net_types/
ip.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// TODO: Edit this doc comment (it's copy+pasted from the Netstack3 core)

//! Internet Protocol (IP) types.
//!
//! This module provides support for various types and traits relating to IPv4
//! and IPv6, including a number of mechanisms for abstracting over details
//! which are shared between IPv4 and IPv6.
//!
//! # `Ip` and `IpAddress`
//!
//! The most important traits are [`Ip`] and [`IpAddress`].
//!
//! `Ip` represents a version of the IP protocol - either IPv4 or IPv6 - and is
//! implemented by [`Ipv4`] and [`Ipv6`]. These types exist only at the type
//! level - they cannot be constructed at runtime. They provide a place to put
//! constants and functionality which are not associated with a particular type,
//! and they allow code to be written which is generic over the version of the
//! IP protocol. For example:
//!
//! ```rust
//! # use net_types::ip::{Ip, IpAddress, Subnet};
//! struct Entry<A: IpAddress> {
//!     subnet: Subnet<A>,
//!     dest: Destination<A>,
//! }
//!
//! enum Destination<A: IpAddress> {
//!     Local { device_id: usize },
//!     Remote { dst: A },
//! }
//!
//! struct ForwardingTable<I: Ip> {
//!     entries: Vec<Entry<I::Addr>>,
//! }
//! ```
//!
//! See also [`IpVersionMarker`].
//!
//! The `IpAddress` trait is implemented by the concrete [`Ipv4Addr`] and
//! [`Ipv6Addr`] types.
//!
//! # Runtime types
//!
//! Sometimes, it is not known at compile time which version of a given type -
//! IPv4 or IPv6 - is present. For these cases, enums are provided with variants
//! for both IPv4 and IPv6. These are [`IpAddr`], [`SubnetEither`], and
//! [`AddrSubnetEither`].
//!
//! # Composite types
//!
//! This modules also provides composite types such as [`Subnet`] and
//! [`AddrSubnet`].

use core::fmt::{self, Debug, Display, Formatter};
use core::hash::Hash;
use core::mem;
use core::ops::{Deref, DerefMut};

#[cfg(feature = "std")]
use std::net;

pub use net_types_macros::GenericOverIp;
use zerocopy::{FromBytes, Immutable, IntoBytes, KnownLayout, Unaligned};

use crate::{
    sealed, LinkLocalAddr, LinkLocalAddress, MappedAddress, MulticastAddr, MulticastAddress,
    NonMappedAddr, Scope, ScopeableAddress, SpecifiedAddr, SpecifiedAddress, UnicastAddr,
    UnicastAddress, Witness,
};

// NOTE on passing by reference vs by value: Clippy advises us to pass IPv4
// addresses by value, and IPv6 addresses by reference. For concrete types, we
// do the right thing. For the IpAddress trait, we use references in order to
// optimize (albeit very slightly) for IPv6 performance.

/// An IP protocol version.
#[allow(missing_docs)]
#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash, PartialOrd, Ord)]
pub enum IpVersion {
    V4,
    V6,
}

/// Evaluates `expression` for any given `ip_version`.
///
/// `type_param` will be defined to be [`crate::ip::Ipv4`] for
/// [`crate::ip::IpVersion::V4`], and [`crate::ip::Ipv6`] for
/// [`crate::ip::IpVersion::V6`].
///
/// Example usage:
///
/// ```
/// let ip_version: IpVersion = foo();
/// for_any_ip_version!(ip_version, I, some_ip_generic_fn::<I>());
/// ```
#[macro_export]
macro_rules! for_any_ip_version {
    ($ip_version:expr, $type_param:ident, $expression:expr) => {
        match $ip_version {
            $crate::ip::IpVersion::V4 => {
                type $type_param = $crate::ip::Ipv4;
                $expression
            }
            $crate::ip::IpVersion::V6 => {
                type $type_param = $crate::ip::Ipv6;
                $expression
            }
        }
    };
}

/// A zero-sized type that carries IP version information.
///
/// `IpVersionMarker` is typically used by types that are generic over IP
/// version, but without any other associated data. In this sense,
/// `IpVersionMarker` behaves similarly to [`PhantomData`].
///
/// [`PhantomData`]: core::marker::PhantomData
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, GenericOverIp)]
#[generic_over_ip(I, Ip)]
pub struct IpVersionMarker<I: Ip> {
    _marker: core::marker::PhantomData<I>,
}

impl<I: Ip> IpVersionMarker<I> {
    /// Creates a new `IpVersionMarker`.
    // TODO(https://github.com/rust-lang/rust/issues/67792): Remove once
    // `const_trait_impl` is stabilized.
    pub const fn new() -> Self {
        Self { _marker: core::marker::PhantomData }
    }
}

impl<I: Ip> Default for IpVersionMarker<I> {
    fn default() -> Self {
        Self { _marker: core::marker::PhantomData }
    }
}

impl<I: Ip> Debug for IpVersionMarker<I> {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        write!(f, "IpVersionMarker<{}>", I::NAME)
    }
}

/// An IP address.
///
/// By default, the contained address types are [`Ipv4Addr`] and [`Ipv6Addr`].
/// However, any types can be provided. This is intended to support types like
/// `IpAddr<SpecifiedAddr<Ipv4Addr>, SpecifiedAddr<Ipv6Addr>>`. `From` is
/// implemented to support conversions in both directions between
/// `IpAddr<SpecifiedAddr<Ipv4Addr>, SpecifiedAddr<Ipv6Addr>>` and
/// `SpecifiedAddr<IpAddr>`, and similarly for other witness types.
#[allow(missing_docs)]
#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash, PartialOrd, Ord)]
pub enum IpAddr<V4 = Ipv4Addr, V6 = Ipv6Addr> {
    V4(V4),
    V6(V6),
}

impl<V4: Display, V6: Display> Display for IpAddr<V4, V6> {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        match self {
            Self::V4(v4) => v4.fmt(f),
            Self::V6(v6) => v6.fmt(f),
        }
    }
}

impl<V4, V6> IpAddr<V4, V6> {
    /// Transposes an `IpAddr` of a witness type to a witness type of an
    /// `IpAddr`.
    ///
    /// For example, `transpose` can be used to convert an
    /// `IpAddr<SpecifiedAddr<Ipv4Addr>, SpecifiedAddr<Ipv6Addr>>` into a
    /// `SpecifiedAddr<IpAddr<Ipv4Addr, Ipv6Addr>>`.
    pub fn transpose<W: IpAddrWitness<V4 = V4, V6 = V6>>(self) -> W {
        match self {
            IpAddr::V4(addr) => W::from_v4(addr),
            IpAddr::V6(addr) => W::from_v6(addr),
        }
    }
}

impl<A: IpAddress> From<A> for IpAddr {
    #[inline]
    fn from(addr: A) -> IpAddr {
        addr.to_ip_addr()
    }
}

impl<A: IpAddress, const N: usize> From<[A; N]> for IpAddr<[Ipv4Addr; N], [Ipv6Addr; N]> {
    #[inline]
    fn from(addrs: [A; N]) -> Self {
        A::array_into_ip_addr(addrs)
    }
}

#[cfg(feature = "std")]
impl From<net::IpAddr> for IpAddr {
    #[inline]
    fn from(addr: net::IpAddr) -> IpAddr {
        match addr {
            net::IpAddr::V4(addr) => IpAddr::V4(addr.into()),
            net::IpAddr::V6(addr) => IpAddr::V6(addr.into()),
        }
    }
}

#[cfg(feature = "std")]
impl From<IpAddr> for net::IpAddr {
    fn from(addr: IpAddr) -> net::IpAddr {
        match addr {
            IpAddr::V4(addr) => net::IpAddr::V4(addr.into()),
            IpAddr::V6(addr) => net::IpAddr::V6(addr.into()),
        }
    }
}

impl IpVersion {
    /// The number for this IP protocol version.
    ///
    /// 4 for `V4` and 6 for `V6`.
    #[inline]
    pub fn version_number(self) -> u8 {
        match self {
            IpVersion::V4 => 4,
            IpVersion::V6 => 6,
        }
    }

    /// Is this IPv4?
    #[inline]
    pub fn is_v4(self) -> bool {
        self == IpVersion::V4
    }

    /// Is this IPv6?
    #[inline]
    pub fn is_v6(self) -> bool {
        self == IpVersion::V6
    }
}

/// The maximum transmit unit, i.e., the maximum size of an entire IP packet
/// one link can transmit.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub struct Mtu(u32);

impl Mtu {
    /// Creates MTU from the maximum size of an entire IP packet in bytes.
    pub const fn new(mtu: u32) -> Self {
        Self(mtu)
    }

    /// Gets the numeric value of the MTU.
    pub const fn get(&self) -> u32 {
        let Self(mtu) = self;
        *mtu
    }

    /// Creates a new `Mtu` with the maximum possible representation.
    pub const fn max() -> Self {
        Self(u32::MAX)
    }

    /// Equivalent to [`Mtu::max`], but with a name more telling for usage in
    /// contexts where many `Mtu` instances are composed to enforce a minimum
    /// `Mtu` value.
    pub const fn no_limit() -> Self {
        Self::max()
    }
}

impl From<Mtu> for u32 {
    fn from(Mtu(mtu): Mtu) -> Self {
        mtu
    }
}

impl From<Mtu> for usize {
    fn from(Mtu(mtu): Mtu) -> Self {
        mtu.try_into().expect("mtu must fit usize")
    }
}

/// A trait for IP protocol versions.
///
/// `Ip` encapsulates the details of a version of the IP protocol. It includes a
/// runtime representation of the protocol version ([`VERSION`]), the type of
/// addresses for this version ([`Addr`]), and a number of constants which exist
/// in both protocol versions. This trait is sealed, and there are guaranteed to
/// be no other implementors besides these. Code - including unsafe code - may
/// rely on this assumption for its correctness and soundness.
///
/// Note that the implementors of this trait cannot be instantiated; they only
/// exist at the type level.
///
/// [`VERSION`]: Ip::VERSION
/// [`Addr`]: Ip::Addr
pub trait Ip:
    Sized
    + Clone
    + Copy
    + Debug
    + Default
    + Eq
    + Hash
    + Ord
    + PartialEq
    + PartialOrd
    + Send
    + Sync
    + sealed::Sealed
    + 'static
{
    /// The IP version.
    ///
    /// `V4` for IPv4 and `V6` for IPv6.
    const VERSION: IpVersion;

    /// The zero-sized-type IP version marker.
    const VERSION_MARKER: IpVersionMarker<Self>;

    /// The unspecified address.
    ///
    /// This is 0.0.0.0 for IPv4 and :: for IPv6.
    const UNSPECIFIED_ADDRESS: Self::Addr;

    /// The default loopback address.
    ///
    /// When sending packets to a loopback interface, this address is used as
    /// the source address. It is an address in the [`LOOPBACK_SUBNET`].
    ///
    /// [`LOOPBACK_SUBNET`]: Ip::LOOPBACK_SUBNET
    const LOOPBACK_ADDRESS: SpecifiedAddr<Self::Addr>;

    /// The subnet of loopback addresses.
    ///
    /// Addresses in this subnet must not appear outside a host, and may only be
    /// used for loopback interfaces.
    const LOOPBACK_SUBNET: Subnet<Self::Addr>;

    /// The subnet of multicast addresses.
    const MULTICAST_SUBNET: Subnet<Self::Addr>;

    /// The subnet of link-local unicast addresses.
    ///
    /// Note that some multicast addresses are also link-local. In IPv4, these
    /// are contained in the [link-local multicast subnet]. In IPv6, the
    /// link-local multicast addresses are not organized into a single subnet;
    /// instead, whether a multicast IPv6 address is link-local is a function of
    /// its scope.
    ///
    /// [link-local multicast subnet]: Ipv4::LINK_LOCAL_MULTICAST_SUBNET
    const LINK_LOCAL_UNICAST_SUBNET: Subnet<Self::Addr>;

    /// "IPv4" or "IPv6".
    const NAME: &'static str;

    /// The minimum link MTU for this version.
    ///
    /// Every internet link supporting this IP version must have a maximum
    /// transmission unit (MTU) of at least this many bytes. This MTU applies to
    /// the size of an IP packet, and does not include any extra bytes used by
    /// encapsulating packets (Ethernet frames, GRE packets, etc).
    const MINIMUM_LINK_MTU: Mtu;

    /// The address type for this IP version.
    ///
    /// [`Ipv4Addr`] for IPv4 and [`Ipv6Addr`] for IPv6.
    type Addr: IpAddress<Version = Self>
        + GenericOverIp<Self, Type = Self::Addr>
        + GenericOverIp<Ipv4, Type = Ipv4Addr>
        + GenericOverIp<Ipv6, Type = Ipv6Addr>;

    /// Apply one of the given functions to the input and return the result.
    ///
    /// This makes it possible to implement specialized behavior for IPv4 and
    /// IPv6 versions that is more versatile than matching on [`Ip::VERSION`].
    /// With a `match` expression, all branches must produce a value of the
    /// same type. `map_ip` relaxes that restriction by instead requiring that
    /// inputs and outputs are [`GenericOverIp`].
    ///
    /// Using `map_ip`, you can write generic code with specialized
    /// implementations for different IP versions where some or all of the input
    /// and output arguments have a type parameter `I: Ip`. As an example,
    /// consider the following:
    ///
    /// ```
    /// // Swaps the order of the addresses only if `I=Ipv4`.
    /// fn swap_only_if_ipv4<I: Ip>(addrs: (I::Addr, I::Addr)) -> (I::Addr, I::Addr) {
    ///    I::map_ip::<(I::Addr, I::Addr), (I::Addr, I::Addr)>(
    ///        addrs,
    ///        |(a, b): (Ipv4Addr, Ipv4Addr)| (b, a),
    ///        |ab: (Ipv6Addr, Ipv6Addr)| ab
    ///    )
    /// }
    /// ```
    ///
    /// Note that the input and output arguments both depend on the type
    /// parameter `I`, but the closures take an [`Ipv4Addr`] or [`Ipv6Addr`].
    ///
    /// Types that don't implement `GenericOverIp` can be wrapped in
    /// [`IpInvariant`], which implements `GenericOverIp` assuming the type
    /// inside doesn't have any IP-related components.
    fn map_ip<
        In: GenericOverIp<Self, Type = In> + GenericOverIp<Ipv4> + GenericOverIp<Ipv6>,
        Out: GenericOverIp<Self, Type = Out> + GenericOverIp<Ipv4> + GenericOverIp<Ipv6>,
    >(
        input: In,
        v4: impl FnOnce(<In as GenericOverIp<Ipv4>>::Type) -> <Out as GenericOverIp<Ipv4>>::Type,
        v6: impl FnOnce(<In as GenericOverIp<Ipv6>>::Type) -> <Out as GenericOverIp<Ipv6>>::Type,
    ) -> Out;

    /// Apply one of the given functions to the input and return the result.
    ///
    /// This is similar to `map_ip`, except only the input type is required to
    /// be [`GenericOverIp`], while the output type is invariant. This allows
    /// callers to more conveniently write this use case without having to wrap
    /// the result in a type like [`IpInvariant`].
    fn map_ip_in<
        In: GenericOverIp<Self, Type = In> + GenericOverIp<Ipv4> + GenericOverIp<Ipv6>,
        Out,
    >(
        input: In,
        v4: impl FnOnce(<In as GenericOverIp<Ipv4>>::Type) -> Out,
        v6: impl FnOnce(<In as GenericOverIp<Ipv6>>::Type) -> Out,
    ) -> Out {
        Self::map_ip::<_, IpInvariant<_>>(
            input,
            |input| IpInvariant(v4(input)),
            |input| IpInvariant(v6(input)),
        )
        .into_inner()
    }

    /// Apply one of the given functions to the input and return the result.
    ///
    /// This is similar to `map_ip`, except only the output type is required to
    /// be [`GenericOverIp`], while the input type is invariant. This allows
    /// callers to more conveniently write this use case without having to wrap
    /// the input in a type like [`IpInvariant`].
    fn map_ip_out<
        In,
        Out: GenericOverIp<Self, Type = Out> + GenericOverIp<Ipv4> + GenericOverIp<Ipv6>,
    >(
        input: In,
        v4: impl FnOnce(In) -> <Out as GenericOverIp<Ipv4>>::Type,
        v6: impl FnOnce(In) -> <Out as GenericOverIp<Ipv6>>::Type,
    ) -> Out {
        Self::map_ip(
            IpInvariant(input),
            |IpInvariant(input)| v4(input),
            |IpInvariant(input)| v6(input),
        )
    }
}

/// Invokes `I::map_ip`, passing the same function body as both arguments.
///
/// The first argument is always the `I` on which to invoke `I::map_ip`.
/// Optionally, this can include an alias (`I as IpAlias`) that should be bound
/// to `Ipv4` and `Ipv6` for each instantiation of the function body. (If the
/// `Ip` argument passed is a simple identifier, then it is automatically
/// aliased in this way.)
/// The next argument is the input to thread through `map_ip` to the function,
/// and the final argument is the function to be duplicated to serve as the
/// closures passed to `map_ip`.
///
/// This macro helps avoid code duplication when working with types that are
/// _not_ GenericOverIp, but have identical shapes such that the actual text of
/// the code you are writing is identical. This should be very rare, and is
/// generally limited to cases where we are interfacing with code that we don't
/// have the ability to make generic-over-IP -- when possible, it's better to
/// push `I: Ip` generics further through the types you are working with instead
/// so that you can avoid using `map_ip` entirely.
///
/// Example:
///
/// ```
/// // Imagine that `IpExt` is implemented for concrete `Ipv4` and `Ipv6` but
/// // not for blanket `I: Ip`.
/// struct Foo<I: IpExt>;
///
/// struct FooFactory;
/// impl FooFactory {
///     fn get<I: IpExt>(&self) -> Foo<I> {
///         unimplemented!()
///     }
/// }
///
/// struct FooSink<I: IpExt>;
/// impl<I: IpExt> FooSink<I> {
///     fn use_foo(&self, foo: Foo<I>) {
///         unimplemented!()
///     }
/// }
///
/// fn do_something<I: Ip>(factory: FooFactory) -> Foo<I> {
///     map_ip_twice!(
///         I,
///         (),
///         |()| {
///            // This works because even though the `I` from the function decl
///            // doesn't have an `IpExt` bound, it's aliased to either `Ipv4`
///            // or `Ipv6` here.
///            factory.get::<I>()
///         },
///     )
/// }
///
/// fn do_something_else<I: IpExt>(factory: FooFactory, foo_sink: FooSink<I>) {
///     map_ip_twice!(
///         // Introduce different alias to avoid shadowing `I`.
///         I as IpAlias,
///         (),
///         |()| {
///             let foo_with_orig_ip = factory.get::<I>();
///             // The fact that `I` was not shadowed allows us to make use of
///             // `foo_sink` by capture rather than needing to thread it
///             // through the generic-over-IP input.
///             foo_sink.use_foo(foo_with_orig_ip)
///         },
///     )
/// }
/// ```
#[macro_export]
macro_rules! map_ip_twice {
    // This case triggers if we're passed an `Ip` implementor that is a simple
    // identifier in-scope (e.g. `I`), which allows us to automatically alias it
    // to `Ipv4` and `Ipv6` in each `$fn` instantiation.
    ($ip:ident, $input:expr, $fn:expr $(,)?) => {
        $crate::map_ip_twice!($ip as $ip, $input, $fn)
    };
    // This case triggers if we're passed an `Ip` implementor that is _not_ an
    // identifier, and thus we can't use it as the left-hand-side of a type
    // alias binding (e.g. `<A as IpAddress>::Version`).
    ($ip:ty, $input:expr, $fn:expr $(,)?) => {
        <$ip as $crate::ip::Ip>::map_ip($input, { $fn }, { $fn })
    };
    ($ip:ty as $iptypealias:ident, $input:expr, $fn:expr $(,)?) => {
        <$ip as $crate::ip::Ip>::map_ip(
            $input,
            {
                #[allow(dead_code)]
                type $iptypealias = $crate::ip::Ipv4;
                $fn
            },
            {
                #[allow(dead_code)]
                type $iptypealias = $crate::ip::Ipv6;
                $fn
            },
        )
    };
}

/// IPv4.
///
/// `Ipv4` implements [`Ip`] for IPv4.
///
/// Note that this type has no value constructor. It is used purely at the type
/// level. Attempting to construct it by calling `Default::default` will panic.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum Ipv4 {}

impl Default for Ipv4 {
    fn default() -> Ipv4 {
        panic!("Ipv4 default")
    }
}

impl sealed::Sealed for Ipv4 {}

impl Ip for Ipv4 {
    const VERSION: IpVersion = IpVersion::V4;
    const VERSION_MARKER: IpVersionMarker<Self> = IpVersionMarker::new();

