
296 // 3) Wait for and validate the handshake from the peer.
297 // 4) Receive updated routing information from the peer and update the peer map accordingly.
298 // 5) When the peer tries to open a new stream to us, either forward that stream to another
299 // node or, if it's destined for us directly, consume the initial handshake from it and send
300 // it out to be processed by the user.
301 async move {
302 let (control_reader, control_writer) = if let Some(control_stream) = control_stream {
303 control_stream
304 } else {
305 let (reader, writer, error_sender) =
306 new_stream_receiver.next().await.ok_or_else(|| {
307 Error::ConnectionClosed(Some(
308 "Client stopped listening for new streams".to_owned(),
309 ))
310 })?;
311 let _ = error_sender.send(Ok(()));
312 (reader, writer)
313 };
314
315 let _ = new_stream_receiver_sender.send(new_stream_receiver);
316
317 let header = Identify::new(protocol.clone());
318 control_writer.write_protocol_message(&header)?;
319
320 let state = NodeState::Online(node_id.clone(), Quality::SELF);
321 control_writer.write_protocol_message(&state)?;
322
323 if has_router {
324 peers
325 .lock()
326 .unwrap()
327 .add_control_channel(control_writer, quality)
328 .expect("We just created this channel!");
329 } else {
330 // No router means no further routing messages. Just let 'er go.
331 std::mem::drop(control_writer);
332 }
333
334 // Start by reading and validating a handshake message from the stream.
335 let header = control_reader.read_protocol_message::<Identify>().await?;
336
337 if header.circuit_version != CIRCUIT_VERSION {
338 return Err(Error::VersionMismatch);
339 } else if header.protocol != protocol {
340 return Err(Error::ProtocolMismatch);
341 }
342
343 control_reader_sender.send(control_reader).map_err(|_| {
344 Error::ConnectionClosed(Some("Control stream handler disappeared".to_owned()))
345 })?;
346
347 let control_stream_loop = pin!(control_stream_loop);
348 let new_streams_loop = pin!(new_streams_loop);
349
350 let ret = match futures::future::select(control_stream_loop, new_streams_loop).await {
351 Either::Left((result, new_streams)) => {
352 if matches!(result, Ok(()) | Err(Error::ConnectionClosed(_))) {
353 new_streams.await;
354 }
355 result
356 }
357 Either::Right(((), read_control)) => read_control.now_or_never().unwrap_or(Ok(())),
358 };
359
360 {
361 let mut peers = peers.lock().unwrap();
362 let peers = peers.peers();
363 for peer_list in peers.values_mut() {
364 peer_list.retain(|x| !x.0.same_receiver(&new_stream_sender));
365 }
366 }
367
368 ret
369 }
370 }
371
372 /// Handles messages we receive on a control stream, i.e. routing updates. `new_stream_sender`
373 /// is a channel by which streams destined for another peer can be forwarded to the node on the
374 /// other end of this control stream. The routing table will associate that sender with any
375 /// peers that can be reached via that node.
376 ///
377 /// The returned future will poll until the control stream hangs up or a protocol error occurs.
378 fn handle_control_stream(
379 &self,
380 control_reader: oneshot::Receiver<stream::Reader>,
381 new_stream_sender: Sender<(stream::Reader, stream::Writer)>,
382 quality: Quality,
383 ) -> impl Future<Output = Result<()>> + Send {
384 let peers = Arc::clone(&self.peers);
385 let new_stream_sender = new_stream_sender;
386 let node_id = self.node_id.clone();
387 let mut new_peer_sender = self.new_peer_sender.clone();
388
389 async move {
390 let control_reader = control_reader.await.map_err(|_| {
391 Error::ConnectionClosed(Some(
392 "Reader never given to control stream handler".to_string(),
393 ))
394 })?;
395 loop {
396 let state = control_reader.read_protocol_message::<NodeState>().await?;
397 match state {
398 NodeState::Online(peer, path_quality) => {
399 if peer == node_id {
400 continue;
401 }
402
403 let quality = path_quality.combine(quality);
404 let peer_string = peer.to_string();
405 let should_send = {
406 let mut peers = peers.lock().unwrap();
407 let peers = peers.peers();
408 let peer_list = peers.entry(peer).or_insert_with(Vec::new);
409 let should_send = peer_list.is_empty();
410 peer_list.retain(|x| !x.0.same_receiver(&new_stream_sender));
411 peer_list.push((new_stream_sender.clone(), quality));
412 peer_list.sort_by_key(|x| x.1);
413 should_send
414 };
415 if should_send {
416 let _ = new_peer_sender.send(peer_string).await;
417 }
418 }
419 NodeState::Offline(peer) => {
420 let mut peers = peers.lock().unwrap();
421 let peers = peers.peers();
422 let peer_list = peers.get_mut(&peer);
423
424 if let Some(peer_list) = peer_list {
425 peer_list.retain(|x| !x.0.same_receiver(&new_stream_sender));
426 }
427 }
428 }
429 }
430 }
431 }
432
433 /// Handles requests for new streams. The `new_stream_receiver` provides a reader and writer for
434 /// every stream that gets established to or through this node, as well as a `Result` sender so
435 /// we can indicate if we have any trouble handling this stream. The `new_stream_sender` allows
436 /// us to connect back to the connecting node. If we don't have routing info for the incoming
437 /// node we will establish a new route via that stream when the connection arrives.