    // TODO(https://fxbug.dev/42163997): Document the standard in which this
    // constant is defined.
    const UNSPECIFIED_ADDRESS: Ipv4Addr = Ipv4Addr::new([0, 0, 0, 0]);
    /// The default IPv4 address used for loopback, defined in [RFC 5735 Section
    /// 3].
    ///
    /// Note that while this address is the most commonly used address for
    /// loopback traffic, any address in the [`LOOPBACK_SUBNET`] may be used.
    ///
    /// [RFC 5735 Section 3]: https://datatracker.ietf.org/doc/html/rfc5735#section-3
    /// [`LOOPBACK_SUBNET`]: Ipv4::LOOPBACK_SUBNET
    const LOOPBACK_ADDRESS: SpecifiedAddr<Ipv4Addr> =
        unsafe { SpecifiedAddr::new_unchecked(Ipv4Addr::new([127, 0, 0, 1])) };
    /// The IPv4 loopback subnet, defined in [RFC 1122 Section 3.2.1.3].
    ///
    /// [RFC 1122 Section 3.2.1.3]: https://www.rfc-editor.org/rfc/rfc1122.html#section-3.2.1.3
    const LOOPBACK_SUBNET: Subnet<Ipv4Addr> =
        Subnet { network: Ipv4Addr::new([127, 0, 0, 0]), prefix: 8 };
    /// The IPv4 Multicast subnet, defined in [RFC 1112 Section 4].
    ///
    /// [RFC 1112 Section 4]: https://www.rfc-editor.org/rfc/rfc1112.html#section-4
    const MULTICAST_SUBNET: Subnet<Ipv4Addr> = Self::CLASS_D_SUBNET;
    /// The subnet of link-local unicast IPv4 addresses, outlined in [RFC 3927
    /// Section 2.1].
    ///
    /// [RFC 3927 Section 2.1]: https://tools.ietf.org/html/rfc3927#section-2.1
    const LINK_LOCAL_UNICAST_SUBNET: Subnet<Ipv4Addr> =
        Subnet { network: Ipv4Addr::new([169, 254, 0, 0]), prefix: 16 };
    const NAME: &'static str = "IPv4";
    /// The IPv4 minimum link MTU.
    ///
    /// Per [RFC 791 Section 3.2], "[\e\]very internet module must be able to
    /// forward a datagram of 68 octets without further fragmentation."
    ///
    /// [RFC 791 Section 3.2]: https://tools.ietf.org/html/rfc791#section-3.2
    const MINIMUM_LINK_MTU: Mtu = Mtu(68);
    type Addr = Ipv4Addr;

    fn map_ip<
        In: GenericOverIp<Self, Type = In> + GenericOverIp<Ipv4> + GenericOverIp<Ipv6>,
        Out: GenericOverIp<Self, Type = Out> + GenericOverIp<Ipv4> + GenericOverIp<Ipv6>,
    >(
        input: In,
        v4: impl FnOnce(<In as GenericOverIp<Ipv4>>::Type) -> <Out as GenericOverIp<Ipv4>>::Type,
        _v6: impl FnOnce(<In as GenericOverIp<Ipv6>>::Type) -> <Out as GenericOverIp<Ipv6>>::Type,
    ) -> Out {
        v4(input)
    }
}

impl Ipv4 {
    /// The limited broadcast address.
    ///
    /// The limited broadcast address is considered to be a broadcast address on
    /// all networks regardless of subnet address. This is distinct from the
    /// subnet-specific broadcast address (e.g., 192.168.255.255 on the subnet
    /// 192.168.0.0/16). It is defined in the [IANA IPv4 Special-Purpose Address
    /// Registry].
    ///
    /// [IANA IPv4 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
    pub const LIMITED_BROADCAST_ADDRESS: SpecifiedAddr<Ipv4Addr> =
        unsafe { SpecifiedAddr::new_unchecked(Ipv4Addr::new([255, 255, 255, 255])) };

    /// The Class A subnet.
    ///
    /// The Class A subnet is defined in [RFC 1812 section 2.2.5.1].
    ///
    /// [RFC 1812 section 2.2.5.1]: https://datatracker.ietf.org/doc/html/rfc1812#section-2.2.5.1
    pub const CLASS_A_SUBNET: Subnet<Ipv4Addr> =
        Subnet { network: Ipv4Addr::new([0, 0, 0, 0]), prefix: 1 };

    /// The Class B subnet.
    ///
    /// The Class B subnet is defined in [RFC 1812 section 2.2.5.1].
    ///
    /// [RFC 1812 section 2.2.5.1]: https://datatracker.ietf.org/doc/html/rfc1812#section-2.2.5.1
    pub const CLASS_B_SUBNET: Subnet<Ipv4Addr> =
        Subnet { network: Ipv4Addr::new([128, 0, 0, 0]), prefix: 2 };

    /// The Class C subnet.
    ///
    /// The Class C subnet is defined in [RFC 1812 section 2.2.5.1].
    ///
    /// [RFC 1812 section 2.2.5.1]: https://datatracker.ietf.org/doc/html/rfc1812#section-2.2.5.1
    pub const CLASS_C_SUBNET: Subnet<Ipv4Addr> =
        Subnet { network: Ipv4Addr::new([192, 0, 0, 0]), prefix: 3 };

    /// The Class D subnet.
    ///
    /// This subnet is also known as the multicast subnet.
    ///
    /// The Class D subnet is defined in [RFC 1812 section 2.2.5.1].
    ///
    /// [RFC 1812 section 2.2.5.1]: https://datatracker.ietf.org/doc/html/rfc1812#section-2.2.5.1
    pub const CLASS_D_SUBNET: Subnet<Ipv4Addr> =
        Subnet { network: Ipv4Addr::new([224, 0, 0, 0]), prefix: 4 };

    /// The Class E subnet.
    ///
    /// The Class E subnet is meant for experimental purposes, and should not be
    /// used on the general internet. [RFC 1812 Section 5.3.7] suggests that
    /// routers SHOULD discard packets with a source address in the Class E
    /// subnet. The Class E subnet is defined in [RFC 1112 Section 4].
    ///
    /// [RFC 1812 Section 5.3.7]: https://tools.ietf.org/html/rfc1812#section-5.3.7
    /// [RFC 1112 Section 4]: https://datatracker.ietf.org/doc/html/rfc1112#section-4
    pub const CLASS_E_SUBNET: Subnet<Ipv4Addr> =
        Subnet { network: Ipv4Addr::new([240, 0, 0, 0]), prefix: 4 };

    /// The subnet of link-local multicast addresses, outlined in [RFC 5771
    /// Section 4].
    ///
    /// [RFC 5771 Section 4]: https://tools.ietf.org/html/rfc5771#section-4
    pub const LINK_LOCAL_MULTICAST_SUBNET: Subnet<Ipv4Addr> =
        Subnet { network: Ipv4Addr::new([224, 0, 0, 0]), prefix: 24 };

    /// The multicast address subscribed to by all systems on the local network,
    /// defined in the [IPv4 Multicast Address Space Registry].
    ///
    /// [IPv4 Multicast Address Space Registry]: https://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml
    pub const ALL_SYSTEMS_MULTICAST_ADDRESS: MulticastAddr<Ipv4Addr> =
        unsafe { MulticastAddr::new_unchecked(Ipv4Addr::new([224, 0, 0, 1])) };

    /// The multicast address subscribed to by all routers on the local network,
    /// defined in the [IPv4 Multicast Address Space Registry].
    ///
    /// [IPv4 Multicast Address Space Registry]: https://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml
    pub const ALL_ROUTERS_MULTICAST_ADDRESS: MulticastAddr<Ipv4Addr> =
        unsafe { MulticastAddr::new_unchecked(Ipv4Addr::new([224, 0, 0, 2])) };
}

/// IPv6.
///
/// `Ipv6` implements [`Ip`] for IPv6.
///
/// Note that this type has no value constructor. It is used purely at the type
/// level. Attempting to construct it by calling `Default::default` will panic.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum Ipv6 {}

impl Default for Ipv6 {
    fn default() -> Ipv6 {
        panic!("Ipv6 default")
    }
}

impl sealed::Sealed for Ipv6 {}

impl Ip for Ipv6 {
    const VERSION: IpVersion = IpVersion::V6;
    const VERSION_MARKER: IpVersionMarker<Self> = IpVersionMarker::new();
    /// The unspecified IPv6 address, defined in [RFC 4291 Section 2.5.2].
    ///
    /// Per RFC 4291:
    ///
    /// > The address 0:0:0:0:0:0:0:0 is called the unspecified address.  It
    /// > must never be assigned to any node.  It indicates the absence of an
    /// > address.  One example of its use is in the Source Address field of any
    /// > IPv6 packets sent by an initializing host before it has learned its
    /// > own address.
    /// >
    /// > The unspecified address must not be used as the destination address of
    /// > IPv6 packets or in IPv6 Routing headers.  An IPv6 packet with a source
    /// > address of unspecified must never be forwarded by an IPv6 router.
    ///
    /// [RFC 4291 Section 2.5.2]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.2
    const UNSPECIFIED_ADDRESS: Ipv6Addr = Ipv6Addr::new([0; 8]);
    /// The loopback IPv6 address, defined in [RFC 4291 Section 2.5.3].
    ///
    /// Per RFC 4291:
    ///
    /// > The unicast address 0:0:0:0:0:0:0:1 is called the loopback address.
    /// > It may be used by a node to send an IPv6 packet to itself.  It must
    /// > not be assigned to any physical interface.  It is treated as having
    /// > Link-Local scope, and may be thought of as the Link-Local unicast
    /// > address of a virtual interface (typically called the "loopback
    /// > interface") to an imaginary link that goes nowhere.
    /// >
    /// > The loopback address must not be used as the source address in IPv6
    /// > packets that are sent outside of a single node.  An IPv6 packet with
    /// > a destination address of loopback must never be sent outside of a
    /// > single node and must never be forwarded by an IPv6 router.  A packet
    /// > received on an interface with a destination address of loopback must
    /// > be dropped.
    ///
    /// [RFC 4291 Section 2.5.3]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.3
    const LOOPBACK_ADDRESS: SpecifiedAddr<Ipv6Addr> =
        unsafe { SpecifiedAddr::new_unchecked(Ipv6Addr::new([0, 0, 0, 0, 0, 0, 0, 1])) };
    /// The subnet of loopback IPv6 addresses, defined in [RFC 4291 Section 2.4].
    ///
    /// Note that the IPv6 loopback subnet is a /128, meaning that it contains
    /// only one address - the [`LOOPBACK_ADDRESS`].
    ///
    /// [RFC 4291 Section 2.4]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.4
    /// [`LOOPBACK_ADDRESS`]: Ipv6::LOOPBACK_ADDRESS
    const LOOPBACK_SUBNET: Subnet<Ipv6Addr> =
        Subnet { network: Ipv6Addr::new([0, 0, 0, 0, 0, 0, 0, 1]), prefix: 128 };
    /// The subnet of multicast IPv6 addresses, defined in [RFC 4291 Section
    /// 2.7].
    ///
    /// [RFC 4291 Section 2.7]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.7
    const MULTICAST_SUBNET: Subnet<Ipv6Addr> =
        Subnet { network: Ipv6Addr::new([0xff00, 0, 0, 0, 0, 0, 0, 0]), prefix: 8 };
    /// The subnet of link-local unicast addresses, defined in [RFC 4291 Section
    /// 2.4].
    ///
    /// Note that multicast addresses can also be link-local. However, there is
    /// no single subnet of link-local multicast addresses. For more details on
    /// link-local multicast addresses, see [RFC 4291 Section 2.7].
    ///
    /// [RFC 4291 Section 2.4]: https://tools.ietf.org/html/rfc4291#section-2.4
    /// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
    const LINK_LOCAL_UNICAST_SUBNET: Subnet<Ipv6Addr> =
        Subnet { network: Ipv6Addr::new([0xfe80, 0, 0, 0, 0, 0, 0, 0]), prefix: 10 };
    const NAME: &'static str = "IPv6";
    /// The IPv6 minimum link MTU, defined in [RFC 8200 Section 5].
    ///
    /// Per RFC 8200:
    ///
    /// > IPv6 requires that every link in the Internet have an MTU of 1280
    /// > octets or greater. This is known as the IPv6 minimum link MTU. On any
    /// > link that cannot convey a 1280-octet packet in one piece, link-
    /// > specific fragmentation and reassembly must be provided at a layer
    /// > below IPv6.
    ///
    /// [RFC 8200 Section 5]: https://tools.ietf.org/html/rfc8200#section-5
    const MINIMUM_LINK_MTU: Mtu = Mtu(1280);
    type Addr = Ipv6Addr;

    fn map_ip<
        In: GenericOverIp<Self, Type = In> + GenericOverIp<Ipv4> + GenericOverIp<Ipv6>,
        Out: GenericOverIp<Self, Type = Out> + GenericOverIp<Ipv4> + GenericOverIp<Ipv6>,
    >(
        input: In,
        _v4: impl FnOnce(<In as GenericOverIp<Ipv4>>::Type) -> <Out as GenericOverIp<Ipv4>>::Type,
        v6: impl FnOnce(<In as GenericOverIp<Ipv6>>::Type) -> <Out as GenericOverIp<Ipv6>>::Type,
    ) -> Out {
        v6(input)
    }
}

impl Ipv6 {
    /// The loopback address represented as a [`UnicastAddr`].
    ///
    /// This is equivalent to [`LOOPBACK_ADDRESS`], except that it is a
    /// [`UnicastAddr`] witness type.
    ///
    /// [`LOOPBACK_ADDRESS`]: Ipv6::LOOPBACK_ADDRESS
    pub const LOOPBACK_IPV6_ADDRESS: UnicastAddr<Ipv6Addr> =
        unsafe { UnicastAddr::new_unchecked(Ipv6::LOOPBACK_ADDRESS.0) };

    /// The IPv6 All Nodes multicast address in link-local scope, defined in
    /// [RFC 4291 Section 2.7.1].
    ///
    /// [RFC 4291 Section 2.7.1]: https://tools.ietf.org/html/rfc4291#section-2.7.1
    pub const ALL_NODES_LINK_LOCAL_MULTICAST_ADDRESS: MulticastAddr<Ipv6Addr> =
        unsafe { MulticastAddr::new_unchecked(Ipv6Addr::new([0xff02, 0, 0, 0, 0, 0, 0, 1])) };

    /// The IPv6 All Routers multicast address in link-local scope, defined in
    /// [RFC 4291 Section 2.7.1].
    ///
    /// [RFC 4291 Section 2.7.1]: https://tools.ietf.org/html/rfc4291#section-2.7.1
    pub const ALL_ROUTERS_LINK_LOCAL_MULTICAST_ADDRESS: MulticastAddr<Ipv6Addr> =
        unsafe { MulticastAddr::new_unchecked(Ipv6Addr::new([0xff02, 0, 0, 0, 0, 0, 0, 2])) };

    /// The (deprecated) subnet of site-local unicast addresses, defined in [RFC
    /// 3513 Section 2.5.6].
    ///
    /// The site-local unicast subnet was deprecated in [RFC 3879]:
    ///
    /// > The special behavior of this prefix MUST no longer be supported in new
    /// > implementations. The prefix MUST NOT be reassigned for other use
    /// > except by a future IETF standards action... However, router
    /// > implementations SHOULD be configured to prevent routing of this prefix
    /// > by default.
    ///
    /// [RFC 3513 Section 2.5.6]: https://tools.ietf.org/html/rfc3513#section-2.5.6
    /// [RFC 3879]: https://tools.ietf.org/html/rfc3879
    pub const SITE_LOCAL_UNICAST_SUBNET: Subnet<Ipv6Addr> =
        Subnet { network: Ipv6Addr::new([0xfec0, 0, 0, 0, 0, 0, 0, 0]), prefix: 10 };

    /// The length, in bits, of the interface identifier portion of unicast IPv6
    /// addresses *except* for addresses which start with the binary value 000.
    ///
    /// According to [RFC 4291 Section 2.5.1], "\[f\]or all unicast addresses,
    /// except those that start with the binary value 000, Interface IDs are
    /// required to be 64 bits."
    ///
    /// Note that, per [RFC 4862 Section 5.5.3]:
    ///
    /// > a future revision of the address architecture \[RFC4291\] and a future
    /// > link-type-specific document, which will still be consistent with each
    /// > other, could potentially allow for an interface identifier of length
    /// > other than the value defined in the current documents.  Thus, an
    /// > implementation should not assume a particular constant.  Rather, it
    /// > should expect any lengths of interface identifiers.
    ///
    /// In other words, this constant may be used to generate addresses or
    /// subnet prefix lengths, but should *not* be used to validate addresses or
    /// subnet prefix lengths generated by other software or other machines, as
    /// it might be valid for other software or other machines to use an
    /// interface identifier length different from this one.
    ///
    /// [RFC 4291 Section 2.5.1]: https://tools.ietf.org/html/rfc4291#section-2.5.1
    /// [RFC 4862 Section 5.5.3]: https://tools.ietf.org/html/rfc4862#section-5.5.3
    pub const UNICAST_INTERFACE_IDENTIFIER_BITS: u8 = 64;

    /// The length, in bits, of an IPv6 flow label, defined in [RFC 6437 Section 2].
    ///
    /// [RFC 6437 Section 2]: https://tools.ietf.org/html/rfc6437#section-2
    pub const FLOW_LABEL_BITS: u8 = 20;
}

/// An IPv4 or IPv6 address.
///
/// `IpAddress` is implemented by [`Ipv4Addr`] and [`Ipv6Addr`]. It is sealed,
/// and there are guaranteed to be no other implementors besides these. Code -
/// including unsafe code - may rely on this assumption for its correctness and
/// soundness.
pub trait IpAddress:
    Sized
    + Eq
    + PartialEq
    + PartialOrd
    + Ord
    + Hash
    + Copy
    + Display
    + Debug
    + Default
    + Sync
    + Send
    + LinkLocalAddress
    + ScopeableAddress
    + GenericOverIp<Self::Version, Type = Self>
    + GenericOverIp<Ipv4, Type = Ipv4Addr>
    + GenericOverIp<Ipv6, Type = Ipv6Addr>
    + sealed::Sealed
    + 'static
{
    /// The number of bytes in an address of this type.
    ///
    /// 4 for IPv4 and 16 for IPv6.
    const BYTES: u8;

    /// The IP version type of this address.
    ///
    /// [`Ipv4`] for [`Ipv4Addr`] and [`Ipv6`] for [`Ipv6Addr`].
    type Version: Ip<Addr = Self>;

    /// Gets the underlying bytes of the address.
    fn bytes(&self) -> &[u8];

    /// Masks off the top bits of the address.
    ///
    /// Returns a copy of `self` where all but the top `bits` bits are set to
    /// 0.
    ///
    /// # Panics
    ///
    /// `mask` panics if `bits` is out of range - if it is greater than 32 for
    /// IPv4 or greater than 128 for IPv6.
    fn mask(&self, bits: u8) -> Self;

    /// Converts a statically-typed IP address into a dynamically-typed one.
    fn to_ip_addr(&self) -> IpAddr;

    /// Is this a loopback address?
    ///
    /// `is_loopback` returns `true` if this address is a member of the
    /// [`LOOPBACK_SUBNET`].
    ///
    /// [`LOOPBACK_SUBNET`]: Ip::LOOPBACK_SUBNET
    #[inline]
    fn is_loopback(&self) -> bool {
        Self::Version::LOOPBACK_SUBNET.contains(self)
    }

    /// Calculates the common prefix length between this address and `other`.
    fn common_prefix_len(&self, other: &Self) -> u8;

    /// Is this a unicast address contained in the given subnet?
    ///
    /// `is_unicast_in_subnet` returns `true` if the given subnet contains this
    /// address and the address is none of:
    /// - a multicast address
    /// - the IPv4 limited broadcast address
    /// - the IPv4 subnet-specific broadcast address for the given subnet
    /// - an IPv4 address whose host bits (those bits following the network
    ///   prefix) are all 0
    /// - the unspecified address
    /// - an IPv4 Class E address
    ///
    /// Note two exceptions to these rules: If `subnet` is an IPv4 /32, then the
    /// single unicast address in the subnet is also technically the subnet
    /// broadcast address. If `subnet` is an IPv4 /31, then both addresses in
    /// that subnet are broadcast addresses. In either case, the "no
    /// subnet-specific broadcast" and "no address with a host part of all
    /// zeroes" rules don't apply. Note further that this exception *doesn't*
    /// apply to the unspecified address, which is never considered a unicast
    /// address regardless of what subnet it's in.
    ///
    /// # RFC Deep Dive
    ///
    /// ## IPv4 addresses ending in zeroes
    ///
    /// In this section, we justify the rule that IPv4 addresses whose host bits
    /// are all 0 are not considered unicast addresses.
    ///
    /// In earlier standards, an IPv4 address whose bits were all 0 after the
    /// network prefix (e.g., 192.168.0.0 in the subnet 192.168.0.0/16) were a
    /// form of "network-prefix-directed" broadcast addresses. Similarly,
    /// 0.0.0.0 was considered a form of "limited broadcast address" (equivalent
    /// to 255.255.255.255). These have since been deprecated (in the case of
    /// 0.0.0.0, it is now considered the "unspecified" address).
    ///
    /// As evidence that this deprecation is official, consider [RFC 1812
    /// Section 5.3.5]. In reference to these types of addresses, it states that
    /// "packets addressed to any of these addresses SHOULD be silently
    /// discarded \[by routers\]". This not only deprecates them as broadcast
    /// addresses, but also as unicast addresses (after all, unicast addresses
    /// are not particularly useful if packets destined to them are discarded by
    /// routers).
    ///
    /// ## IPv4 /31 and /32 exceptions
    ///
    /// In this section, we justify the exceptions that all addresses in IPv4
    /// /31 and /32 subnets are considered unicast.
    ///
    /// For /31 subnets, the case is easy. [RFC 3021 Section 2.1] states that
    /// both addresses in a /31 subnet "MUST be interpreted as host addresses."
    ///
    /// For /32, the case is a bit more vague. RFC 3021 makes no mention of /32
    /// subnets. However, the same reasoning applies - if an exception is not
    /// made, then there do not exist any host addresses in a /32 subnet. [RFC
    /// 4632 Section 3.1] also vaguely implies this interpretation by referring
    /// to addresses in /32 subnets as "host routes."
    ///
    /// [RFC 1812 Section 5.3.5]: https://tools.ietf.org/html/rfc1812#page-92
    /// [RFC 4632 Section 3.1]: https://tools.ietf.org/html/rfc4632#section-3.1
    fn is_unicast_in_subnet(&self, subnet: &Subnet<Self>) -> bool;

    // Functions used to implement internal types. These functions aren't
    // particularly useful to users, but allow us to implement certain
    // specialization-like behavior without actually relying on the unstable
    // `specialization` feature.

    #[doc(hidden)]
    fn subnet_into_either(subnet: Subnet<Self>) -> SubnetEither;

    #[doc(hidden)]
    fn array_into_ip_addr<const N: usize>(addrs: [Self; N])
        -> IpAddr<[Ipv4Addr; N], [Ipv6Addr; N]>;
}

impl<A: IpAddress> SpecifiedAddress for A {
    /// Is this an address other than the unspecified address?
    ///
    /// `is_specified` returns true if `self` is not equal to
    /// [`A::Version::UNSPECIFIED_ADDRESS`].
    ///
    /// [`A::Version::UNSPECIFIED_ADDRESS`]: Ip::UNSPECIFIED_ADDRESS
    #[inline]
    fn is_specified(&self) -> bool {
        self != &A::Version::UNSPECIFIED_ADDRESS
    }
}

/// Maps a method over an `IpAddr`, calling it after matching on the type of IP
/// address.
macro_rules! map_ip_addr {
    ($val:expr, $method:ident) => {
        match $val {
            IpAddr::V4(a) => a.$method(),
            IpAddr::V6(a) => a.$method(),
        }
    };
}

impl SpecifiedAddress for IpAddr {
    /// Is this an address other than the unspecified address?
    ///
    /// `is_specified` returns true if `self` is not equal to
    /// [`Ip::UNSPECIFIED_ADDRESS`] for the IP version of this address.
    #[inline]
    fn is_specified(&self) -> bool {
        map_ip_addr!(self, is_specified)
    }
}

impl<A: IpAddress> MulticastAddress for A {
    /// Is this address in the multicast subnet?
    ///
    /// `is_multicast` returns true if `self` is in
    /// [`A::Version::MULTICAST_SUBNET`].
    ///
    /// [`A::Version::MULTICAST_SUBNET`]: Ip::MULTICAST_SUBNET
    #[inline]
    fn is_multicast(&self) -> bool {
        <A as IpAddress>::Version::MULTICAST_SUBNET.contains(self)
    }
}

impl MulticastAddress for IpAddr {
    /// Is this an address in the multicast subnet?
    ///
    /// `is_multicast` returns true if `self` is in [`Ip::MULTICAST_SUBNET`] for
    /// the IP version of this address.
    #[inline]
    fn is_multicast(&self) -> bool {
        map_ip_addr!(self, is_multicast)
    }
}

impl LinkLocalAddress for Ipv4Addr {
    /// Is this address in the link-local subnet?
    ///
    /// `is_link_local` returns true if `self` is in
    /// [`Ipv4::LINK_LOCAL_UNICAST_SUBNET`] or
    /// [`Ipv4::LINK_LOCAL_MULTICAST_SUBNET`].
    #[inline]
    fn is_link_local(&self) -> bool {
        Ipv4::LINK_LOCAL_UNICAST_SUBNET.contains(self)
            || Ipv4::LINK_LOCAL_MULTICAST_SUBNET.contains(self)
    }
}

impl LinkLocalAddress for Ipv6Addr {
    /// Is this address in the link-local subnet?
    ///
    /// `is_link_local` returns true if `self` is in
    /// [`Ipv6::LINK_LOCAL_UNICAST_SUBNET`], is a multicast address whose scope
    /// is link-local, or is the address [`Ipv6::LOOPBACK_ADDRESS`] (per [RFC
    /// 4291 Section 2.5.3], the loopback address is considered to have
    /// link-local scope).
    ///
    /// [RFC 4291 Section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
    #[inline]
    fn is_link_local(&self) -> bool {
        Ipv6::LINK_LOCAL_UNICAST_SUBNET.contains(self)
            || (self.is_multicast() && self.scope() == Ipv6Scope::LinkLocal)
            || self == Ipv6::LOOPBACK_ADDRESS.deref()
    }
}

impl LinkLocalAddress for IpAddr {
    /// Is this address link-local?
    #[inline]
    fn is_link_local(&self) -> bool {
        map_ip_addr!(self, is_link_local)
    }
}

impl<A: IpAddress> MappedAddress for A {
    /// Is this address non-mapped?
    ///
    /// For IPv4 addresses, this always returns true because they do not have a
    /// mapped address space.
    ///
    /// For Ipv6 addresses, this returns true if `self` is outside of the IPv4
    /// mapped Ipv6 address subnet, as defined in [RFC 4291 Section 2.5.5.2]
    /// (e.g. `::FFFF:0:0/96`).
    ///
    /// [RFC 4291 Section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
    #[inline]
    fn is_non_mapped(&self) -> bool {
        A::Version::map_ip(self, |_addr_v4| true, |addr_v6| addr_v6.to_ipv4_mapped().is_none())
    }
}

impl MappedAddress for IpAddr {
    /// Is this address non-mapped?
    #[inline]
    fn is_non_mapped(&self) -> bool {
        map_ip_addr!(self, is_non_mapped)
    }
}

impl<I: Ip> GenericOverIp<I> for Ipv4Addr {
    type Type = I::Addr;
}

impl<I: Ip> GenericOverIp<I> for Ipv6Addr {
    type Type = I::Addr;
}

impl ScopeableAddress for Ipv4Addr {
    type Scope = ();

    /// The scope of this address.
    ///
    /// Although IPv4 defines a link local subnet, IPv4 addresses are always
    /// considered to be in the global scope.
    fn scope(&self) {}
}

/// The list of IPv6 scopes.
///
/// These scopes are defined by [RFC 4291 Section 2.7].
///
/// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum Ipv6Scope {
    /// The interface-local scope.
    InterfaceLocal,
    /// The link-local scope.
    LinkLocal,
    /// The admin-local scope.
    AdminLocal,
    /// The (deprecated) site-local scope.
    ///
    /// The site-local scope was deprecated in [RFC 3879]. While this scope
    /// is returned for both site-local unicast and site-local multicast
    /// addresses, RFC 3879 says the following about site-local unicast addresses
    /// in particular ("this prefix" refers to the [site-local unicast subnet]):
    ///
    /// > The special behavior of this prefix MUST no longer be supported in new
    /// > implementations. The prefix MUST NOT be reassigned for other use
    /// > except by a future IETF standards action... However, router
    /// > implementations SHOULD be configured to prevent routing of this prefix
    /// > by default.
    ///
    /// [RFC 3879]: https://tools.ietf.org/html/rfc3879
    /// [site-local unicast subnet]: Ipv6::SITE_LOCAL_UNICAST_SUBNET
    SiteLocal,
    /// The organization-local scope.
    OrganizationLocal,
    /// The global scope.
    Global,
    /// Scopes which are reserved for future use by [RFC 4291 Section 2.7].
    ///
    /// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
    Reserved(Ipv6ReservedScope),
    /// Scopes which are available for local definition by administrators.
    Unassigned(Ipv6UnassignedScope),
}

/// The list of IPv6 scopes which are reserved for future use by [RFC 4291
/// Section 2.7].
///
/// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum Ipv6ReservedScope {
    /// The scope with numerical value 0.
    Scope0 = 0,
    /// The scope with numerical value 3.
    Scope3 = 3,
    /// The scope with numerical value 0xF.
    ScopeF = 0xF,
}

/// The list of IPv6 scopes which are available for local definition by
/// administrators.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum Ipv6UnassignedScope {
    /// The scope with numerical value 6.
    Scope6 = 6,
    /// The scope with numerical value 7.
    Scope7 = 7,
    /// The scope with numerical value 9.
    Scope9 = 9,
    /// The scope with numerical value 0xA.
    ScopeA = 0xA,
    /// The scope with numerical value 0xB.
    ScopeB = 0xB,
    /// The scope with numerical value 0xC.
    ScopeC = 0xC,
    /// The scope with numerical value 0xD.
    ScopeD = 0xD,
}

impl Scope for Ipv6Scope {
    #[inline]
    fn can_have_zone(&self) -> bool {
        // Per RFC 6874 Section 4:
        //
        // > [I]mplementations MUST NOT allow use of this format except for
        // > well-defined usages, such as sending to link-local addresses under
        // > prefix fe80::/10.  At the time of writing, this is the only
        // > well-defined usage known.
        //
        // While this directive applies particularly to the human-readable
        // string representation of IPv6 addresses and zone identifiers, it
        // seems reasonable to limit the in-memory representation in the same
        // way.
        //
        // Note that, if interpreted literally, this quote would bar the use of
        // zone identifiers on link-local multicast addresses (they are not
        // under the prefix fe80::/10). However, it seems clear that this is not
        // the interpretation that was intended. Link-local multicast addresses
        // have the same need for a zone identifier as link-local unicast
        // addresses, and indeed, real systems like Linux allow link-local
        // multicast addresses to be accompanied by zone identifiers.
        matches!(self, Ipv6Scope::LinkLocal)
    }
}

impl Ipv6Scope {
    /// The multicast scope ID of an interface-local address, defined in [RFC
    /// 4291 Section 2.7].
    ///
    /// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
    pub const MULTICAST_SCOPE_ID_INTERFACE_LOCAL: u8 = 1;

    /// The multicast scope ID of a link-local address, defined in [RFC 4291
    /// Section 2.7].
    ///
    /// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
    pub const MULTICAST_SCOPE_ID_LINK_LOCAL: u8 = 2;

    /// The multicast scope ID of an admin-local address, defined in [RFC 4291
    /// Section 2.7].
    ///
    /// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
    pub const MULTICAST_SCOPE_ID_ADMIN_LOCAL: u8 = 4;

    /// The multicast scope ID of a (deprecated) site-local address, defined in
    /// [RFC 4291 Section 2.7].
    ///
    /// Note that site-local addresses are deprecated.
    ///
    /// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
    pub const MULTICAST_SCOPE_ID_SITE_LOCAL: u8 = 5;

    /// The multicast scope ID of an organization-local address, defined in [RFC
    /// 4291 Section 2.7].
    ///
    /// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
    pub const MULTICAST_SCOPE_ID_ORG_LOCAL: u8 = 8;

    /// The multicast scope ID of global address, defined in [RFC 4291 Section
    /// 2.7].
    ///
    /// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
    pub const MULTICAST_SCOPE_ID_GLOBAL: u8 = 0xE;

    /// The ID used to indicate this scope in a multicast IPv6 address.
    ///
    /// Per [RFC 4291 Section 2.7], the bits of a multicast IPv6 address are
    /// laid out as follows:
    ///
    /// ```text
    /// |   8    |  4 |  4 |                  112 bits                   |
    /// +------ -+----+----+---------------------------------------------+
    /// |11111111|flgs|scop|                  group ID                   |
    /// +--------+----+----+---------------------------------------------+
    /// ```
    ///
    /// The 4-bit scop field encodes the scope of the address.
    /// `multicast_scope_id` returns the numerical value used to encode this
    /// scope in the scop field of a multicast address.
    ///
    /// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
    pub fn multicast_scope_id(&self) -> u8 {
        match self {
            Ipv6Scope::Reserved(Ipv6ReservedScope::Scope0) => 0,
            Ipv6Scope::InterfaceLocal => Self::MULTICAST_SCOPE_ID_INTERFACE_LOCAL,
            Ipv6Scope::LinkLocal => Self::MULTICAST_SCOPE_ID_LINK_LOCAL,
            Ipv6Scope::Reserved(Ipv6ReservedScope::Scope3) => 3,
            Ipv6Scope::AdminLocal => Self::MULTICAST_SCOPE_ID_ADMIN_LOCAL,
            Ipv6Scope::SiteLocal => Self::MULTICAST_SCOPE_ID_SITE_LOCAL,
            Ipv6Scope::Unassigned(Ipv6UnassignedScope::Scope6) => 6,
            Ipv6Scope::Unassigned(Ipv6UnassignedScope::Scope7) => 7,
            Ipv6Scope::OrganizationLocal => Self::MULTICAST_SCOPE_ID_ORG_LOCAL,
            Ipv6Scope::Unassigned(Ipv6UnassignedScope::Scope9) => 9,
            Ipv6Scope::Unassigned(Ipv6UnassignedScope::ScopeA) => 0xA,
            Ipv6Scope::Unassigned(Ipv6UnassignedScope::ScopeB) => 0xB,
            Ipv6Scope::Unassigned(Ipv6UnassignedScope::ScopeC) => 0xC,
            Ipv6Scope::Unassigned(Ipv6UnassignedScope::ScopeD) => 0xD,
            Ipv6Scope::Global => Self::MULTICAST_SCOPE_ID_GLOBAL,
            Ipv6Scope::Reserved(Ipv6ReservedScope::ScopeF) => 0xF,
        }
    }
}

impl ScopeableAddress for Ipv6Addr {
    type Scope = Ipv6Scope;

    /// The scope of this address.
    #[inline]
    fn scope(&self) -> Ipv6Scope {
        if self.is_multicast() {
            use Ipv6ReservedScope::*;
            use Ipv6Scope::*;
            use Ipv6UnassignedScope::*;

            // The "scop" field of a multicast address is the last 4 bits of the
            // second byte of the address (see
            // https://tools.ietf.org/html/rfc4291#section-2.7).
            match self.0[1] & 0xF {
                0 => Reserved(Scope0),
                Ipv6Scope::MULTICAST_SCOPE_ID_INTERFACE_LOCAL => InterfaceLocal,
                Ipv6Scope::MULTICAST_SCOPE_ID_LINK_LOCAL => LinkLocal,
                3 => Reserved(Scope3),
                Ipv6Scope::MULTICAST_SCOPE_ID_ADMIN_LOCAL => AdminLocal,
                Ipv6Scope::MULTICAST_SCOPE_ID_SITE_LOCAL => SiteLocal,
                6 => Unassigned(Scope6),
                7 => Unassigned(Scope7),
                Ipv6Scope::MULTICAST_SCOPE_ID_ORG_LOCAL => OrganizationLocal,
                9 => Unassigned(Scope9),
                0xA => Unassigned(ScopeA),
                0xB => Unassigned(ScopeB),
                0xC => Unassigned(ScopeC),
                0xD => Unassigned(ScopeD),
                Ipv6Scope::MULTICAST_SCOPE_ID_GLOBAL => Global,
                0xF => Reserved(ScopeF),
                _ => unreachable!(),
            }
        } else if self.is_link_local() {
            Ipv6Scope::LinkLocal
        } else if self.is_site_local() {
            Ipv6Scope::SiteLocal
        } else {
            Ipv6Scope::Global
        }
    }
}

impl Scope for IpAddr<(), Ipv6Scope> {
    #[inline]
    fn can_have_zone(&self) -> bool {
        match self {
            IpAddr::V4(scope) => scope.can_have_zone(),
            IpAddr::V6(scope) => scope.can_have_zone(),
        }
    }
}

impl ScopeableAddress for IpAddr {
    type Scope = IpAddr<(), Ipv6Scope>;

    #[inline]
    fn scope(&self) -> IpAddr<(), Ipv6Scope> {
        match self {
            IpAddr::V4(_) => IpAddr::V4(()),
            IpAddr::V6(addr) => IpAddr::V6(addr.scope()),
        }
    }
}

// The definition of each trait for `IpAddr` is equal to the definition of that
// trait for whichever of `Ipv4Addr` and `Ipv6Addr` is actually present in the
// enum. Thus, we can convert between `$witness<IpvXAddr>`, `$witness<IpAddr>`,
// and `IpAddr<$witness<Ipv4Addr>, $witness<Ipv6Addr>>` arbitrarily.

/// Provides various useful `From` impls for an IP address witness type.
///
/// `impl_from_witness!($witness)` implements:
/// - `From<IpAddr<$witness<Ipv4Addr>, $witness<Ipv6Addr>>> for
///   $witness<IpAddr>`
/// - `From<$witness<IpAddr>> for IpAddr<$witness<Ipv4Addr>,
///   $witness<Ipv6Addr>>`
/// - `From<$witness<A>> for $witness<A>`
/// - `From<$witness<Ipv4Addr>> for IpAddr`
/// - `From<$witness<Ipv6Addr>> for IpAddr`
/// - `TryFrom<Ipv4Addr> for $witness<Ipv4Addr>`
/// - `TryFrom<Ipv6Addr> for $witness<Ipv6Addr>`
///
/// `impl_from_witness!($witness, $ipaddr, $new_unchecked)` implements:
/// - `From<$witness<$ipaddr>> for $witness<IpAddr>`
/// - `From<$witness<$ipaddr>> for $ipaddr`
/// - `TryFrom<$ipaddr> for $witness<$ipaddr>`
macro_rules! impl_from_witness {
    ($witness:ident, $witness_trait:ident) => {
        impl From<IpAddr<$witness<Ipv4Addr>, $witness<Ipv6Addr>>> for $witness<IpAddr> {
            fn from(addr: IpAddr<$witness<Ipv4Addr>, $witness<Ipv6Addr>>) -> $witness<IpAddr> {
                unsafe {
                    Witness::new_unchecked(match addr {
                        IpAddr::V4(addr) => IpAddr::V4(addr.get()),
                        IpAddr::V6(addr) => IpAddr::V6(addr.get()),
                    })
                }
            }
        }
        impl From<$witness<IpAddr>> for IpAddr<$witness<Ipv4Addr>, $witness<Ipv6Addr>> {
            fn from(addr: $witness<IpAddr>) -> IpAddr<$witness<Ipv4Addr>, $witness<Ipv6Addr>> {
                unsafe {
                    match addr.get() {
                        IpAddr::V4(addr) => IpAddr::V4(Witness::new_unchecked(addr)),
                        IpAddr::V6(addr) => IpAddr::V6(Witness::new_unchecked(addr)),
                    }
                }
            }
        }
        impl<A: IpAddress> From<$witness<A>> for $witness<IpAddr> {
            fn from(addr: $witness<A>) -> $witness<IpAddr> {
                unsafe { Witness::new_unchecked(addr.to_ip_addr()) }
            }
        }
        impl<A: IpAddress> From<$witness<A>> for IpAddr<$witness<Ipv4Addr>, $witness<Ipv6Addr>> {
            fn from(addr: $witness<A>) -> IpAddr<$witness<Ipv4Addr>, $witness<Ipv6Addr>> {
                let addr: $witness<IpAddr> = addr.into();
                addr.into()
            }
        }
        // NOTE: Orphan rules prevent implementing `From` for `A: IpAddress`.
        impl<A: Into<Ipv4Addr> + $witness_trait + Copy> From<$witness<A>> for Ipv4Addr {
            fn from(addr: $witness<A>) -> Ipv4Addr {
                let addr: A = addr.get();
                addr.into()
            }
        }
        impl<A: Into<Ipv6Addr> + $witness_trait + Copy> From<$witness<A>> for Ipv6Addr {
            fn from(addr: $witness<A>) -> Ipv6Addr {
                let addr: A = addr.get();
                addr.into()
            }
        }
        // NOTE: Orphan rules prevent implementing `TryFrom` for `A: IpAddress`.
        impl TryFrom<Ipv4Addr> for $witness<Ipv4Addr> {
            type Error = ();
            fn try_from(addr: Ipv4Addr) -> Result<$witness<Ipv4Addr>, ()> {
                Witness::new(addr).ok_or(())
            }
        }
        impl TryFrom<Ipv6Addr> for $witness<Ipv6Addr> {
            type Error = ();
            fn try_from(addr: Ipv6Addr) -> Result<$witness<Ipv6Addr>, ()> {
                Witness::new(addr).ok_or(())
            }
        }
    };
    ($witness:ident, $witness_trait:ident, $ipaddr:ident, $new_unchecked:expr) => {
        impl From<$witness<$ipaddr>> for $witness<IpAddr> {
            fn from(addr: $witness<$ipaddr>) -> $witness<IpAddr> {
                let addr: $ipaddr = addr.get();
                let addr: IpAddr = addr.into();
                #[allow(unused_unsafe)] // For when a closure is passed
                unsafe {
                    $new_unchecked(addr)
                }
            }
        }
        impl<A: Into<$ipaddr> + $witness_trait + Copy> From<$witness<A>> for $ipaddr {
            fn from(addr: $witness<A>) -> $ipaddr {
                let addr: A = addr.get();
                addr.into()
            }
        }
        impl TryFrom<$ipaddr> for $witness<$ipaddr> {
            type Error = ();
            fn try_from(addr: $ipaddr) -> Result<$witness<$ipaddr>, ()> {
                Witness::new(addr).ok_or(())
            }
        }
    };
}

impl_from_witness!(SpecifiedAddr, SpecifiedAddress);
impl_from_witness!(MulticastAddr, MulticastAddress);
impl_from_witness!(LinkLocalAddr, LinkLocalAddress);
impl_from_witness!(NonMappedAddr, MappedAddress);
// Only add `From` conversions for `Ipv6Addr`, because `Ipv4Addr` does not
// implement `UnicastAddress`.
impl_from_witness!(UnicastAddr, UnicastAddress, Ipv6Addr, UnicastAddr::new_unchecked);

/// The class of an IPv4 address.
///
/// The classful addressing scheme is obsoloted in favour of [CIDR] but is still
/// used on some systems. For more information, see [RFC 791 section 2.3] and
/// [RFC 1812 section 2.2.5.1].
///
/// [CIDR]: https://datatracker.ietf.org/doc/html/rfc1518
/// [RFC 791 section 2.3]: https://datatracker.ietf.org/doc/html/rfc791#section-2.3
/// [RFC 1812 section 2.2.5.1]: https://datatracker.ietf.org/doc/html/rfc1812#section-2.2.5.1
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Ipv4AddressClass {
    /// A Class A IPv4 address.
    A,
    /// A Class B IPv4 address.
    B,
    /// A Class C IPv4 address.
    C,
    /// A Class D IPv4 address.
    ///
    /// Class D addresses are also known as multicast.
    D,
    /// A Class E IPv4 address.
    ///
    /// Class E addresses are also known as experimental.
    E,
}

impl Ipv4AddressClass {
    /// Returns the default prefix length for an IPv4 address class if the
    /// prefix is well-defined.
    pub const fn default_prefix_len(self) -> Option<u8> {
        // Per RFC 943 https://datatracker.ietf.org/doc/html/rfc943
        //
        //   The first type of address, or class A, has a 7-bit network number
        //   and a 24-bit local address.  The highest-order bit is set to 0.
        //   This allows 128 class A networks.
        //
        //                        1                   2                   3
        //    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
        //   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        //   |0|   NETWORK   |                Local Address                  |
        //   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        //
        //                          Class A Address
        //
        //   The second type of address, class B, has a 14-bit network number
        //   and a 16-bit local address.  The two highest-order bits are set to
        //   1-0.  This allows 16,384 class B networks.
        //
        //                        1                   2                   3
        //    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
        //   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        //   |1 0|           NETWORK         |          Local Address        |
        //   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        //
        //                          Class B Address
        //
        //   The third type of address, class C, has a 21-bit network number
        //   and a 8-bit local address.  The three highest-order bits are set
        //   to 1-1-0.  This allows 2,097,152 class C networks.
        //
        //                        1                   2                   3
        //    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
        //   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        //   |1 1 0|                    NETWORK              | Local Address |
        //   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
        //
        //                          Class C Address
        match self {
            Ipv4AddressClass::A => Some(8),
            Ipv4AddressClass::B => Some(16),
            Ipv4AddressClass::C => Some(24),
            Ipv4AddressClass::D => None,
            Ipv4AddressClass::E => None,
        }
    }
}