438 ///
439 /// For each incoming stream, we read a bit of protocol header out of it and either accept it or
440 /// forward it to another peer.
441 ///
442 /// The returned future will poll until the back end hangs up the other end of the receiver.
443 fn handle_new_streams(
444 &self,
445 new_stream_receiver_receiver: oneshot::Receiver<
446 impl futures::Stream<
447 Item = (stream::Reader, stream::Writer, oneshot::Sender<Result<()>>),
448 > + Unpin,
449 >,
450 new_stream_sender: Sender<(stream::Reader, stream::Writer)>,
451 ) -> impl Future<Output = ()> {
452 let peers = Arc::clone(&self.peers);
453 let mut incoming_stream_sender = self.incoming_stream_sender.clone();
454 let mut new_peer_sender = self.new_peer_sender.clone();
455 let node_id = self.node_id.clone();
456
457 async move {
458 let mut new_stream_receiver = if let Ok(x) = new_stream_receiver_receiver.await {
459 x
460 } else {
461 return;
462 };
463
464 while let Some((reader, writer, result_sender)) = new_stream_receiver.next().await {
465 let _ = result_sender.send(
466 async {
467 let dest = reader
468 .read(EncodableString::MIN_SIZE, |buf| {
469 EncodableString::try_from_bytes(buf).map(|(dest, size)| {
470 if dest == node_id {
471 // If the destination is this node, discard the string
472 // itself (we know where we are, so we don't need it)
473 // and return as usual.
474 (None, size)
475 } else {
476 // If the destination node is another node, return a
477 // size of zero, which tells the reader to leave the
478 // destination string in the stream. When we forward the
479 // stream, the node we forward it to will be able to
480 // read the destination again.
481 (Some(dest), 0)
482 }
483 })
484 })
485 .await?;
486
487 if let Some(dest) = dest {
488 connect_to_peer(Arc::clone(&peers), reader, writer, &dest).await?;
489 } else {
490 let src = reader.read_protocol_message::<EncodableString>().await?;
491 let send_new_peer = {
492 let mut peers = peers.lock().unwrap();
493 let peer_list =
494 peers.peers.entry(src.clone()).or_insert_with(Vec::new);
495 if !peer_list.iter().any(|x| x.0.same_receiver(&new_stream_sender))
496 {
497 peer_list.push((new_stream_sender.clone(), Quality::UNKNOWN));
498 peers.increment_generation();
499 true
500 } else {
501 false
502 }
503 };
504
505 if send_new_peer {
506 let _ = new_peer_sender.send(src.to_string()).await;
507 }
508
509 incoming_stream_sender
510 .send((reader, writer, src.to_string()))
511 .await
512 .map_err(|_| {
513 Error::ConnectionClosed(Some(
514 "Incoming stream dispatcher disappeared".to_owned(),
515 ))
516 })?;
517 }
518 Ok(())
519 }
520 .await,
521 );
522 }
523 }
524 }
525
526 /// Get the node ID of this node.
527 pub fn node_id(&self) -> &str {
528 self.node_id.as_str()
529 }
530}
531
532/// Given the reader and writer for an incoming connection, forward that
533/// connection to another node.
534async fn connect_to_peer(
535 peers: Arc<Mutex<PeerMap>>,
536 peer_reader: stream::Reader,
537 peer_writer: stream::Writer,
538 node_id: &EncodableString,
539) -> Result<()> {
540 let mut peer_channels = Some((peer_reader, peer_writer));
541 let mut peer_sender: Option<Sender<(stream::Reader, stream::Writer)>> = None;
542
543 poll_fn(|ctx| {
544 // If we found a place to send the new stream during the last poll, but
545 // it gave us pending, we have to keep that sender's clone around so our
546 // waker is remembered and we get woken up. We could just drop it here
547 // and repeat the whole discovery again, which would cost compute but
548 // make us more responsive to changes in the network topology by a
549 // smidge. Instead we'll try the same link again, and keep trying until
550 // it succeeds or breaks.