/// An IPv4 address.
///
/// # Layout
///
/// `Ipv4Addr` has the same layout as `[u8; 4]`, which is the layout that most
/// protocols use to represent an IPv4 address in their packet formats. This can
/// be useful when parsing an IPv4 address from a packet. For example:
///
/// ```rust
/// # use net_types::ip::Ipv4Addr;
/// /// An ICMPv4 Redirect Message header.
/// ///
/// /// `Icmpv4RedirectHeader` has the same layout as the header of an ICMPv4
/// /// Redirect Message.
/// #[repr(C)]
/// struct Icmpv4RedirectHeader {
///     typ: u8,
///     code: u8,
///     checksum: [u8; 2],
///     gateway: Ipv4Addr,
/// }
/// ```
#[derive(
    Copy,
    Clone,
    Default,
    PartialEq,
    Eq,
    PartialOrd,
    Ord,
    Hash,
    KnownLayout,
    FromBytes,
    IntoBytes,
    Immutable,
    Unaligned,
)]
#[repr(transparent)]
pub struct Ipv4Addr([u8; 4]);

impl Ipv4Addr {
    /// Creates a new IPv4 address.
    #[inline]
    pub const fn new(bytes: [u8; 4]) -> Self {
        Ipv4Addr(bytes)
    }

    /// Gets the bytes of the IPv4 address.
    #[inline]
    pub const fn ipv4_bytes(self) -> [u8; 4] {
        self.0
    }

    /// Is this the limited broadcast address?
    ///
    /// `is_limited_broadcast` is a shorthand for comparing against
    /// [`Ipv4::LIMITED_BROADCAST_ADDRESS`].
    #[inline]
    pub fn is_limited_broadcast(self) -> bool {
        self == Ipv4::LIMITED_BROADCAST_ADDRESS.get()
    }

    /// Is this a Class E address?
    ///
    /// `is_class_e` is a shorthand for checking membership in
    /// [`Ipv4::CLASS_E_SUBNET`].
    #[inline]
    pub fn is_class_e(self) -> bool {
        Ipv4::CLASS_E_SUBNET.contains(&self)
    }

    /// Converts the address to an IPv4-compatible IPv6 address according to
    /// [RFC 4291 Section 2.5.5.1].
    ///
    /// IPv4-compatible IPv6 addresses were defined to assist in the IPv6
    /// transition, and are now specified in [RFC 4291 Section 2.5.5.1]. The
    /// lowest-order 32 bits carry an IPv4 address, while the highest-order 96
    /// bits are all set to 0 as in this diagram from the RFC:
    ///
    /// ```text
    /// |                80 bits               | 16 |      32 bits        |
    /// +--------------------------------------+--------------------------+
    /// |0000..............................0000|0000|    IPv4 address     |
    /// +--------------------------------------+----+---------------------+
    /// ```
    ///
    /// Per RFC 4291:
    ///
    /// > The 'IPv4-Compatible IPv6 address' is now deprecated because the
    /// > current IPv6 transition mechanisms no longer use these addresses. New
    /// > or updated implementations are not required to support this address
    /// > type.
    ///
    /// The more modern embedding format is IPv4-mapped IPv6 addressing - see
    /// [`to_ipv6_mapped`].
    ///
    /// [RFC 4291 Section 2.5.5.1]: https://tools.ietf.org/html/rfc4291#section-2.5.5.1
    /// [`to_ipv6_mapped`]: Ipv4Addr::to_ipv6_mapped
    #[inline]
    pub fn to_ipv6_compatible(self) -> Ipv6Addr {
        let Self([a, b, c, d]) = self;
        Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, b, c, d])
    }

    /// Converts the address to an IPv4-mapped IPv6 address according to [RFC
    /// 4291 Section 2.5.5.2].
    ///
    /// IPv4-mapped IPv6 addresses are used to represent the addresses of IPv4
    /// nodes as IPv6 addresses, and are defined in [RFC 4291 Section 2.5.5.2].
    /// The lowest-order 32 bits carry an IPv4 address, the middle order 16 bits
    /// carry the literal 0xFFFF, and the highest order 80 bits are set to 0 as
    /// in this diagram from the RFC:
    ///
    /// ```text
    /// |                80 bits               | 16 |      32 bits        |
    /// +--------------------------------------+--------------------------+
    /// |0000..............................0000|FFFF|    IPv4 address     |
    /// +--------------------------------------+----+---------------------+
    /// ```
    ///
    /// [RFC 4291 Section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
    #[inline]
    pub fn to_ipv6_mapped(self) -> SpecifiedAddr<Ipv6Addr> {
        let Self([a, b, c, d]) = self;
        SpecifiedAddr::new(Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, a, b, c, d]))
            .unwrap()
    }

    /// Returns the address's class according to the obsoleted classful
    /// addressing architecture.
    pub fn class(&self) -> Ipv4AddressClass {
        for (subnet, class) in [
            (Ipv4::CLASS_A_SUBNET, Ipv4AddressClass::A),
            (Ipv4::CLASS_B_SUBNET, Ipv4AddressClass::B),
            (Ipv4::CLASS_C_SUBNET, Ipv4AddressClass::C),
            (Ipv4::CLASS_D_SUBNET, Ipv4AddressClass::D),
            (Ipv4::CLASS_E_SUBNET, Ipv4AddressClass::E),
        ] {
            if subnet.contains(self) {
                return class;
            }
        }

        unreachable!("{} should fit into a class", self)
    }
}

impl sealed::Sealed for Ipv4Addr {}

impl IpAddress for Ipv4Addr {
    const BYTES: u8 = 4;

    type Version = Ipv4;

    #[inline]
    fn mask(&self, bits: u8) -> Self {
        assert!(bits <= 32);
        // Need to perform a checked shift left in case `bits == 32`, in which
        // case an unchecked shift left (`u32::MAX << bits`) would overflow,
        // causing a panic in debug mode.
        let mask = u32::MAX.checked_shl((32 - bits).into()).unwrap_or(0);
        Ipv4Addr((u32::from_be_bytes(self.0) & mask).to_be_bytes())
    }

    #[inline]
    fn bytes(&self) -> &[u8] {
        &self.0
    }

    #[inline]
    fn to_ip_addr(&self) -> IpAddr {
        IpAddr::V4(*self)
    }

    #[inline]
    fn common_prefix_len(&self, other: &Ipv4Addr) -> u8 {
        let me = u32::from_be_bytes(self.0);
        let other = u32::from_be_bytes(other.0);
        // `same_bits` has a 0 wherever `me` and `other` have the same bit in a
        // given position, and a 1 wherever they have opposite bits.
        let same_bits = me ^ other;
        same_bits.leading_zeros() as u8
    }

    #[inline]
    fn is_unicast_in_subnet(&self, subnet: &Subnet<Self>) -> bool {
        !self.is_multicast()
            && !self.is_limited_broadcast()
            // This clause implements the rules that (the subnet broadcast is
            // not unicast AND the address with an all-zeroes host part is not
            // unicast) UNLESS the prefix length is 31 or 32.
            && (subnet.prefix() == 32
            || subnet.prefix() == 31
            || (*self != subnet.broadcast() && *self != subnet.network()))
            && self.is_specified()
            && !self.is_class_e()
            && subnet.contains(self)
    }

    fn subnet_into_either(subnet: Subnet<Ipv4Addr>) -> SubnetEither {
        SubnetEither::V4(subnet)
    }

    #[inline]
    fn array_into_ip_addr<const N: usize>(
        addrs: [Self; N],
    ) -> IpAddr<[Ipv4Addr; N], [Ipv6Addr; N]> {
        IpAddr::V4(addrs)
    }
}

impl From<[u8; 4]> for Ipv4Addr {
    #[inline]
    fn from(bytes: [u8; 4]) -> Ipv4Addr {
        Ipv4Addr(bytes)
    }
}

#[cfg(feature = "std")]
impl From<net::Ipv4Addr> for Ipv4Addr {
    #[inline]
    fn from(ip: net::Ipv4Addr) -> Ipv4Addr {
        Ipv4Addr::new(ip.octets())
    }
}

#[cfg(feature = "std")]
impl From<Ipv4Addr> for net::Ipv4Addr {
    #[inline]
    fn from(ip: Ipv4Addr) -> net::Ipv4Addr {
        net::Ipv4Addr::from(ip.0)
    }
}

impl Display for Ipv4Addr {
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
        write!(f, "{}.{}.{}.{}", self.0[0], self.0[1], self.0[2], self.0[3])
    }
}

impl Debug for Ipv4Addr {
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
        Display::fmt(self, f)
    }
}

/// An IPv6 address.
///
/// # Layout
///
/// `Ipv6Addr` has the same layout as `[u8; 16]`, which is the layout that most
/// protocols use to represent an IPv6 address in their packet formats. This can
/// be useful when parsing an IPv6 address from a packet. For example:
///
/// ```rust
/// # use net_types::ip::Ipv6Addr;
/// /// The fixed part of an IPv6 packet header.
/// ///
/// /// `FixedHeader` has the same layout as the fixed part of an IPv6 packet
/// /// header.
/// #[repr(C)]
/// pub struct FixedHeader {
///     version_tc_flowlabel: [u8; 4],
///     payload_len: [u8; 2],
///     next_hdr: u8,
///     hop_limit: u8,
///     src_ip: Ipv6Addr,
///     dst_ip: Ipv6Addr,
/// }
/// ```
///
/// # `Display`
///
/// The [`Display`] impl for `Ipv6Addr` formats according to [RFC 5952].
///
/// Where RFC 5952 leaves decisions up to the implementation, `Ipv6Addr` matches
/// the behavior of [`std::net::Ipv6Addr`] - all IPv6 addresses are formatted
/// the same by `Ipv6Addr` as by `<std::net::Ipv6Addr as Display>::fmt`.
///
/// [RFC 5952]: https://datatracker.ietf.org/doc/html/rfc5952
#[derive(
    Copy,
    Clone,
    Default,
    PartialEq,
    Eq,
    PartialOrd,
    Ord,
    Hash,
    KnownLayout,
    FromBytes,
    IntoBytes,
    Immutable,
    Unaligned,
)]
#[repr(transparent)]
pub struct Ipv6Addr([u8; 16]);

impl Ipv6Addr {
    /// Creates a new IPv6 address from 16-bit segments.
    #[inline]
    pub const fn new(segments: [u16; 8]) -> Ipv6Addr {
        #![allow(clippy::many_single_char_names)]
        let [a, b, c, d, e, f, g, h] = segments;
        let [aa, ab] = a.to_be_bytes();
        let [ba, bb] = b.to_be_bytes();
        let [ca, cb] = c.to_be_bytes();
        let [da, db] = d.to_be_bytes();
        let [ea, eb] = e.to_be_bytes();
        let [fa, fb] = f.to_be_bytes();
        let [ga, gb] = g.to_be_bytes();
        let [ha, hb] = h.to_be_bytes();
        Ipv6Addr([aa, ab, ba, bb, ca, cb, da, db, ea, eb, fa, fb, ga, gb, ha, hb])
    }

    /// Creates a new IPv6 address from bytes.
    #[inline]
    pub const fn from_bytes(bytes: [u8; 16]) -> Ipv6Addr {
        Ipv6Addr(bytes)
    }

    /// Gets the bytes of the IPv6 address.
    #[inline]
    pub const fn ipv6_bytes(&self) -> [u8; 16] {
        self.0
    }

    /// Gets the 16-bit segments of the IPv6 address.
    #[inline]
    pub fn segments(&self) -> [u16; 8] {
        #![allow(clippy::many_single_char_names)]
        let [a, b, c, d, e, f, g, h]: [zerocopy::network_endian::U16; 8] =
            zerocopy::transmute!(self.ipv6_bytes());
        [a.into(), b.into(), c.into(), d.into(), e.into(), f.into(), g.into(), h.into()]
    }

    /// Converts this `Ipv6Addr` to the IPv6 Solicited-Node Address, used in
    /// Neighbor Discovery, defined in [RFC 4291 Section 2.7.1].
    ///
    /// [RFC 4291 Section 2.7.1]: https://tools.ietf.org/html/rfc4291#section-2.7.1
    #[inline]
    pub const fn to_solicited_node_address(&self) -> MulticastAddr<Ipv6Addr> {
        // TODO(brunodalbo) benchmark this generation and evaluate if using
        //  bit operations with u128 could be faster. This is very likely
        //  going to be on a hot path.

        // We know we are not breaking the guarantee that `MulticastAddr` provides
        // when calling `new_unchecked` because the address we provide it is
        // a multicast address as defined by RFC 4291 section 2.7.1.
        unsafe {
            MulticastAddr::new_unchecked(Ipv6Addr::from_bytes([
                0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01, 0xff, self.0[13], self.0[14],
                self.0[15],
            ]))
        }
    }

    /// Is this a valid unicast address?
    ///
    /// A valid unicast address is any unicast address that can be bound to an
    /// interface (not the unspecified or loopback addresses).
    /// `addr.is_valid_unicast()` is equivalent to `!(addr.is_loopback() ||
    /// !addr.is_specified() || addr.is_multicast())`.
    #[inline]
    pub fn is_valid_unicast(&self) -> bool {
        !(self.is_loopback() || !self.is_specified() || self.is_multicast())
    }

    /// Is this address in the (deprecated) site-local unicast subnet?
    ///
    /// `is_site_local` returns true if `self` is in the (deprecated)
    /// [`Ipv6::SITE_LOCAL_UNICAST_SUBNET`]. See that constant's documentation
    /// for more details on deprecation and how the subnet should be used in
    /// light of deprecation.
    #[inline]
    pub fn is_site_local(&self) -> bool {
        Ipv6::SITE_LOCAL_UNICAST_SUBNET.contains(self)
    }

    /// Is this a unicast link-local address?
    ///
    /// `addr.is_unicast_link_local()` is equivalent to
    /// `addr.is_unicast_in_subnet(&Ipv6::LINK_LOCAL_UNICAST_SUBNET)`.
    #[inline]
    pub fn is_unicast_link_local(&self) -> bool {
        self.is_unicast_in_subnet(&Ipv6::LINK_LOCAL_UNICAST_SUBNET)
    }

    /// Tries to extract the IPv4 address from an IPv4-compatible IPv6 address.
    ///
    /// IPv4-compatible IPv6 addresses were defined to assist in the IPv6
    /// transition, and are now specified in [RFC 4291 Section 2.5.5.1]. The
    /// lowest-order 32 bits carry an IPv4 address, while the highest-order 96
    /// bits are all set to 0 as in this diagram from the RFC:
    ///
    /// ```text
    /// |                80 bits               | 16 |      32 bits        |
    /// +--------------------------------------+--------------------------+
    /// |0000..............................0000|0000|    IPv4 address     |
    /// +--------------------------------------+----+---------------------+
    /// ```
    ///
    /// `to_ipv4_compatible` checks to see if `self` is an IPv4-compatible
    /// IPv6 address. If it is, the IPv4 address is extracted and returned.
    ///
    /// Per RFC 4291:
    ///
    /// > The 'IPv4-Compatible IPv6 address' is now deprecated because the
    /// > current IPv6 transition mechanisms no longer use these addresses. New
    /// > or updated implementations are not required to support this address
    /// > type.
    ///
    /// The more modern embedding format is IPv4-mapped IPv6 addressing - see
    /// [`to_ipv4_mapped`].
    ///
    /// [RFC 4291 Section 2.5.5.1]: https://tools.ietf.org/html/rfc4291#section-2.5.5.1
    /// [`to_ipv4_mapped`]: Ipv6Addr::to_ipv4_mapped
    pub fn to_ipv4_compatible(&self) -> Option<Ipv4Addr> {
        if let [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, b, c, d] = self.0 {
            Some(Ipv4Addr::new([a, b, c, d]))
        } else {
            None
        }
    }

    /// Tries to extract the IPv4 address from an IPv4-mapped IPv6 address.
    ///
    /// IPv4-mapped IPv6 addresses are used to represent the addresses of IPv4
    /// nodes as IPv6 addresses, and are defined in [RFC 4291 Section 2.5.5.2].
    /// The lowest-order 32 bits carry an IPv4 address, the middle order 16 bits
    /// carry the literal 0xFFFF, and the highest order 80 bits are set to 0 as
    /// in this diagram from the RFC:
    ///
    /// ```text
    /// |                80 bits               | 16 |      32 bits        |
    /// +--------------------------------------+--------------------------+
    /// |0000..............................0000|FFFF|    IPv4 address     |
    /// +--------------------------------------+----+---------------------+
    /// ```
    ///
    /// `to_ipv4_mapped` checks to see if `self` is an IPv4-mapped
    /// IPv6 address. If it is, the IPv4 address is extracted and returned.
    ///
    /// [RFC 4291 Section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
    pub fn to_ipv4_mapped(&self) -> Option<Ipv4Addr> {
        if let [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, a, b, c, d] = self.0 {
            Some(Ipv4Addr::new([a, b, c, d]))
        } else {
            None
        }
    }
}

impl sealed::Sealed for Ipv6Addr {}

/// [`Ipv4Addr`] is convertible into [`Ipv6Addr`] through
/// [`Ipv4Addr::to_ipv6_mapped`].
impl From<Ipv4Addr> for Ipv6Addr {
    fn from(addr: Ipv4Addr) -> Ipv6Addr {
        *addr.to_ipv6_mapped()
    }
}

impl IpAddress for Ipv6Addr {
    const BYTES: u8 = 16;

    type Version = Ipv6;

    #[inline]
    fn mask(&self, bits: u8) -> Ipv6Addr {
        assert!(bits <= 128);
        // Need to perform a checked shift left in case `bits == 128`, in which
        // case an unchecked shift left (`u128::MAX << bits`) would overflow,
        // causing a panic in debug mode.
        let mask = u128::MAX.checked_shl((128 - bits).into()).unwrap_or(0);
        Ipv6Addr((u128::from_be_bytes(self.0) & mask).to_be_bytes())
    }

    #[inline]
    fn bytes(&self) -> &[u8] {
        &self.0
    }

    #[inline]
    fn to_ip_addr(&self) -> IpAddr {
        IpAddr::V6(*self)
    }

    #[inline]
    fn common_prefix_len(&self, other: &Ipv6Addr) -> u8 {
        let me = u128::from_be_bytes(self.0);
        let other = u128::from_be_bytes(other.0);
        // `same_bits` has a 0 wherever `me` and `other` have the same bit in a
        // given position, and a 1 wherever they have opposite bits.
        let same_bits = me ^ other;
        same_bits.leading_zeros() as u8
    }

    #[inline]
    fn is_unicast_in_subnet(&self, subnet: &Subnet<Self>) -> bool {
        !self.is_multicast() && self.is_specified() && subnet.contains(self)
    }

    fn subnet_into_either(subnet: Subnet<Ipv6Addr>) -> SubnetEither {
        SubnetEither::V6(subnet)
    }

    #[inline]
    fn array_into_ip_addr<const N: usize>(
        addrs: [Self; N],
    ) -> IpAddr<[Ipv4Addr; N], [Ipv6Addr; N]> {
        IpAddr::V6(addrs)
    }
}

impl UnicastAddress for Ipv6Addr {
    /// Is this a unicast address?
    ///
    /// `addr.is_unicast()` is equivalent to `!addr.is_multicast() &&
    /// addr.is_specified()`.
    #[inline]
    fn is_unicast(&self) -> bool {
        !self.is_multicast() && self.is_specified()
    }
}

impl From<[u8; 16]> for Ipv6Addr {
    #[inline]
    fn from(bytes: [u8; 16]) -> Ipv6Addr {
        Ipv6Addr::from_bytes(bytes)
    }
}

#[cfg(feature = "std")]
impl From<net::Ipv6Addr> for Ipv6Addr {
    #[inline]
    fn from(addr: net::Ipv6Addr) -> Ipv6Addr {
        Ipv6Addr::from_bytes(addr.octets())
    }
}

#[cfg(feature = "std")]
impl From<Ipv6Addr> for net::Ipv6Addr {
    #[inline]
    fn from(addr: Ipv6Addr) -> net::Ipv6Addr {
        net::Ipv6Addr::from(addr.ipv6_bytes())
    }
}

impl Display for Ipv6Addr {
    /// Formats an IPv6 address according to [RFC 5952].
    ///
    /// Where RFC 5952 leaves decisions up to the implementation, this function
    /// matches the behavior of [`std::net::Ipv6Addr`] - all IPv6 addresses are
    /// formatted the same by this function as by `<std::net::Ipv6Addr as
    /// Display>::fmt`.
    ///
    /// [RFC 5952]: https://datatracker.ietf.org/doc/html/rfc5952
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
        // `fmt_inner` implements the core of the formatting algorithm, but does
        // not handle precision or width requirements. Those are handled below
        // by creating a scratch buffer, calling `fmt_inner` on that scratch
        // buffer, and then satisfying those requirements.
        fn fmt_inner<W: fmt::Write>(addr: &Ipv6Addr, w: &mut W) -> Result<(), fmt::Error> {
            // We special-case the unspecified address, localhost address, and
            // IPv4-mapped addresses, but not IPv4-compatible addresses. We
            // follow Rust's behavior here: https://github.com/rust-lang/rust/pull/112606
            if !addr.is_specified() {
                write!(w, "::")
            } else if addr.is_loopback() {
                write!(w, "::1")
            } else if let Some(v4) = addr.to_ipv4_mapped() {
                write!(w, "::ffff:{}", v4)
            } else {
                let segments = addr.segments();

                let longest_zero_span = {
                    let mut longest_zero_span = 0..0;
                    let mut current_zero_span = 0..0;
                    for (i, seg) in segments.iter().enumerate() {
                        if *seg == 0 {
                            current_zero_span.end = i + 1;
                            if current_zero_span.len() > longest_zero_span.len() {
                                longest_zero_span = current_zero_span.clone();
                            }
                        } else {
                            let next_idx = i + 1;
                            current_zero_span = next_idx..next_idx;
                        }
                    }
                    longest_zero_span
                };

                let write_slice = |w: &mut W, slice: &[u16]| {
                    if let [head, tail @ ..] = slice {
                        write!(w, "{:x}", head)?;
                        for seg in tail {
                            write!(w, ":{:x}", seg)?;
                        }
                    }
                    Ok(())
                };

                // Note that RFC 5952 gives us a choice of when to compress a
                // run of zeroes:
                //
                //   It is possible to select whether or not to omit just one
                //   16-bit 0 field.
                //
                // Given this choice, we opt to match the stdlib's behavior.
                // This makes it easier to write tests (we can simply check to
                // see whether our behavior matches `std`'s behavior on a range
                // of inputs), and makes it so that our `Ipv6Addr` type is,
                // behaviorally, more of a drop-in for `std::net::Ipv6Addr` than
                // it would be if we were to diverge on formatting. This makes
                // replacing `std::net::Ipv6Addr` with our `Ipv6Addr` easier for
                // clients, and also makes it an easier choice since they don't
                // have to weigh whether the difference in behavior is
                // acceptable for them.
                if longest_zero_span.len() > 1 {
                    write_slice(w, &segments[..longest_zero_span.start])?;
                    w.write_str("::")?;
                    write_slice(w, &segments[longest_zero_span.end..])
                } else {
                    write_slice(w, &segments)
                }
            }
        }

        if f.precision().is_none() && f.width().is_none() {
            // Fast path: No precision or width requirements, so write directly
            // to `f`.
            fmt_inner(self, f)
        } else {
            // Slow path: Precision or width requirement(s), so construct a
            // scratch buffer, use the `fmt_inner` to fill it, then use `f.pad`
            // to satisfy precision/width requirement(s).

            // `[u8]` does not implement `core::fmt::Write`, so we provide our
            // own wrapper which does.
            struct ByteSlice<'a>(&'a mut [u8]);

            impl<'a> fmt::Write for ByteSlice<'a> {
                fn write_str(&mut self, s: &str) -> Result<(), fmt::Error> {
                    let from = s.as_bytes();

                    if from.len() > self.0.len() {
                        return Err(fmt::Error);
                    }

                    // Temporarily replace `self.0` with an empty slice and move
                    // the old value of `self.0` into our scope so that we can
                    // operate on it by value. This allows us to split it in two
                    // (`to` and `remaining`) and then overwrite `self.0` with
                    // `remaining`.
                    let to = mem::replace(&mut self.0, &mut [][..]);
                    let (to, remaining) = to.split_at_mut(from.len());
                    to.copy_from_slice(from);

                    self.0 = remaining;
                    Ok(())
                }
            }

            // The maximum length for an IPv6 address displays all 8 pairs of
            // bytes in hexadecimal representation (4 characters per two bytes
            // of IPv6 address), each separated with colons (7 colons total).
            const MAX_DISPLAY_LEN: usize = (4 * 8) + 7;
            let mut scratch = [0u8; MAX_DISPLAY_LEN];
            let mut scratch_slice = ByteSlice(&mut scratch[..]);
            // `fmt_inner` only returns an error if a method on `w` returns an
            // error. Since, in this call to `fmt_inner`, `w` is
            // `scratch_slice`, the only error that could happen would be if we
            // run out of space, but we know we won't because `scratch_slice`
            // has `MAX_DISPLAY_LEN` bytes, which is enough to hold any
            // formatted IPv6 address.
            fmt_inner(self, &mut scratch_slice)
                .expect("<Ipv6Addr as Display>::fmt: fmt_inner should have succeeded because the scratch buffer was long enough");
            let unwritten = scratch_slice.0.len();
            let len = MAX_DISPLAY_LEN - unwritten;
            // `fmt_inner` only writes valid UTF-8.
            let str = core::str::from_utf8(&scratch[..len])
                .expect("<Ipv6Addr as Display>::fmt: scratch buffer should contain valid UTF-8");
            f.pad(str)
        }
    }
}

impl Debug for Ipv6Addr {
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
        Display::fmt(self, f)
    }
}

/// The source address from an IPv6 packet.
///
/// An `Ipv6SourceAddr` represents the source address from an IPv6 packet, which
/// may only be either:
///   * unicast and non-mapped (e.g. not an ipv4-mapped-ipv6 address), or
///   * unspecified.
#[allow(missing_docs)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub enum Ipv6SourceAddr {
    Unicast(NonMappedAddr<UnicastAddr<Ipv6Addr>>),
    Unspecified,
}

impl crate::sealed::Sealed for Ipv6SourceAddr {}

impl Ipv6SourceAddr {
    /// Constructs a new `Ipv6SourceAddr`.
    ///
    /// Returns `None` if `addr` does not satisfy the properties required of an
    /// `Ipv6SourceAddr`.
    #[inline]
    pub fn new(addr: Ipv6Addr) -> Option<Ipv6SourceAddr> {
        if let Some(addr) = UnicastAddr::new(addr) {
            NonMappedAddr::new(addr).map(Ipv6SourceAddr::Unicast)
        } else if !addr.is_specified() {
            Some(Ipv6SourceAddr::Unspecified)
        } else {
            None
        }
    }
}

impl Witness<Ipv6Addr> for Ipv6SourceAddr {
    #[inline]
    fn new(addr: Ipv6Addr) -> Option<Ipv6SourceAddr> {
        Ipv6SourceAddr::new(addr)
    }

    #[inline]
    unsafe fn new_unchecked(addr: Ipv6Addr) -> Ipv6SourceAddr {
        Ipv6SourceAddr::new(addr).unwrap()
    }

    #[inline]
    fn into_addr(self) -> Ipv6Addr {
        match self {
            Ipv6SourceAddr::Unicast(addr) => **addr,
            Ipv6SourceAddr::Unspecified => Ipv6::UNSPECIFIED_ADDRESS,
        }
    }
}

impl SpecifiedAddress for Ipv6SourceAddr {
    fn is_specified(&self) -> bool {
        self != &Ipv6SourceAddr::Unspecified
    }
}

impl UnicastAddress for Ipv6SourceAddr {
    fn is_unicast(&self) -> bool {
        matches!(self, Ipv6SourceAddr::Unicast(_))
    }
}

impl LinkLocalAddress for Ipv6SourceAddr {
    fn is_link_local(&self) -> bool {
        let addr: Ipv6Addr = self.into();
        addr.is_link_local()
    }
}

impl MappedAddress for Ipv6SourceAddr {
    fn is_non_mapped(&self) -> bool {
        let addr: Ipv6Addr = self.into();
        addr.is_non_mapped()
    }
}

impl From<Ipv6SourceAddr> for Ipv6Addr {
    fn from(addr: Ipv6SourceAddr) -> Ipv6Addr {
        addr.get()
    }
}

impl From<&'_ Ipv6SourceAddr> for Ipv6Addr {
    fn from(addr: &Ipv6SourceAddr) -> Ipv6Addr {
        match addr {
            Ipv6SourceAddr::Unicast(addr) => addr.get(),
            Ipv6SourceAddr::Unspecified => Ipv6::UNSPECIFIED_ADDRESS,
        }
    }
}

impl TryFrom<Ipv6Addr> for Ipv6SourceAddr {
    type Error = ();
    fn try_from(addr: Ipv6Addr) -> Result<Ipv6SourceAddr, ()> {
        Ipv6SourceAddr::new(addr).ok_or(())
    }
}

impl AsRef<Ipv6Addr> for Ipv6SourceAddr {
    fn as_ref(&self) -> &Ipv6Addr {
        match self {
            Ipv6SourceAddr::Unicast(addr) => addr,
            Ipv6SourceAddr::Unspecified => &Ipv6::UNSPECIFIED_ADDRESS,
        }
    }
}

impl Deref for Ipv6SourceAddr {
    type Target = Ipv6Addr;

    fn deref(&self) -> &Ipv6Addr {
        self.as_ref()
    }
}

impl Display for Ipv6SourceAddr {
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
        match self {
            Ipv6SourceAddr::Unicast(addr) => write!(f, "{}", addr),
            Ipv6SourceAddr::Unspecified => write!(f, "::"),
        }
    }
}

impl Debug for Ipv6SourceAddr {
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
        Display::fmt(self, f)
    }
}

/// An IPv6 address stored as a unicast or multicast witness type.
///
/// `UnicastOrMulticastIpv6Addr` is either a [`UnicastAddr`] or a
/// [`MulticastAddr`]. It allows the user to match on the unicast-ness or
/// multicast-ness of an IPv6 address and obtain a statically-typed witness in
/// each case. This is useful if the user needs to call different functions
/// which each take a witness type.
#[allow(missing_docs)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub enum UnicastOrMulticastIpv6Addr {
    Unicast(UnicastAddr<Ipv6Addr>),
    Multicast(MulticastAddr<Ipv6Addr>),
}

impl UnicastOrMulticastIpv6Addr {
    /// Constructs a new `UnicastOrMulticastIpv6Addr`.
    ///
    /// Returns `None` if `addr` is the unspecified address.
    pub fn new(addr: Ipv6Addr) -> Option<UnicastOrMulticastIpv6Addr> {
        SpecifiedAddr::new(addr).map(UnicastOrMulticastIpv6Addr::from_specified)
    }

    /// Constructs a new `UnicastOrMulticastIpv6Addr` from a specified address.
    pub fn from_specified(addr: SpecifiedAddr<Ipv6Addr>) -> UnicastOrMulticastIpv6Addr {
        if addr.is_unicast() {
            UnicastOrMulticastIpv6Addr::Unicast(UnicastAddr(addr.get()))
        } else {
            UnicastOrMulticastIpv6Addr::Multicast(MulticastAddr(addr.get()))
        }
    }
}

impl crate::sealed::Sealed for UnicastOrMulticastIpv6Addr {}

impl Witness<Ipv6Addr> for UnicastOrMulticastIpv6Addr {
    #[inline]
    fn new(addr: Ipv6Addr) -> Option<UnicastOrMulticastIpv6Addr> {
        UnicastOrMulticastIpv6Addr::new(addr)
    }

    #[inline]
    unsafe fn new_unchecked(addr: Ipv6Addr) -> UnicastOrMulticastIpv6Addr {
        UnicastOrMulticastIpv6Addr::new(addr).unwrap()
    }

    #[inline]
    fn into_addr(self) -> Ipv6Addr {
        match self {
            UnicastOrMulticastIpv6Addr::Unicast(addr) => addr.get(),
            UnicastOrMulticastIpv6Addr::Multicast(addr) => addr.get(),
        }
    }
}

impl UnicastAddress for UnicastOrMulticastIpv6Addr {
    fn is_unicast(&self) -> bool {
        matches!(self, UnicastOrMulticastIpv6Addr::Unicast(_))
    }
}

impl MulticastAddress for UnicastOrMulticastIpv6Addr {
    fn is_multicast(&self) -> bool {
        matches!(self, UnicastOrMulticastIpv6Addr::Multicast(_))
    }
}

impl LinkLocalAddress for UnicastOrMulticastIpv6Addr {
    fn is_link_local(&self) -> bool {
        match self {
            UnicastOrMulticastIpv6Addr::Unicast(addr) => addr.is_link_local(),
            UnicastOrMulticastIpv6Addr::Multicast(addr) => addr.is_link_local(),
        }
    }
}

impl MappedAddress for UnicastOrMulticastIpv6Addr {
    fn is_non_mapped(&self) -> bool {
        match self {
            UnicastOrMulticastIpv6Addr::Unicast(addr) => addr.is_non_mapped(),
            UnicastOrMulticastIpv6Addr::Multicast(addr) => addr.is_non_mapped(),
        }
    }
}

impl From<UnicastOrMulticastIpv6Addr> for Ipv6Addr {
    fn from(addr: UnicastOrMulticastIpv6Addr) -> Ipv6Addr {
        addr.get()
    }
}

impl From<&'_ UnicastOrMulticastIpv6Addr> for Ipv6Addr {
    fn from(addr: &UnicastOrMulticastIpv6Addr) -> Ipv6Addr {
        addr.get()
    }
}

impl From<UnicastAddr<Ipv6Addr>> for UnicastOrMulticastIpv6Addr {
    fn from(addr: UnicastAddr<Ipv6Addr>) -> UnicastOrMulticastIpv6Addr {
        UnicastOrMulticastIpv6Addr::Unicast(addr)
    }
}

impl From<MulticastAddr<Ipv6Addr>> for UnicastOrMulticastIpv6Addr {
    fn from(addr: MulticastAddr<Ipv6Addr>) -> UnicastOrMulticastIpv6Addr {
        UnicastOrMulticastIpv6Addr::Multicast(addr)
    }
}

impl TryFrom<Ipv6Addr> for UnicastOrMulticastIpv6Addr {
    type Error = ();
    fn try_from(addr: Ipv6Addr) -> Result<UnicastOrMulticastIpv6Addr, ()> {
        UnicastOrMulticastIpv6Addr::new(addr).ok_or(())
    }
}

impl AsRef<Ipv6Addr> for UnicastOrMulticastIpv6Addr {
    fn as_ref(&self) -> &Ipv6Addr {
        match self {
            UnicastOrMulticastIpv6Addr::Unicast(addr) => addr,
            UnicastOrMulticastIpv6Addr::Multicast(addr) => addr,
        }
    }
}

impl Deref for UnicastOrMulticastIpv6Addr {
    type Target = Ipv6Addr;

    fn deref(&self) -> &Ipv6Addr {
        self.as_ref()
    }
}

impl Display for UnicastOrMulticastIpv6Addr {
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
        match self {
            UnicastOrMulticastIpv6Addr::Unicast(addr) => write!(f, "{}", addr),
            UnicastOrMulticastIpv6Addr::Multicast(addr) => write!(f, "{}", addr),
        }
    }
}

impl Debug for UnicastOrMulticastIpv6Addr {
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
        Display::fmt(self, f)
    }
}

/// The error returned from [`Subnet::new`] and [`SubnetEither::new`].
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum SubnetError {
    /// The network prefix is longer than the number of bits in the address (32
    /// for IPv4/128 for IPv6).
    PrefixTooLong,
    /// The network address has some bits in the host part (past the network
    /// prefix) set to one.
    HostBitsSet,
}

/// A prefix was provided which is longer than the number of bits in the address
/// (32 for IPv4/128 for IPv6).
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct PrefixTooLongError;

/// An IP subnet.
///
/// `Subnet` is a combination of an IP network address and a prefix length.
#[derive(Copy, Clone, Eq, PartialEq, Hash)]
pub struct Subnet<A> {
    // invariant: only contains prefix bits
    network: A,
    prefix: u8,
}

impl<A: core::cmp::Ord> core::cmp::PartialOrd for Subnet<A> {
    fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

/// Subnet ordering always orders from least-specific to most-specific subnet.
impl<A: core::cmp::Ord> core::cmp::Ord for Subnet<A> {
    fn cmp(&self, other: &Self) -> core::cmp::Ordering {
        let Self { network, prefix } = self;
        let Self { network: other_network, prefix: other_prefix } = other;
        match prefix.cmp(other_prefix) {
            core::cmp::Ordering::Equal => network.cmp(other_network),
            ord => ord,
        }
    }
}

impl<A> Subnet<A> {
    /// Creates a new subnet without enforcing correctness.
    ///
    /// # Safety
    ///
    /// Unlike `new`, `new_unchecked` does not validate that `prefix` is in the
    /// proper range, and does not check that `network` has only the top
    /// `prefix` bits set. It is up to the caller to guarantee that `prefix` is
    /// in the proper range, and that none of the bits of `network` beyond the
    /// prefix are set.
    #[inline]
    pub const unsafe fn new_unchecked(network: A, prefix: u8) -> Subnet<A> {
        Subnet { network, prefix }
    }
}

impl<A: IpAddress> Subnet<A> {
    /// Creates a new subnet.
    ///
    /// `new` creates a new subnet with the given network address and prefix
    /// length. It returns `Err` if `prefix` is longer than the number of bits
    /// in this type of IP address (32 for IPv4 and 128 for IPv6) or if any of
    /// the host bits (beyond the first `prefix` bits) are set in `network`.
    #[inline]
    pub fn new(network: A, prefix: u8) -> Result<Subnet<A>, SubnetError> {
        if prefix > A::BYTES * 8 {
            return Err(SubnetError::PrefixTooLong);
        }
        // TODO(joshlf): Is there a more efficient way we can perform this
        // check?
        if network != network.mask(prefix) {
            return Err(SubnetError::HostBitsSet);
        }
        Ok(Subnet { network, prefix })
    }

    /// Creates a new subnet from the address of a host in that subnet.
    ///
    /// Unlike [`new`], the `host` address may have host bits set.
    ///
    /// [`new`]: Subnet::new
    #[inline]
    pub fn from_host(host: A, prefix: u8) -> Result<Subnet<A>, PrefixTooLongError> {
        if prefix > A::BYTES * 8 {
            return Err(PrefixTooLongError);
        }
        let network = host.mask(prefix);
        Ok(Subnet { network, prefix })
    }

    /// Gets the network address component of this subnet.
    ///
    /// Any bits beyond the prefix will be zero.
    #[inline]
    pub fn network(&self) -> A {
        self.network
    }

    /// Gets the prefix length component of this subnet.
    #[inline]
    pub fn prefix(&self) -> u8 {
        self.prefix
    }

    /// Tests whether an address is in this subnet.
    ///
    /// Tests whether `addr` is in this subnet by testing whether the prefix
    /// bits match the prefix bits of the subnet's network address. This is
    /// equivalent to `sub.network() == addr.mask(sub.prefix())`.
    #[inline]
    pub fn contains(&self, addr: &A) -> bool {
        self.network == addr.mask(self.prefix)
    }
}

impl Subnet<Ipv4Addr> {
    // TODO(joshlf): If we introduce a separate type for an address in a subnet
    // (with fewer requirements than `AddrSubnet` has now so that a broadcast
    // address is representable), then that type could implement
    // `BroadcastAddress`, and `broadcast` could return
    // `BroadcastAddr<Foo<Ipv4Addr>>`.

    /// Gets the broadcast address in this IPv4 subnet.
    #[inline]
    pub fn broadcast(self) -> Ipv4Addr {
        if self.prefix == 32 {
            // shifting right by the size of the value is undefined
            self.network
        } else {
            let mask = <u32>::max_value() >> self.prefix;
            Ipv4Addr::new((u32::from_be_bytes(self.network.0) | mask).to_be_bytes())
        }
    }
}

impl<A: IpAddress> Display for Subnet<A> {
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
        write!(f, "{}/{}", self.network, self.prefix)
    }
}

impl<A: IpAddress> Debug for Subnet<A> {
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
        write!(f, "{}/{}", self.network, self.prefix)
    }
}

impl<A, I: Ip> GenericOverIp<I> for Subnet<A> {
    type Type = Subnet<I::Addr>;
}

/// An IPv4 subnet or an IPv6 subnet.
///
/// `SubnetEither` is an enum of [`Subnet<Ipv4Addr>`] and `Subnet<Ipv6Addr>`.
///
/// [`Subnet<Ipv4Addr>`]: Subnet
#[allow(missing_docs)]
#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash)]
pub enum SubnetEither {
    V4(Subnet<Ipv4Addr>),
    V6(Subnet<Ipv6Addr>),
}

impl SubnetEither {
    /// Creates a new subnet.
    ///
    /// `new` creates a new subnet with the given network address and prefix
    /// length. It returns `Err` if `prefix` is longer than the number of bits
    /// in this type of IP address (32 for IPv4 and 128 for IPv6) or if any of
    /// the host bits (beyond the first `prefix` bits) are set in `network`.
    #[inline]
    pub fn new(network: IpAddr, prefix: u8) -> Result<SubnetEither, SubnetError> {
        Ok(match network {
            IpAddr::V4(network) => SubnetEither::V4(Subnet::new(network, prefix)?),
            IpAddr::V6(network) => SubnetEither::V6(Subnet::new(network, prefix)?),
        })
    }

    /// Creates a new subnet from the address of a host in that subnet.
    ///
    /// Unlike [`new`], the `host` address may have host bits set.
    ///
    /// [`new`]: SubnetEither::new
    #[inline]
    pub fn from_host(host: IpAddr, prefix: u8) -> Result<SubnetEither, PrefixTooLongError> {
        Ok(match host {
            IpAddr::V4(host) => SubnetEither::V4(Subnet::from_host(host, prefix)?),
            IpAddr::V6(host) => SubnetEither::V6(Subnet::from_host(host, prefix)?),
        })
    }

    /// Gets the network and prefix.
    #[inline]
    pub fn net_prefix(&self) -> (IpAddr, u8) {
        match self {
            SubnetEither::V4(v4) => (v4.network.into(), v4.prefix),
            SubnetEither::V6(v6) => (v6.network.into(), v6.prefix),
        }
    }
}

impl<A: IpAddress> From<Subnet<A>> for SubnetEither {
    fn from(subnet: Subnet<A>) -> SubnetEither {
        A::subnet_into_either(subnet)
    }
}

/// The error returned from [`AddrSubnet::new`] and [`AddrSubnetEither::new`].
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum AddrSubnetError {
    /// The network prefix is longer than the number of bits in the address (32
    /// for IPv4/128 for IPv6).
    PrefixTooLong,
    /// The address is not a unicast address in the given subnet (see
    /// [`IpAddress::is_unicast_in_subnet`]).
    NotUnicastInSubnet,
    /// The address does not satisfy the requirements of the witness type.
    InvalidWitness,
}

// TODO(joshlf): Is the unicast restriction always necessary, or will some users
// want the AddrSubnet functionality without that restriction?