551 if let Some(sender) = &mut peer_sender {
552 match sender.poll_ready(ctx) {
553 Poll::Ready(Ok(())) => {
554 sender
555 .start_send(peer_channels.take().unwrap())
556 .expect("Should be guaranteed to succeed!");
557 return Poll::Ready(());
558 }
559 Poll::Ready(Err(_)) => peer_sender = None,
560 Poll::Pending => {
561 return Poll::Pending;
562 }
563 }
564 }
565
566 let mut peers = peers.lock().unwrap();
567
568 // For each peer we have a list of channels to which we can send our
569 // reader and writer, each representing a connection which will become
570 // the next link in the circuit. The list is sorted by connection
571 // quality, getting worse toward the end of the list, so we want to send
572 // our reader and writer to the first one we can.
573 let Some(peer_list) = peers.peers.get_mut(node_id) else {
574 return Poll::Ready(());
575 };
576
577 let mut changed = false;
578
579 // Go through each potential connection and send to the first one which
580 // will handle the connection. We may discover the first few we try have
581 // hung up and gone away, so we'll delete those from the list and try
582 // the next one.
583 //
584 // If the channel used to send to the fastest available connection is
585 // full, we pause and retry when it is ready. We *could* continue down
586 // the list to find another connection, but we don't; we assume waiting
587 // for a faster connection to be serviceable locally nets better
588 // performance in the long run than sending on a slower connection that
589 // can be serviced right away.
590 peer_list.retain_mut(|x| {
591 if peer_sender.is_none() && peer_channels.is_some() {
592 let mut sender = x.0.clone();
593 match sender.poll_ready(ctx) {
594 Poll::Ready(Ok(())) => {
595 sender
596 .start_send(peer_channels.take().unwrap())
597 .expect("Should be guaranteed to succeed!");
598 true
599 }
600 Poll::Ready(Err(_)) => {
601 changed = true;
602 false
603 }
604 Poll::Pending => {
605 peer_sender = Some(sender);
606 true
607 }
608 }
609 } else {
610 true
611 }
612 });
613
614 // If this is true, we cleared out some stale connections from the
615 // routing table. Send a routing update to update our neighbors about
616 // how this might affect connectivity.
617 if changed {
618 peers.increment_generation();
619 }
620
621 // The peer sender is where we register our waker. If we don't have one
622 // we didn't register a waker and should return now.
623 if peer_sender.is_none() {
624 Poll::Ready(())
625 } else {
626 Poll::Pending
627 }
628 })
629 .await;
630
631 // Our iteration above should have taken channels and sent them along to the
632 // connection that will handle them. If they're still here we didn't find a
633 // channel.
634 if peer_channels.is_none() {
635 Ok(())
636 } else {
637 Err(Error::NoSuchPeer(node_id.to_string()))
638 }
639}
640
641/// Given an old and a new condensed routing table, create a serialized list of
642/// `NodeState`s which will update a node on what has changed between them.
643fn route_updates(
644 old_routes: &HashMap<EncodableString, Quality>,
645 new_routes: &HashMap<EncodableString, Quality>,
646) -> Vec<u8> {
647 let mut ret = Vec::new();
648
649 for (node, &quality) in new_routes {
650 if let Some(&old_quality) = old_routes.get(node) {
651 if old_quality == quality {
652 continue;
653 }
654 }
655
656 NodeState::Online(node.clone(), quality).write_bytes_vec(&mut ret);
657 }
658
659 for old_node in old_routes.keys() {
660 if !new_routes.contains_key(old_node) {
661 NodeState::Offline(old_node.clone()).write_bytes_vec(&mut ret);
662 }
663 }
664
665 ret
666}
667
668/// Router process. Notifies each peer every time the router table is updated. The given `interval`
669/// allows these updates to be rate-limited; there will always be at least `interval` time between
670/// updates.
671async fn router(peers: Weak<Mutex<PeerMap>>, interval: Duration) {
672 let mut generation = 0;
673
674 loop {
675 let mut wake_receiver = None;
676 {
677 let peers = if let Some(peers) = peers.upgrade() {
678 peers
679 } else {
680 return;
681 };
682 let mut peers = peers.lock().unwrap();
683
684 if peers.generation <= generation {
685 let (sender, receiver) = oneshot::channel();
686 peers.wakeup = Some(sender);
687 wake_receiver = Some(receiver);
688 } else {
689 let new_routes = peers.condense_routes();
690
691 peers.control_channels.retain_mut(|(sender, routes)| {
692 let msgs = route_updates(routes, &new_routes);
693
694 if sender
695 .write(msgs.len(), |buf| {
696 buf[..msgs.len()].copy_from_slice(&msgs);
697 Ok(msgs.len())
698 })
699 .is_ok()
700 {
701 *routes = new_routes.clone();
702 true
703 } else {
704 false
705 }
706 });
707
708 generation = peers.generation;
709 }
710 }
711
712 if let Some(receiver) = wake_receiver {
713 let _ = receiver.await;
714 } else {
715 Timer::new(interval).await
716 }
717 }
718}