/// An address and that address's subnet.
///
/// An `AddrSubnet` is a pair of an address and a subnet which maintains the
/// invariant that the address is guaranteed to be a unicast address in the
/// subnet. `S` is the type of address ([`Ipv4Addr`] or [`Ipv6Addr`]), and `A`
/// is the type of the address in the subnet, which is always a witness wrapper
/// around `S`. By default, it is `SpecifiedAddr<S>`.
#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash)]
pub struct AddrSubnet<S: IpAddress, A: Witness<S> + Copy = SpecifiedAddr<S>> {
    // TODO(joshlf): Would it be more performant to store these as just an
    // address and subnet mask? It would make the object smaller and so cheaper
    // to pass around, but it would make certain operations more expensive.
    addr: A,
    subnet: Subnet<S>,
}

impl<S: IpAddress, A: Witness<S> + Copy> AddrSubnet<S, A> {
    /// Creates a new `AddrSubnet`.
    ///
    /// `new` is like [`from_witness`], except that it also converts `addr` into
    /// the appropriate witness type, returning
    /// [`AddrSubnetError::InvalidWitness`] if the conversion fails.
    ///
    /// [`from_witness`]: Witness::from_witness
    #[inline]
    pub fn new(addr: S, prefix: u8) -> Result<AddrSubnet<S, A>, AddrSubnetError> {
        AddrSubnet::from_witness(A::new(addr).ok_or(AddrSubnetError::InvalidWitness)?, prefix)
    }

    /// Creates a new `AddrSubnet` without checking for validity.
    ///
    /// # Safety
    ///
    /// Unlike [`new`], `new_unchecked` does not validate that `prefix` is in the
    /// proper range, and does not check that `addr` is a valid value for the
    /// witness type `A`. It is up to the caller to guarantee that `prefix` is
    /// in the proper range, and `A::new(addr)` is not `None`.
    ///
    /// [`new`]: AddrSubnet::new
    #[inline]
    pub unsafe fn new_unchecked(addr: S, prefix: u8) -> Self {
        let (subnet, addr) =
            unsafe { (Subnet::new_unchecked(addr.mask(prefix), prefix), A::new_unchecked(addr)) };
        AddrSubnet { addr, subnet }
    }

    /// Creates a new `AddrSubnet` from an existing witness.
    ///
    /// `from_witness` creates a new `AddrSubnet` with the given address and
    /// prefix length. The network address of the subnet is taken to be the
    /// first `prefix` bits of the address. It returns `Err` if `prefix` is
    /// longer than the number of bits in this type of IP address (32 for IPv4
    /// and 128 for IPv6) or if `addr` is not a unicast address in the resulting
    /// subnet (see [`IpAddress::is_unicast_in_subnet`]).
    pub fn from_witness(addr: A, prefix: u8) -> Result<AddrSubnet<S, A>, AddrSubnetError> {
        if prefix > S::BYTES * 8 {
            return Err(AddrSubnetError::PrefixTooLong);
        }
        let subnet = Subnet { network: addr.as_ref().mask(prefix), prefix };
        if !addr.as_ref().is_unicast_in_subnet(&subnet) {
            return Err(AddrSubnetError::NotUnicastInSubnet);
        }
        Ok(AddrSubnet { addr, subnet })
    }

    /// Gets the subnet.
    #[inline]
    pub fn subnet(&self) -> Subnet<S> {
        self.subnet
    }

    /// Gets the address.
    #[inline]
    pub fn addr(&self) -> A {
        self.addr
    }

    /// Gets the address and subnet.
    #[inline]
    pub fn addr_subnet(self) -> (A, Subnet<S>) {
        (self.addr, self.subnet)
    }

    /// Constructs a new `AddrSubnet` of a different witness type.
    #[inline]
    pub fn to_witness<B: Witness<S> + Copy>(&self) -> AddrSubnet<S, B>
    where
        A: Into<B>,
    {
        AddrSubnet { addr: self.addr.into(), subnet: self.subnet }
    }

    /// Wraps an additional witness onto this [`AddrSubnet`].
    #[inline]
    pub fn add_witness<B: Witness<A> + Witness<S> + Copy>(&self) -> Option<AddrSubnet<S, B>> {
        let addr = B::new(self.addr)?;
        Some(AddrSubnet { addr, subnet: self.subnet })
    }

    /// Replaces the [`AddrSubnet`] witness.
    #[inline]
    pub fn replace_witness<B: Witness<S> + Copy>(&self) -> Option<AddrSubnet<S, B>> {
        let addr = B::new(self.addr.get())?;
        Some(AddrSubnet { addr, subnet: self.subnet })
    }
}

impl<S: IpAddress, A: Witness<S> + Copy + Display> Display for AddrSubnet<S, A> {
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
        write!(f, "{}/{}", self.addr, self.subnet.prefix)
    }
}

impl<A: Witness<Ipv6Addr> + Copy> AddrSubnet<Ipv6Addr, A> {
    /// Gets the address as a [`UnicastAddr`] witness.
    ///
    /// Since one of the invariants on an `AddrSubnet` is that its contained
    /// address is unicast in its subnet, `ipv6_unicast_addr` can infallibly
    /// convert its stored address to a `UnicastAddr`.
    pub fn ipv6_unicast_addr(&self) -> UnicastAddr<Ipv6Addr> {
        unsafe { UnicastAddr::new_unchecked(self.addr.get()) }
    }

    /// Constructs a new `AddrSubnet` which stores a [`UnicastAddr`] witness.
    ///
    /// Since one of the invariants on an `AddrSubnet` is that its contained
    /// address is unicast in its subnet, `to_unicast` can infallibly convert
    /// its stored address to a `UnicastAddr`.
    pub fn to_unicast(&self) -> AddrSubnet<Ipv6Addr, UnicastAddr<Ipv6Addr>> {
        let AddrSubnet { addr, subnet } = *self;
        let addr = unsafe { UnicastAddr::new_unchecked(addr.get()) };
        AddrSubnet { addr, subnet }
    }
}

/// An IP prefix length.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, GenericOverIp)]
#[generic_over_ip(I, Ip)]
pub struct PrefixLength<I: Ip> {
    /// `inner` is guaranteed to be a valid prefix length for `I::Addr`.
    inner: u8,
    _ip: IpVersionMarker<I>,
}

impl<I: Ip> PrefixLength<I> {
    /// Returns the prefix length.
    ///
    /// The returned length is guaranteed to be a valid prefix length for
    /// `I::Addr`.
    pub const fn get(self) -> u8 {
        let Self { inner, _ip } = self;
        inner
    }

    /// Gets the subnet-mask representation of this prefix length.
    pub fn get_mask(self) -> I::Addr {
        I::map_ip(
            self,
            |prefix_len| Ipv4::LIMITED_BROADCAST_ADDRESS.mask(prefix_len.get()),
            |prefix_len| Ipv6Addr([u8::MAX; 16]).mask(prefix_len.get()),
        )
    }

    /// Constructs a `PrefixLength` from a given prefix length without checking
    /// whether it is too long for the address type.
    ///
    /// # Safety
    /// `prefix_length` must be less than or equal to the number of bits in
    /// `I::Addr`. In other words, `prefix_length <= I::Addr::BYTES * 8`.
    pub const unsafe fn new_unchecked(prefix_length: u8) -> Self {
        Self { inner: prefix_length, _ip: I::VERSION_MARKER }
    }

    /// Constructs a `PrefixLength` from a given unverified prefix length.
    ///
    /// Returns `Err(PrefixTooLongError)` if `prefix_length` is too long for the
    /// address type.
    pub const fn new(prefix_length: u8) -> Result<Self, PrefixTooLongError> {
        if prefix_length > I::Addr::BYTES * 8 {
            return Err(PrefixTooLongError);
        }
        Ok(Self { inner: prefix_length, _ip: I::VERSION_MARKER })
    }

    /// Constructs a `PrefixLength` from an IP address representing a subnet mask.
    ///
    /// Returns `Err(NotSubnetMaskError)` if `subnet_mask` is not a valid subnet
    /// mask.
    pub fn try_from_subnet_mask(subnet_mask: I::Addr) -> Result<Self, NotSubnetMaskError> {
        let IpInvariant((count_ones, leading_ones)) = I::map_ip(
            subnet_mask,
            |subnet_mask| {
                let number = u32::from_be_bytes(subnet_mask.ipv4_bytes());
                IpInvariant((number.count_ones(), number.leading_ones()))
            },
            |subnet_mask| {
                let number = u128::from_be_bytes(subnet_mask.ipv6_bytes());
                IpInvariant((number.count_ones(), number.leading_ones()))
            },
        );

        if leading_ones != count_ones {
            return Err(NotSubnetMaskError);
        }

        Ok(Self {
            inner: u8::try_from(leading_ones)
                .expect("the number of bits in an IP address fits in u8"),
            _ip: IpVersionMarker::default(),
        })
    }
}

impl<I: Ip> From<PrefixLength<I>> for u8 {
    fn from(value: PrefixLength<I>) -> Self {
        value.get()
    }
}

/// An IP address was provided which is not a valid subnet mask (the address
/// has set bits after the first unset bit).
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct NotSubnetMaskError;

/// A type which is witness to some property about an [`IpAddress`], `A`.
///
/// `IpAddressWitness<A>` extends [`Witness`] of the `IpAddress` type `A` by
/// adding an associated type for the type-erased `IpAddr` version of the same
/// witness type. For example, the following implementation is provided for
/// `SpecifiedAddr<A>`:
///
/// ```rust,ignore
/// impl<A: IpAddress> IpAddressWitness<A> for SpecifiedAddr<A> {
///     type IpAddrWitness = SpecifiedAddr<IpAddr>;
/// }
/// ```
pub trait IpAddressWitness<A: IpAddress>: Witness<A> {
    /// The type-erased version of `Self`.
    ///
    /// For example, `SpecifiedAddr<Ipv4Addr>: IpAddressWitness<IpAddrWitness =
    /// SpecifiedAddr<IpAddr>>`.
    type IpAddrWitness: IpAddrWitness + From<Self>;
}

macro_rules! impl_ip_address_witness {
    ($witness:ident) => {
        impl<A: IpAddress> IpAddressWitness<A> for $witness<A> {
            type IpAddrWitness = $witness<IpAddr>;
        }
    };
}

impl_ip_address_witness!(SpecifiedAddr);
impl_ip_address_witness!(MulticastAddr);
impl_ip_address_witness!(LinkLocalAddr);

/// A type which is a witness to some property about an [`IpAddress`].
///
/// `IpAddrWitness` extends [`Witness`] of [`IpAddr`] by adding associated types
/// for the IPv4- and IPv6-specific versions of the same witness type. For
/// example, the following implementation is provided for
/// `SpecifiedAddr<IpAddr>`:
///
/// ```rust,ignore
/// impl IpAddrWitness for SpecifiedAddr<IpAddr> {
///     type V4 = SpecifiedAddr<Ipv4Addr>;
///     type V6 = SpecifiedAddr<Ipv6Addr>;
/// }
/// ```
pub trait IpAddrWitness: Witness<IpAddr> + Into<IpAddr<Self::V4, Self::V6>> + Copy {
    /// The IPv4-specific version of `Self`.
    ///
    /// For example, `SpecifiedAddr<IpAddr>: IpAddrWitness<V4 =
    /// SpecifiedAddr<Ipv4Addr>>`.
    type V4: Witness<Ipv4Addr> + Into<Self> + Copy;

    /// The IPv6-specific version of `Self`.
    ///
    /// For example, `SpecifiedAddr<IpAddr>: IpAddrWitness<V6 =
    /// SpecifiedAddr<Ipv6Addr>>`.
    type V6: Witness<Ipv6Addr> + Into<Self> + Copy;

    // TODO(https://github.com/rust-lang/rust/issues/44491): Remove these
    // functions once implied where bounds make them unnecessary.

    /// Converts an IPv4-specific witness into a general witness.
    fn from_v4(addr: Self::V4) -> Self {
        addr.into()
    }

    /// Converts an IPv6-specific witness into a general witness.
    fn from_v6(addr: Self::V6) -> Self {
        addr.into()
    }
}

macro_rules! impl_ip_addr_witness {
    ($witness:ident) => {
        impl IpAddrWitness for $witness<IpAddr> {
            type V4 = $witness<Ipv4Addr>;
            type V6 = $witness<Ipv6Addr>;
        }
    };
}

impl_ip_addr_witness!(SpecifiedAddr);
impl_ip_addr_witness!(MulticastAddr);
impl_ip_addr_witness!(LinkLocalAddr);

/// An address and that address's subnet, either IPv4 or IPv6.
///
/// `AddrSubnetEither` is an enum of [`AddrSubnet<Ipv4Addr>`] and
/// `AddrSubnet<Ipv6Addr>`.
///
/// [`AddrSubnet<Ipv4Addr>`]: AddrSubnet
#[allow(missing_docs)]
#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash)]
pub enum AddrSubnetEither<A: IpAddrWitness = SpecifiedAddr<IpAddr>> {
    V4(AddrSubnet<Ipv4Addr, A::V4>),
    V6(AddrSubnet<Ipv6Addr, A::V6>),
}

impl<A: IpAddrWitness> AddrSubnetEither<A> {
    /// Creates a new `AddrSubnetEither`.
    ///
    /// `new` creates a new `AddrSubnetEither` with the given address and prefix
    /// length. It returns `Err` under the same conditions as
    /// [`AddrSubnet::new`].
    #[inline]
    pub fn new(addr: IpAddr, prefix: u8) -> Result<AddrSubnetEither<A>, AddrSubnetError> {
        Ok(match addr {
            IpAddr::V4(addr) => AddrSubnetEither::V4(AddrSubnet::new(addr, prefix)?),
            IpAddr::V6(addr) => AddrSubnetEither::V6(AddrSubnet::new(addr, prefix)?),
        })
    }

    /// Creates a new `AddrSubnetEither` from trusted inputs.
    ///
    /// # Safety
    ///
    /// Unlike [`new`], this assumes that the provided address satisfies the
    /// requirements of the witness type `A`, and that `prefix` is not too large
    /// for the IP version of the address in `addr`.
    ///
    /// [`new`]: AddrSubnetEither::new
    #[inline]
    pub unsafe fn new_unchecked(addr: IpAddr, prefix: u8) -> Self {
        match addr {
            IpAddr::V4(addr) => {
                AddrSubnetEither::V4(unsafe { AddrSubnet::new_unchecked(addr, prefix) })
            }
            IpAddr::V6(addr) => {
                AddrSubnetEither::V6(unsafe { AddrSubnet::new_unchecked(addr, prefix) })
            }
        }
    }

    /// Gets the IP address.
    pub fn addr(&self) -> A {
        match self {
            AddrSubnetEither::V4(v4) => v4.addr.into(),
            AddrSubnetEither::V6(v6) => v6.addr.into(),
        }
    }

    /// Gets the IP address and prefix.
    #[inline]
    pub fn addr_prefix(&self) -> (A, u8) {
        match self {
            AddrSubnetEither::V4(v4) => (v4.addr.into(), v4.subnet.prefix),
            AddrSubnetEither::V6(v6) => (v6.addr.into(), v6.subnet.prefix),
        }
    }

    /// Gets the IP address and subnet.
    #[inline]
    pub fn addr_subnet(&self) -> (A, SubnetEither) {
        match self {
            AddrSubnetEither::V4(v4) => (v4.addr.into(), SubnetEither::V4(v4.subnet)),
            AddrSubnetEither::V6(v6) => (v6.addr.into(), SubnetEither::V6(v6.subnet)),
        }
    }
}

impl<S: IpAddress, A: IpAddressWitness<S> + Copy> From<AddrSubnet<S, A>>
    for AddrSubnetEither<A::IpAddrWitness>
{
    #[inline]
    fn from(addr_sub: AddrSubnet<S, A>) -> AddrSubnetEither<A::IpAddrWitness> {
        let (addr, sub) = addr_sub.addr_subnet();
        // This unwrap is safe because:
        // - `addr_sub: AddrSubnet<S, A>`, so we know that `addr` and
        //   `sub.prefix` are valid arguments to `AddrSubnet::new` (which is
        //   what `AddrSubnetEither::new` calls under the hood).
        // - `A::IpAddrWitness` is the same witness type as `A`, but wrapping
        //   `IpAddr` instead of `Ipv4Addr` or `Ipv6Addr`. `addr: A` means that
        //   `addr` satisfies the property witnessed by the witness type `A`,
        //   which is the same property witnessed by `A::IpAddrWitness`. Thus,
        //   we're guaranteed that, when `AddrSubnetEither::new` tries to
        //   construct the witness, it will succeed.
        AddrSubnetEither::new(addr.get().to_ip_addr(), sub.prefix()).unwrap()
    }
}

impl<A> Display for AddrSubnetEither<A>
where
    A: IpAddrWitness,
    A::V4: Display,
    A::V6: Display,
{
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
        match self {
            Self::V4(a) => write!(f, "{}", a),
            Self::V6(a) => write!(f, "{}", a),
        }
    }
}

/// Marks types that are generic over IP version.
///
/// This should be implemented by types that contain a generic parameter
/// [`I: Ip`](Ip) or [`A: IpAddress`](IpAddress) to allow them to be used with
/// [`Ip::map_ip`].
///
/// Implementations of this trait should generally be themselves generic over
/// `Ip`. For example:
/// ```
/// struct AddrAndSubnet<I: Ip> {
///   addr: I::Addr,
///   subnet: Subnet<I::Addr>
/// }
///
/// impl <I: Ip, NewIp: Ip> GenericOverIp<NewIp> for AddrAndSubnet<I> {
///   type Type = AddrAndSubnet<NewIp>;
/// }
/// ```
pub trait GenericOverIp<NewIp: Ip> {
    /// The type of `Self` when its IP-generic parameter is replaced with the
    /// type `NewIp`.
    type Type;
}

/// Wrapper type that implements [`GenericOverIp`] with `Type<I: Ip>=Self`.
///
/// This can be used to make a compound type implement `GenericOverIp` with
/// some portion that is invariant over IP version.
pub struct IpInvariant<T>(pub T);

impl<T> IpInvariant<T> {
    /// Consumes the `IpInvariant` and returns the wrapped value.
    pub fn into_inner(self) -> T {
        self.0
    }
}

impl<I: Ip, T> GenericOverIp<I> for IpInvariant<T> {
    type Type = Self;
}

impl<I: Ip> GenericOverIp<I> for core::convert::Infallible {
    type Type = Self;
}

/// A wrapper structure to add an IP version marker to an IP-invariant type.
#[derive(GenericOverIp, Default, Debug, PartialOrd, Ord, Eq, PartialEq, Hash)]
#[generic_over_ip(I, Ip)]
pub struct IpMarked<I: Ip, T> {
    inner: T,
    _marker: IpVersionMarker<I>,
}

impl<I: Ip, T> Deref for IpMarked<I, T> {
    type Target = T;

    fn deref(&self) -> &Self::Target {
        self.as_ref()
    }
}

impl<I: Ip, T> DerefMut for IpMarked<I, T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.as_mut()
    }
}
impl<I: Ip, T> AsRef<T> for IpMarked<I, T> {
    fn as_ref(&self) -> &T {
        &self.inner
    }
}

impl<I: Ip, T> AsMut<T> for IpMarked<I, T> {
    fn as_mut(&mut self) -> &mut T {
        &mut self.inner
    }
}

impl<I: Ip, T> IpMarked<I, T> {
    /// Constructs a new `IpMarked` from the provided `T`.
    pub fn new(inner: T) -> Self {
        Self { inner, _marker: IpVersionMarker::<I>::new() }
    }

    /// Consumes the `IpMarked` and returns the contained `T` by value.
    pub fn into_inner(self) -> T {
        let Self { inner, _marker } = self;
        inner
    }

    /// Gets an immutable reference to the underlying `T`.
    pub fn get(&self) -> &T {
        self.as_ref()
    }

    /// Gets an mutable reference to the underlying `T`.
    pub fn get_mut(&mut self) -> &mut T {
        self.as_mut()
    }
}

/// Calls the provided macro with all suffixes of the input.
macro_rules! for_each_tuple_ {
        ( $m:ident !! ) => ( $m! { });
        ( $m:ident !! $h:ident, $($t:ident,)* ) => (
            $m! { $h $($t)* }
            for_each_tuple_! { $m !! $($t,)* }
        );
    }

/// Calls the provided macro with 0-12 type parameters.
macro_rules! for_each_tuple {
    ($m:ident) => {
        for_each_tuple_! { $m !! A, B, C, D, E, F, G, H, I, J, K, L, }
    };
}

/// Implements GenericOverIp for a tuple with the provided generic parameters.
macro_rules! ip_generic_tuple {
        () => {
            impl<I: Ip> GenericOverIp<I> for () {
                type Type = Self;
            }
        };
        ( $name0:ident $($name:ident)* ) => (
            impl<P: Ip, $name0: GenericOverIp<P>, $($name: GenericOverIp<P>,)*>
            GenericOverIp<P> for ($name0, $($name,)*) {
                type Type = ($name0::Type, $($name::Type,)*);
            }
        );
    }

for_each_tuple!(ip_generic_tuple);

macro_rules! ip_generic {
    ( $type:ident < $($params:ident),* >) => {
        impl<IpType: Ip, $($params: GenericOverIp<IpType>),*>
        GenericOverIp<IpType> for $type<$($params),*> {
            type Type = $type<$($params::Type),*>;
        }
    };
    ( $type:ident) => {
        impl<IpType: Ip> GenericOverIp<IpType> for $type {
            type Type = Self;
        }
    }
}

// Implement GenericOverIp for common types.
ip_generic!(bool);
ip_generic!(isize);
ip_generic!(i8);
ip_generic!(i16);
ip_generic!(i32);
ip_generic!(i64);
ip_generic!(usize);
ip_generic!(u8);
ip_generic!(u16);
ip_generic!(u32);
ip_generic!(u64);
ip_generic!(Option<T>);
ip_generic!(Result<R, E>);
#[cfg(feature = "std")]
ip_generic!(Vec<T>);

impl<'s, NewIp: Ip, T: GenericOverIp<NewIp>> GenericOverIp<NewIp> for &'s T
where
    T::Type: 's,
{
    type Type = &'s T::Type;
}

impl<'s, NewIp: Ip, T: GenericOverIp<NewIp>> GenericOverIp<NewIp> for &'s mut T
where
    T::Type: 's,
{
    type Type = &'s mut T::Type;
}

#[cfg(test)]
mod tests {
    use super::*;
    use test_case::test_case;

    #[test]
    fn test_map_ip_associated_constant() {
        fn get_loopback_address<I: Ip>() -> SpecifiedAddr<I::Addr> {
            I::map_ip((), |()| Ipv4::LOOPBACK_ADDRESS, |()| Ipv6::LOOPBACK_ADDRESS)
        }

        assert_eq!(get_loopback_address::<Ipv4>(), Ipv4::LOOPBACK_ADDRESS);
        assert_eq!(get_loopback_address::<Ipv6>(), Ipv6::LOOPBACK_ADDRESS);
    }

    #[test]
    fn test_map_ip_different_behavior() {
        fn filter_v4<I: Ip>(addr: I::Addr) -> Option<I::Addr> {
            I::map_ip(addr, |addr| Some(addr), |_addr| None)
        }

        assert_eq!(filter_v4::<Ipv4>(*Ipv4::LOOPBACK_ADDRESS), Some(*Ipv4::LOOPBACK_ADDRESS));
        assert_eq!(filter_v4::<Ipv6>(*Ipv6::LOOPBACK_ADDRESS), None);
    }

    #[test]
    fn test_map_ip_extension_trait_fn() {
        trait FakeIpExt: Ip {
            fn reverse_addr_bytes(a: Self::Addr) -> Self::Addr;
        }

        impl FakeIpExt for Ipv4 {
            fn reverse_addr_bytes(a: Self::Addr) -> Self::Addr {
                let Ipv4Addr(mut bytes) = a;
                bytes.reverse();
                Ipv4Addr(bytes)
            }
        }
        impl FakeIpExt for Ipv6 {
            fn reverse_addr_bytes(a: Self::Addr) -> Self::Addr {
                let Ipv6Addr(mut bytes) = a;
                bytes.reverse();
                Ipv6Addr(bytes)
            }
        }

        fn reverse_bytes<A: IpAddress>(addr: A) -> A
        where
            A::Version: FakeIpExt,
        {
            A::Version::map_ip(addr, Ipv4::reverse_addr_bytes, Ipv6::reverse_addr_bytes)
        }

        assert_eq!(reverse_bytes(Ipv4Addr([1, 2, 3, 4])), Ipv4Addr([4, 3, 2, 1]));
        assert_eq!(
            reverse_bytes(Ipv6Addr([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])),
            Ipv6Addr([16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1])
        );
    }

    #[test]
    fn test_map_ip_extension_trait_associated_type() {
        trait FakeIpExt: Ip {
            type PackedInt;
        }
        impl FakeIpExt for Ipv4 {
            type PackedInt = u32;
        }
        impl FakeIpExt for Ipv6 {
            type PackedInt = u128;
        }

        #[derive(Debug, PartialEq)]
        struct Int<T>(T);

        impl<T, I: FakeIpExt> GenericOverIp<I> for Int<T> {
            type Type = Int<I::PackedInt>;
        }

        fn from_be_bytes<A: IpAddress>(addr: A) -> Int<<A::Version as FakeIpExt>::PackedInt>
        where
            A::Version: FakeIpExt,
        {
            A::Version::map_ip(
                addr,
                |Ipv4Addr(bytes)| Int(<Ipv4 as FakeIpExt>::PackedInt::from_be_bytes(bytes)),
                |Ipv6Addr(bytes)| Int(<Ipv6 as FakeIpExt>::PackedInt::from_be_bytes(bytes)),
            )
        }

        assert_eq!(from_be_bytes(Ipv4::LOOPBACK_ADDRESS.get()), Int(0x7f000001u32));
        assert_eq!(from_be_bytes(Ipv6::LOOPBACK_ADDRESS.get()), Int(1u128));
    }

    #[test]
    fn map_ip_twice() {
        struct FooV4 {
            field: Ipv4Addr,
        }

        impl Default for FooV4 {
            fn default() -> Self {
                Self { field: Ipv4::UNSPECIFIED_ADDRESS }
            }
        }

        struct FooV6 {
            field: Ipv6Addr,
        }

        impl Default for FooV6 {
            fn default() -> Self {
                Self { field: Ipv6::UNSPECIFIED_ADDRESS }
            }
        }

        trait IpExt {
            type Foo: Default;
        }

        impl IpExt for Ipv4 {
            type Foo = FooV4;
        }

        impl IpExt for Ipv6 {
            type Foo = FooV6;
        }

        #[derive(GenericOverIp)]
        #[generic_over_ip(I, Ip)]
        struct Foo<I: IpExt>(I::Foo);

        fn do_something<I: Ip + IpExt>(
            foo: Foo<I>,
            extra_foo: Foo<I>,
            captured_foo: Foo<I>,
        ) -> I::Addr {
            let addr: I::Addr = map_ip_twice!(I, foo, |Foo(foo)| { foo.field });

            // Observe that we can use an associated item with `map_ip_twice!
            // too.
            let _: I::Addr =
                map_ip_twice!(<<I as Ip>::Addr as IpAddress>::Version, extra_foo, |Foo(foo)| {
                    // Since `captured_foo` is captured rather than fed through the
                    // generic-over-ip input, this wouldn't work if `I` was aliased
                    // concretely to `Ipv4` or `Ipv6`.
                    let _: &Foo<I> = &captured_foo;
                    foo.field
                });

            addr
        }

        assert_eq!(
            do_something(
                Foo::<Ipv4>(FooV4 { field: Ipv4::UNSPECIFIED_ADDRESS }),
                Foo::<Ipv4>(FooV4 { field: Ipv4::UNSPECIFIED_ADDRESS }),
                Foo::<Ipv4>(FooV4 { field: Ipv4::UNSPECIFIED_ADDRESS })
            ),
            Ipv4::UNSPECIFIED_ADDRESS
        );
        assert_eq!(
            do_something(
                Foo::<Ipv6>(FooV6 { field: Ipv6::UNSPECIFIED_ADDRESS }),
                Foo::<Ipv6>(FooV6 { field: Ipv6::UNSPECIFIED_ADDRESS }),
                Foo::<Ipv6>(FooV6 { field: Ipv6::UNSPECIFIED_ADDRESS })
            ),
            Ipv6::UNSPECIFIED_ADDRESS
        );

        fn do_something_with_default_type_alias_shadowing<I: Ip>() -> (I::Addr, IpVersion) {
            let (field, IpInvariant(version)) = map_ip_twice!(I, (), |()| {
                // Note that there's no `IpExt` bound on `I`, so `I` wouldn't
                // work here unless it was automatically aliased to `Ipv4` or `Ipv6`.
                let foo: Foo<I> = Foo(<I as IpExt>::Foo::default());
                (foo.0.field, IpInvariant(I::VERSION))
            },);
            (field, version)
        }

        fn do_something_with_type_alias<I: Ip>() -> (I::Addr, IpVersion) {
            // Show that the type alias inside the macro shadows
            // whatever it was bound to outside the macro.
            #[allow(dead_code)]
            type IpAlias = usize;

            let (field, IpInvariant(version)) = map_ip_twice!(I as IpAlias, (), |()| {
                // Note that there's no `IpExt` bound on `I`, so `I` wouldn't
                // work here -- only `IpAlias`, since `IpAlias` is explicitly
                // an alias of `Ipv4` or `Ipv6`.
                let foo: Foo<IpAlias> = Foo(<IpAlias as IpExt>::Foo::default());
                (foo.0.field, IpInvariant(IpAlias::VERSION))
            },);
            (field, version)
        }

        assert_eq!(
            do_something_with_default_type_alias_shadowing::<Ipv4>(),
            (Ipv4::UNSPECIFIED_ADDRESS, IpVersion::V4)
        );
        assert_eq!(
            do_something_with_default_type_alias_shadowing::<Ipv6>(),
            (Ipv6::UNSPECIFIED_ADDRESS, IpVersion::V6)
        );
        assert_eq!(
            do_something_with_type_alias::<Ipv4>(),
            (Ipv4::UNSPECIFIED_ADDRESS, IpVersion::V4)
        );
        assert_eq!(
            do_something_with_type_alias::<Ipv6>(),
            (Ipv6::UNSPECIFIED_ADDRESS, IpVersion::V6)
        );
    }

    #[test]
    fn test_loopback_unicast() {
        // The loopback addresses are constructed as `SpecifiedAddr`s directly,
        // bypassing the actual check against `is_specified`. Test that that's
        // actually valid.
        assert!(Ipv4::LOOPBACK_ADDRESS.0.is_specified());
        assert!(Ipv6::LOOPBACK_ADDRESS.0.is_specified());
    }

    #[test]
    fn test_specified() {
        // For types that implement SpecifiedAddress,
        // UnicastAddress::is_unicast, MulticastAddress::is_multicast, and
        // LinkLocalAddress::is_link_local all imply
        // SpecifiedAddress::is_specified. Test that that's true for both IPv4
        // and IPv6.

        assert!(!Ipv6::UNSPECIFIED_ADDRESS.is_specified());
        assert!(!Ipv4::UNSPECIFIED_ADDRESS.is_specified());

        // Unicast

        assert!(!Ipv6::UNSPECIFIED_ADDRESS.is_unicast());

        let unicast = Ipv6Addr([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]);
        assert!(unicast.is_unicast());
        assert!(unicast.is_specified());

        // Multicast

        assert!(!Ipv4::UNSPECIFIED_ADDRESS.is_multicast());
        assert!(!Ipv6::UNSPECIFIED_ADDRESS.is_multicast());

        let multicast = Ipv4::MULTICAST_SUBNET.network;
        assert!(multicast.is_multicast());
        assert!(multicast.is_specified());
        let multicast = Ipv6::MULTICAST_SUBNET.network;
        assert!(multicast.is_multicast());
        assert!(multicast.is_specified());

        // Link-local

        assert!(!Ipv4::UNSPECIFIED_ADDRESS.is_link_local());
        assert!(!Ipv6::UNSPECIFIED_ADDRESS.is_link_local());

        let link_local = Ipv4::LINK_LOCAL_UNICAST_SUBNET.network;
        assert!(link_local.is_link_local());
        assert!(link_local.is_specified());
        let link_local = Ipv4::LINK_LOCAL_MULTICAST_SUBNET.network;
        assert!(link_local.is_link_local());
        assert!(link_local.is_specified());
        let link_local = Ipv6::LINK_LOCAL_UNICAST_SUBNET.network;
        assert!(link_local.is_link_local());
        assert!(link_local.is_specified());
        let mut link_local = Ipv6::MULTICAST_SUBNET.network;
        link_local.0[1] = 0x02;
        assert!(link_local.is_link_local());
        assert!(link_local.is_specified());
        assert!(Ipv6::LOOPBACK_ADDRESS.is_link_local());
    }

    #[test]
    fn test_link_local() {
        // IPv4
        assert!(Ipv4::LINK_LOCAL_UNICAST_SUBNET.network.is_link_local());
        assert!(Ipv4::LINK_LOCAL_MULTICAST_SUBNET.network.is_link_local());

        // IPv6
        assert!(Ipv6::LINK_LOCAL_UNICAST_SUBNET.network.is_link_local());
        assert!(Ipv6::LINK_LOCAL_UNICAST_SUBNET.network.is_unicast_link_local());
        let mut addr = Ipv6::MULTICAST_SUBNET.network;
        for flags in 0..=0x0F {
            // Set the scope to link-local and the flags to `flags`.
            addr.0[1] = (flags << 4) | 0x02;
            // Test that a link-local multicast address is always considered
            // link-local regardless of which flags are set.
            assert!(addr.is_link_local());
            assert!(!addr.is_unicast_link_local());
        }

        // Test that a non-multicast address (outside of the link-local subnet)
        // is never considered link-local even if the bits are set that, in a
        // multicast address, would put it in the link-local scope.
        let mut addr = Ipv6::LOOPBACK_ADDRESS.get();
        // Explicitly set the scope to link-local.
        addr.0[1] = 0x02;
        assert!(!addr.is_link_local());
    }

    #[test]
    fn test_subnet_new() {
        assert_eq!(
            Subnet::new(Ipv4Addr::new([255, 255, 255, 255]), 32).unwrap(),
            Subnet { network: Ipv4Addr::new([255, 255, 255, 255]), prefix: 32 },
        );
        // Prefix exceeds 32 bits
        assert_eq!(
            Subnet::new(Ipv4Addr::new([255, 255, 0, 0]), 33),
            Err(SubnetError::PrefixTooLong)
        );
        assert_eq!(
            Subnet::from_host(Ipv4Addr::new([255, 255, 255, 255]), 33),
            Err(PrefixTooLongError)
        );
        // Network address has more than top 8 bits set
        assert_eq!(Subnet::new(Ipv4Addr::new([255, 255, 0, 0]), 8), Err(SubnetError::HostBitsSet));
        // Host address is allowed to have host bits set
        assert_eq!(
            Subnet::from_host(Ipv4Addr::new([255, 255, 0, 0]), 8),
            Ok(Subnet { network: Ipv4Addr::new([255, 0, 0, 0]), prefix: 8 })
        );

        assert_eq!(
            AddrSubnet::<_, SpecifiedAddr<_>>::new(Ipv4Addr::new([1, 2, 3, 4]), 32).unwrap(),
            AddrSubnet {
                addr: SpecifiedAddr(Ipv4Addr::new([1, 2, 3, 4])),
                subnet: Subnet { network: Ipv4Addr::new([1, 2, 3, 4]), prefix: 32 }
            }
        );
        // The unspecified address will always fail because it is not valid for
        // the `SpecifiedAddr` witness (use assert, not assert_eq, because
        // AddrSubnet doesn't impl Debug).
        assert!(
            AddrSubnet::<_, SpecifiedAddr<_>>::new(Ipv4::UNSPECIFIED_ADDRESS, 16)
                == Err(AddrSubnetError::InvalidWitness)
        );
        assert!(
            AddrSubnet::<_, SpecifiedAddr<_>>::new(Ipv6::UNSPECIFIED_ADDRESS, 64)
                == Err(AddrSubnetError::InvalidWitness)
        );
        // Prefix exceeds 32/128 bits
        assert!(
            AddrSubnet::<_, SpecifiedAddr<_>>::new(Ipv4Addr::new([1, 2, 3, 4]), 33)
                == Err(AddrSubnetError::PrefixTooLong)
        );
        assert!(
            AddrSubnet::<_, SpecifiedAddr<_>>::new(
                Ipv6Addr::from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]),
                129,
            ) == Err(AddrSubnetError::PrefixTooLong)
        );
        // Limited broadcast
        assert!(
            AddrSubnet::<_, SpecifiedAddr<_>>::new(Ipv4::LIMITED_BROADCAST_ADDRESS.get(), 16)
                == Err(AddrSubnetError::NotUnicastInSubnet)
        );
        // Subnet broadcast
        assert!(
            AddrSubnet::<_, SpecifiedAddr<_>>::new(Ipv4Addr::new([192, 168, 255, 255]), 16)
                == Err(AddrSubnetError::NotUnicastInSubnet)
        );
        // Multicast
        assert!(
            AddrSubnet::<_, SpecifiedAddr<_>>::new(Ipv4Addr::new([224, 0, 0, 1]), 16)
                == Err(AddrSubnetError::NotUnicastInSubnet)
        );
        assert!(
            AddrSubnet::<_, SpecifiedAddr<_>>::new(
                Ipv6Addr::from([0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]),
                64,
            ) == Err(AddrSubnetError::NotUnicastInSubnet)
        );

        // If we use the `LinkLocalAddr` witness type, then non link-local
        // addresses are rejected. Note that this address was accepted above
        // when `SpecifiedAddr` was used.
        assert!(
            AddrSubnet::<_, LinkLocalAddr<Ipv4Addr>>::new(Ipv4Addr::new([1, 2, 3, 4]), 32)
                == Err(AddrSubnetError::InvalidWitness)
        );
    }

    #[test]
    fn test_is_unicast_in_subnet() {
        // Valid unicast in subnet
        let subnet =
            Subnet::new(Ipv4Addr::new([1, 2, 0, 0]), 16).expect("1.2.0.0/16 is a valid subnet");
        assert!(Ipv4Addr::new([1, 2, 3, 4]).is_unicast_in_subnet(&subnet));
        assert!(!Ipv4Addr::new([2, 2, 3, 4]).is_unicast_in_subnet(&subnet));

        let subnet =
            Subnet::new(Ipv6Addr::from([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), 64)
                .expect("1::/64 is a valid subnet");
        assert!(Ipv6Addr::from([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
            .is_unicast_in_subnet(&subnet));
        assert!(!Ipv6Addr::from([2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
            .is_unicast_in_subnet(&subnet));

        // Unspecified address
        assert!(!Ipv4::UNSPECIFIED_ADDRESS
            .is_unicast_in_subnet(&Subnet::new(Ipv4::UNSPECIFIED_ADDRESS, 16).unwrap()));
        assert!(!Ipv6::UNSPECIFIED_ADDRESS
            .is_unicast_in_subnet(&Subnet::new(Ipv6::UNSPECIFIED_ADDRESS, 64).unwrap()));
        // The "31- or 32-bit prefix" exception doesn't apply to the unspecified
        // address (IPv4 only).
        assert!(!Ipv4::UNSPECIFIED_ADDRESS
            .is_unicast_in_subnet(&Subnet::new(Ipv4::UNSPECIFIED_ADDRESS, 31).unwrap()));
        assert!(!Ipv4::UNSPECIFIED_ADDRESS
            .is_unicast_in_subnet(&Subnet::new(Ipv4::UNSPECIFIED_ADDRESS, 32).unwrap()));
        // All-zeroes host part (IPv4 only)
        assert!(!Ipv4Addr::new([1, 2, 0, 0])
            .is_unicast_in_subnet(&Subnet::new(Ipv4Addr::new([1, 2, 0, 0]), 16).unwrap()));
        // Exception: 31- or 32-bit prefix (IPv4 only)
        assert!(Ipv4Addr::new([1, 2, 3, 0])
            .is_unicast_in_subnet(&Subnet::new(Ipv4Addr::new([1, 2, 3, 0]), 31).unwrap()));
        assert!(Ipv4Addr::new([1, 2, 3, 0])
            .is_unicast_in_subnet(&Subnet::new(Ipv4Addr::new([1, 2, 3, 0]), 32).unwrap()));
        // Limited broadcast (IPv4 only)
        assert!(!Ipv4::LIMITED_BROADCAST_ADDRESS
            .get()
            .is_unicast_in_subnet(&Subnet::new(Ipv4Addr::new([128, 0, 0, 0]), 1).unwrap()));
        // Subnet broadcast (IPv4 only)
        assert!(!Ipv4Addr::new([1, 2, 255, 255])
            .is_unicast_in_subnet(&Subnet::new(Ipv4Addr::new([1, 2, 0, 0]), 16).unwrap()));
        // Exception: 31- or 32-bit prefix (IPv4 only)
        assert!(Ipv4Addr::new([1, 2, 255, 255])
            .is_unicast_in_subnet(&Subnet::new(Ipv4Addr::new([1, 2, 255, 254]), 31).unwrap()));
        assert!(Ipv4Addr::new([1, 2, 255, 255])
            .is_unicast_in_subnet(&Subnet::new(Ipv4Addr::new([1, 2, 255, 255]), 32).unwrap()));
        // Multicast
        assert!(!Ipv4Addr::new([224, 0, 0, 1]).is_unicast_in_subnet(&Ipv4::MULTICAST_SUBNET));
        assert!(!Ipv6Addr::from([0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
            .is_unicast_in_subnet(&Ipv6::MULTICAST_SUBNET));
        // Class E (IPv4 only)
        assert!(!Ipv4Addr::new([240, 0, 0, 1]).is_unicast_in_subnet(&Ipv4::CLASS_E_SUBNET));
    }

    macro_rules! add_mask_test {
            ($name:ident, $addr:ident, $from_ip:expr => {
                $($mask:expr => $to_ip:expr),*
            }) => {
                #[test]
                fn $name() {
                    let from = $addr::from($from_ip);
                    $(assert_eq!(from.mask($mask), $addr::from($to_ip), "(`{}`.mask({}))", from, $mask);)*
                }
            };
            ($name:ident, $addr:ident, $from_ip:expr => {
                $($mask:expr => $to_ip:expr),*,
            }) => {
                add_mask_test!($name, $addr, $from_ip => { $($mask => $to_ip),* });
            };
        }

    add_mask_test!(v4_full_mask, Ipv4Addr, [255, 254, 253, 252] => {
        32 => [255, 254, 253, 252],
        28 => [255, 254, 253, 240],
        24 => [255, 254, 253, 0],
        20 => [255, 254, 240, 0],
        16 => [255, 254, 0,   0],
        12 => [255, 240, 0,   0],
        8  => [255, 0,   0,   0],
        4  => [240, 0,   0,   0],
        0  => [0,   0,   0,   0],
    });

    add_mask_test!(v6_full_mask, Ipv6Addr,
        [0xFF, 0xFE, 0xFD, 0xFC, 0xFB, 0xFA, 0xF9, 0xF8, 0xF7, 0xF6, 0xF5, 0xF4, 0xF3, 0xF2, 0xF1, 0xF0] => {
            128 => [0xFF, 0xFE, 0xFD, 0xFC, 0xFB, 0xFA, 0xF9, 0xF8, 0xF7, 0xF6, 0xF5, 0xF4, 0xF3, 0xF2, 0xF1, 0xF0],
            112 => [0xFF, 0xFE, 0xFD, 0xFC, 0xFB, 0xFA, 0xF9, 0xF8, 0xF7, 0xF6, 0xF5, 0xF4, 0xF3, 0xF2, 0x00, 0x00],
            96  => [0xFF, 0xFE, 0xFD, 0xFC, 0xFB, 0xFA, 0xF9, 0xF8, 0xF7, 0xF6, 0xF5, 0xF4, 0x00, 0x00, 0x00, 0x00],
            80  => [0xFF, 0xFE, 0xFD, 0xFC, 0xFB, 0xFA, 0xF9, 0xF8, 0xF7, 0xF6, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
            64  => [0xFF, 0xFE, 0xFD, 0xFC, 0xFB, 0xFA, 0xF9, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
            48  => [0xFF, 0xFE, 0xFD, 0xFC, 0xFB, 0xFA, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
            32  => [0xFF, 0xFE, 0xFD, 0xFC, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
            16  => [0xFF, 0xFE, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
            8   => [0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
            0   => [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
        }
    );

    #[test_case([255, 255, 255, 0] => Ok(24))]
    #[test_case([255, 255, 254, 0] => Ok(23))]
    #[test_case([255, 255, 253, 0] => Err(NotSubnetMaskError))]
    #[test_case([255, 255, 0, 255] => Err(NotSubnetMaskError))]
    #[test_case([255, 255, 255, 255] => Ok(32))]
    #[test_case([0, 0, 0, 0] => Ok(0))]
    #[test_case([0, 0, 0, 255] => Err(NotSubnetMaskError))]
    fn test_ipv4_prefix_len_try_from_subnet_mask(
        subnet_mask: [u8; 4],
    ) -> Result<u8, NotSubnetMaskError> {
        let subnet_mask = Ipv4Addr::from(subnet_mask);
        PrefixLength::<Ipv4>::try_from_subnet_mask(subnet_mask).map(|prefix_len| prefix_len.get())
    }

    #[test_case([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0] => Ok(64))]
    #[test_case([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0, 0, 0, 0, 0, 0, 0, 0] => Ok(63))]
    #[test_case([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xEF, 0, 0, 0, 0, 0, 0, 0, 0] => Err(NotSubnetMaskError))]
    #[test_case([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0, 0, 0, 0, 0, 0, 0, 1] => Err(NotSubnetMaskError))]
    #[test_case([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] => Ok(0))]
    #[test_case([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF] => Ok(128))]
    #[test_case([0, 0, 0, 0, 0, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0] => Err(NotSubnetMaskError))]
    fn test_ipv6_prefix_len_try_from_subnet_mask(
        subnet_mask: [u8; 16],
    ) -> Result<u8, NotSubnetMaskError> {
        let subnet_mask = Ipv6Addr::from(subnet_mask);
        PrefixLength::<Ipv6>::try_from_subnet_mask(subnet_mask).map(|prefix_len| prefix_len.get())
    }

    #[test_case(0 => true)]
    #[test_case(1 => true)]
    #[test_case(32 => true)]
    #[test_case(33 => false)]
    #[test_case(128 => false)]
    #[test_case(129 => false)]
    #[test_case(255 => false)]
    fn test_ipv4_prefix_len_new(prefix_len: u8) -> bool {
        PrefixLength::<Ipv4>::new(prefix_len).is_ok()
    }

    #[test_case(0 => true)]
    #[test_case(1 => true)]
    #[test_case(32 => true)]
    #[test_case(33 => true)]
    #[test_case(128 => true)]
    #[test_case(129 => false)]
    #[test_case(255 => false)]
    fn test_ipv6_prefix_len_new(prefix_len: u8) -> bool {
        PrefixLength::<Ipv6>::new(prefix_len).is_ok()
    }

    #[test_case(0 => [0, 0, 0, 0])]
    #[test_case(6 => [252, 0, 0, 0])]
    #[test_case(16 => [255, 255, 0, 0])]
    #[test_case(25 => [255, 255, 255, 128])]
    #[test_case(32 => [255, 255, 255, 255])]
    fn test_ipv4_prefix_len_get_mask(prefix_len: u8) -> [u8; 4] {
        let Ipv4Addr(inner) = PrefixLength::<Ipv4>::new(prefix_len).unwrap().get_mask();
        inner
    }

    #[test_case(0 => [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])]
    #[test_case(6 => [0xFC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])]
    #[test_case(64 => [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0])]
    #[test_case(65 => [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x80, 0, 0, 0, 0, 0, 0, 0])]
    #[test_case(128 => [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF])]
    fn test_ipv6_prefix_len_get_mask(prefix_len: u8) -> [u8; 16] {
        let Ipv6Addr(inner) = PrefixLength::<Ipv6>::new(prefix_len).unwrap().get_mask();
        inner
    }

    #[test]
    fn test_ipv6_solicited_node() {
        let addr = Ipv6Addr::new([0xfe80, 0, 0, 0, 0x52e5, 0x49ff, 0xfeb5, 0x5aa0]);
        let solicited = Ipv6Addr::new([0xff02, 0, 0, 0, 0, 0x01, 0xffb5, 0x5aa0]);
        assert_eq!(addr.to_solicited_node_address().get(), solicited);
    }

    #[test]
    fn test_ipv6_address_types() {
        assert!(!Ipv6Addr::from([0; 16]).is_specified());
        assert!(Ipv6Addr::new([0, 0, 0, 0, 0, 0, 0, 1]).is_loopback());
        let link_local = Ipv6Addr::new([0xfe80, 0, 0, 0, 0x52e5, 0x49ff, 0xfeb5, 0x5aa0]);
        assert!(link_local.is_link_local());
        assert!(link_local.is_valid_unicast());
        assert!(link_local.to_solicited_node_address().is_multicast());
        let global_unicast = Ipv6Addr::new([0x80, 0, 0, 0, 0x52e5, 0x49ff, 0xfeb5, 0x5aa0]);
        assert!(global_unicast.is_valid_unicast());
        assert!(global_unicast.to_solicited_node_address().is_multicast());

        let multi = Ipv6Addr::new([0xff02, 0, 0, 0, 0, 0x01, 0xffb5, 0x5aa0]);
        assert!(multi.is_multicast());
        assert!(!multi.is_valid_unicast());
    }

    #[test]
    fn test_const_witness() {
        // Test that all of the addresses that we initialize at compile time
        // using `new_unchecked` constructors are valid for their witness types.
        assert!(Ipv4::LOOPBACK_ADDRESS.0.is_specified());
        assert!(Ipv6::LOOPBACK_ADDRESS.0.is_specified());
        assert!(Ipv4::LIMITED_BROADCAST_ADDRESS.0.is_specified());
        assert!(Ipv4::ALL_ROUTERS_MULTICAST_ADDRESS.0.is_multicast());
        assert!(Ipv6::ALL_NODES_LINK_LOCAL_MULTICAST_ADDRESS.0.is_multicast());
        assert!(Ipv6::ALL_ROUTERS_LINK_LOCAL_MULTICAST_ADDRESS.0.is_multicast());
    }

    #[test]
    fn test_ipv6_scope() {
        use Ipv6ReservedScope::*;
        use Ipv6Scope::*;
        use Ipv6UnassignedScope::*;

        // Test unicast scopes.
        assert_eq!(Ipv6::SITE_LOCAL_UNICAST_SUBNET.network.scope(), SiteLocal);
        assert_eq!(Ipv6::LINK_LOCAL_UNICAST_SUBNET.network.scope(), LinkLocal);
        assert_eq!(Ipv6::UNSPECIFIED_ADDRESS.scope(), Global);

        // Test multicast scopes.
        let assert_scope = |value, scope| {
            let mut addr = Ipv6::MULTICAST_SUBNET.network;
            // Set the "scop" field manually.
            addr.0[1] |= value;
            assert_eq!(addr.scope(), scope);
        };
        assert_scope(0, Reserved(Scope0));
        assert_scope(1, InterfaceLocal);
        assert_scope(2, LinkLocal);
        assert_scope(3, Reserved(Scope3));
        assert_scope(4, AdminLocal);
        assert_scope(5, SiteLocal);
        assert_scope(6, Unassigned(Scope6));
        assert_scope(7, Unassigned(Scope7));
        assert_scope(8, OrganizationLocal);
        assert_scope(9, Unassigned(Scope9));
        assert_scope(0xA, Unassigned(ScopeA));
        assert_scope(0xB, Unassigned(ScopeB));
        assert_scope(0xC, Unassigned(ScopeC));
        assert_scope(0xD, Unassigned(ScopeD));
        assert_scope(0xE, Global);
        assert_scope(0xF, Reserved(ScopeF));
    }

    #[test]
    fn test_ipv6_multicast_scope_id() {
        const ALL_SCOPES: &[Ipv6Scope] = &[
            Ipv6Scope::Reserved(Ipv6ReservedScope::Scope0),
            Ipv6Scope::InterfaceLocal,
            Ipv6Scope::LinkLocal,
            Ipv6Scope::Reserved(Ipv6ReservedScope::Scope3),
            Ipv6Scope::AdminLocal,
            Ipv6Scope::SiteLocal,
            Ipv6Scope::Unassigned(Ipv6UnassignedScope::Scope6),
            Ipv6Scope::Unassigned(Ipv6UnassignedScope::Scope7),
            Ipv6Scope::OrganizationLocal,
            Ipv6Scope::Unassigned(Ipv6UnassignedScope::Scope9),
            Ipv6Scope::Unassigned(Ipv6UnassignedScope::ScopeA),
            Ipv6Scope::Unassigned(Ipv6UnassignedScope::ScopeB),
            Ipv6Scope::Unassigned(Ipv6UnassignedScope::ScopeC),
            Ipv6Scope::Unassigned(Ipv6UnassignedScope::ScopeD),
            Ipv6Scope::Global,
            Ipv6Scope::Reserved(Ipv6ReservedScope::ScopeF),
        ];
        for (i, a) in ALL_SCOPES.iter().enumerate() {
            assert_eq!(a.multicast_scope_id(), i.try_into().unwrap());
        }
    }

    #[test]
    fn test_ipv4_embedded() {
        // Test Ipv4Addr's to_ipv6_compatible and to_ipv6_mapped methods.

        assert_eq!(
            Ipv4Addr::new([1, 2, 3, 4]).to_ipv6_compatible(),
            Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4])
        );
        assert_eq!(
            Ipv4Addr::new([1, 2, 3, 4]).to_ipv6_mapped().get(),
            Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, 1, 2, 3, 4]),
        );

        // Test Ipv6Addr's to_ipv4_compatible and to_ipv4_mapped methods.

        let compatible = Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4]);
        let mapped = Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, 1, 2, 3, 4]);
        let not_embedded = Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 1, 2, 3, 4]);
        let v4 = Ipv4Addr::new([1, 2, 3, 4]);

        assert_eq!(compatible.to_ipv4_compatible(), Some(v4));
        assert_eq!(compatible.to_ipv4_mapped(), None);

        assert_eq!(mapped.to_ipv4_compatible(), None);
        assert_eq!(mapped.to_ipv4_mapped(), Some(v4));

        assert_eq!(not_embedded.to_ipv4_compatible(), None);
        assert_eq!(not_embedded.to_ipv4_mapped(), None);

        assert_eq!(
            NonMappedAddr::new(compatible),
            Some(unsafe { NonMappedAddr::new_unchecked(compatible) })
        );
        assert_eq!(NonMappedAddr::new(mapped), None);
        assert_eq!(
            NonMappedAddr::new(not_embedded),
            Some(unsafe { NonMappedAddr::new_unchecked(not_embedded) })
        );
        assert_eq!(NonMappedAddr::new(v4), Some(unsafe { NonMappedAddr::new_unchecked(v4) }));
    }

    #[test]
    fn test_common_prefix_len_ipv6() {
        let ip1 = Ipv6Addr::from([0xFF, 0xFF, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
        let ip2 = Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
        let ip3 = Ipv6Addr::from([0xFF, 0xFF, 0x80, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
        let ip4 = Ipv6Addr::from([0xFF, 0xFF, 0xC0, 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
        let compare_with_ip1 = |target, expect| {
            assert_eq!(ip1.common_prefix_len(&target), expect, "{} <=> {}", ip1, target);
        };
        compare_with_ip1(ip1, 128);
        compare_with_ip1(ip2, 0);
        compare_with_ip1(ip3, 24);
        compare_with_ip1(ip4, 17);
    }

    #[test]
    fn test_common_prefix_len_ipv4() {
        let ip1 = Ipv4Addr::new([0xFF, 0xFF, 0x80, 0]);
        let ip2 = Ipv4Addr::new([0, 0, 0, 0]);
        let ip3 = Ipv4Addr::new([0xFF, 0xFF, 0x80, 0xFF]);
        let ip4 = Ipv4Addr::new([0xFF, 0xFF, 0xC0, 0x20]);
        let compare_with_ip1 = |target, expect| {
            assert_eq!(ip1.common_prefix_len(&target), expect, "{} <=> {}", ip1, target);
        };
        compare_with_ip1(ip1, 32);
        compare_with_ip1(ip2, 0);
        compare_with_ip1(ip3, 24);
        compare_with_ip1(ip4, 17);
    }

    #[test]
    fn test_ipv6_display() {
        // Test that `addr` is formatted the same by our `Display` impl as by
        // the standard library's `Display` impl. Optionally test that it
        // matches a particular expected string.
        fn test_one(addr: Ipv6Addr, expect: Option<&str>) {
            let formatted = format!("{}", addr);
            if let Some(expect) = expect {
                assert_eq!(formatted, expect);
            }

            // NOTE: We use `std` here even though we're not inside of the
            // `std_tests` module because we're using `std` to test
            // functionality that is present even when the `std` Cargo feature
            // is not used.
            //
            // Note that we use `std::net::Ipv6Addr::from(addr.segments())`
            // rather than `std::net::Ipv6Addr::from(addr)` because, when the
            // `std` Cargo feature is disabled, the `From<Ipv6Addr> for
            // std::net::Ipv6Addr` impl is not emitted.
            let formatted_std = format!("{}", std::net::Ipv6Addr::from(addr.segments()));
            assert_eq!(formatted, formatted_std);
        }

        test_one(Ipv6::UNSPECIFIED_ADDRESS, Some("::"));
        test_one(*Ipv6::LOOPBACK_ADDRESS, Some("::1"));
        test_one(Ipv6::MULTICAST_SUBNET.network, Some("ff00::"));
        test_one(Ipv6::LINK_LOCAL_UNICAST_SUBNET.network, Some("fe80::"));
        test_one(*Ipv6::ALL_NODES_LINK_LOCAL_MULTICAST_ADDRESS, Some("ff02::1"));
        test_one(*Ipv6::ALL_NODES_LINK_LOCAL_MULTICAST_ADDRESS, Some("ff02::1"));
        test_one(*Ipv6::ALL_ROUTERS_LINK_LOCAL_MULTICAST_ADDRESS, Some("ff02::2"));
        test_one(Ipv6::SITE_LOCAL_UNICAST_SUBNET.network, Some("fec0::"));
        test_one(Ipv6Addr::new([1, 0, 0, 0, 0, 0, 0, 0]), Some("1::"));
        test_one(Ipv6Addr::new([0, 0, 0, 1, 2, 3, 4, 5]), Some("::1:2:3:4:5"));

        // Treating each pair of bytes as a bit (either 0x0000 or 0x0001), cycle
        // through every possible IPv6 address. Since the formatting algorithm
        // is only sensitive to zero vs nonzero for any given byte pair, this
        // gives us effectively complete coverage of the input space.
        for byte in 0u8..=255 {
            test_one(
                Ipv6Addr::new([
                    u16::from(byte & 0b1),
                    u16::from((byte & 0b10) >> 1),
                    u16::from((byte & 0b100) >> 2),
                    u16::from((byte & 0b1000) >> 3),
                    u16::from((byte & 0b10000) >> 4),
                    u16::from((byte & 0b100000) >> 5),
                    u16::from((byte & 0b1000000) >> 6),
                    u16::from((byte & 0b10000000) >> 7),
                ]),
                None,
            );
        }
    }

    #[test_case(Ipv4::UNSPECIFIED_ADDRESS, Ipv4AddressClass::A; "first_class_a")]
    #[test_case(Ipv4Addr::new([127, 255, 255, 255]), Ipv4AddressClass::A; "last_class_a")]
    #[test_case(Ipv4Addr::new([128, 0, 0, 0]), Ipv4AddressClass::B; "first_class_b")]
    #[test_case(Ipv4Addr::new([191, 255, 255, 255]), Ipv4AddressClass::B; "last_class_b")]
    #[test_case(Ipv4Addr::new([192, 0, 0, 0]), Ipv4AddressClass::C; "first_class_c")]
    #[test_case(Ipv4Addr::new([223, 255, 255, 255]), Ipv4AddressClass::C; "last_class_c")]
    #[test_case(Ipv4Addr::new([224, 0, 0, 0]), Ipv4AddressClass::D; "first_class_d")]
    #[test_case(Ipv4Addr::new([239, 255, 255, 255]), Ipv4AddressClass::D; "last_class_d")]
    #[test_case(Ipv4Addr::new([240, 0, 0, 0]), Ipv4AddressClass::E; "first_class_e")]
    #[test_case(Ipv4Addr::new([255, 255, 255, 255]), Ipv4AddressClass::E; "last_class_e")]
    fn ipv4addr_class(addr: Ipv4Addr, class: Ipv4AddressClass) {
        assert_eq!(addr.class(), class)
    }

    #[test_case(
        Subnet::new(Ipv4Addr::new([192, 168, 1, 0]), 24).unwrap(),
        Subnet::new(Ipv4Addr::new([192, 168, 2, 0]), 24).unwrap()
    ; "ipv4_same_prefix")]
    #[test_case(
        Subnet::new(Ipv4Addr::new([192, 168, 2, 0]), 24).unwrap(),
        Subnet::new(Ipv4Addr::new([192, 168, 1, 0]), 32).unwrap()
    ; "ipv4_by_prefix")]
    #[test_case(
        Subnet::new(Ipv6Addr::new([1, 0, 0, 0, 0, 0, 0, 0]), 64).unwrap(),
        Subnet::new(Ipv6Addr::new([2, 0, 0, 0, 0, 0, 0, 0]), 64).unwrap()
    ; "ipv6_same_prefix")]
    #[test_case(
        Subnet::new(Ipv6Addr::new([2, 0, 0, 0, 0, 0, 0, 0]), 64).unwrap(),
        Subnet::new(Ipv6Addr::new([1, 0, 0, 0, 0, 0, 0, 0]), 128).unwrap()
    ; "ipv6_by_prefix")]
    fn subnet_ord<A: core::cmp::Ord>(a: Subnet<A>, b: Subnet<A>) {
        assert!(a < b);
    }

    #[cfg(feature = "std")]
    mod std_tests {
        use super::*;

        #[test]
        fn test_conversions() {
            let v4 = Ipv4Addr::new([127, 0, 0, 1]);
            let v6 = Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]);
            let std_v4 = net::Ipv4Addr::new(127, 0, 0, 1);
            let std_v6 = net::Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);

            let converted: IpAddr = net::IpAddr::V4(std_v4).into();
            assert_eq!(converted, IpAddr::V4(v4));
            let converted: IpAddr = net::IpAddr::V6(std_v6).into();
            assert_eq!(converted, IpAddr::V6(v6));

            let converted: net::IpAddr = IpAddr::V4(v4).into();
            assert_eq!(converted, net::IpAddr::V4(std_v4));
            let converted: net::IpAddr = IpAddr::V6(v6).into();
            assert_eq!(converted, net::IpAddr::V6(std_v6));

            let converted: Ipv4Addr = std_v4.into();
            assert_eq!(converted, v4);
            let converted: Ipv6Addr = std_v6.into();
            assert_eq!(converted, v6);

            let converted: net::Ipv4Addr = v4.into();
            assert_eq!(converted, std_v4);
            let converted: net::Ipv6Addr = v6.into();
            assert_eq!(converted, std_v6);
        }
    }
}

/// Tests of the [`GenericOverIp`] derive macro.
#[cfg(test)]
mod macro_test {
    use super::*;

    /// No-op function that will only compile if `T::Type<I> = Other`.
    fn assert_ip_generic_is<T, I, Other>()
    where
        I: Ip,
        T: GenericOverIp<I, Type = Other>,
    {
        // Do nothing; this function just serves to assert that the argument
        // does in fact implement GenericOverIp.
    }

    macro_rules! assert_ip_generic {
        ($name:ident, Ip $(,$($param:ident),*)?) => {
            assert_ip_generic_is::<$name<Ipv4 $(, $($param,)*)?>, Ipv4, $name<Ipv4 $(, $($param,)*)?>>();
            assert_ip_generic_is::<$name<Ipv4 $(, $($param,)*)?>, Ipv6, $name<Ipv6 $(, $($param,)*)?>>();
            assert_ip_generic_is::<$name<Ipv6 $(, $($param,)*)?>, Ipv4, $name<Ipv4 $(, $($param,)*)?>>();
            assert_ip_generic_is::<$name<Ipv6 $(, $($param,)*)?>, Ipv6, $name<Ipv6 $(, $($param,)*)?>>();
        };
        ($name:ident, IpAddress $(,$($param:ident),*)?) => {
            assert_ip_generic_is::<$name<Ipv4Addr $(, $($param,)*)?>, Ipv4, $name<Ipv4Addr $(, $($param,)*)?>>();
            assert_ip_generic_is::<$name<Ipv4Addr $(, $($param,)*)?>, Ipv6, $name<Ipv6Addr $(, $($param,)*)?>>();
            assert_ip_generic_is::<$name<Ipv6Addr $(, $($param,)*)?>, Ipv4, $name<Ipv4Addr $(, $($param,)*)?>>();
            assert_ip_generic_is::<$name<Ipv6Addr $(, $($param,)*)?>, Ipv6, $name<Ipv6Addr $(, $($param,)*)?>>();
        };
        ($name:ident $(,$($param:ident),*)?) => {
            assert_ip_generic_is::<$name<$($($param,)*)?>, Ipv4, $name<$($($param,)*)?>>();
            assert_ip_generic_is::<$name<$($($param,)*)?>, Ipv6, $name<$($($param,)*)?>>();
            assert_ip_generic_is::<$name<$($($param,)*)?>, Ipv4, $name<$($($param,)*)?>>();
            assert_ip_generic_is::<$name<$($($param,)*)?>, Ipv6, $name<$($($param,)*)?>>();
        };
    }

    #[test]
    fn struct_with_ip_version_parameter() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip(I, Ip)]
        struct Generic<I: Ip> {
            addr: I::Addr,
        }

        assert_ip_generic!(Generic, Ip);
    }

    #[test]
    fn struct_with_unbounded_ip_version_parameter() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip(I, Ip)]
        struct Generic<I> {
            addr: core::marker::PhantomData<I>,
        }

        assert_ip_generic!(Generic, Ip);
    }

    #[test]
    fn struct_with_ip_address_parameter() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip(A, IpAddress)]
        struct Generic<A: IpAddress> {
            addr: A,
        }

        assert_ip_generic!(Generic, IpAddress);
    }

    #[test]
    fn struct_with_unbounded_ip_address_parameter() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip(A, IpAddress)]
        struct Generic<A> {
            addr: A,
        }

        assert_ip_generic!(Generic, IpAddress);
    }

    #[test]
    fn struct_with_generic_over_ip_parameter() {
        #[derive(GenericOverIp)]
        #[generic_over_ip(I, Ip)]
        struct InnerGeneric<I: Ip> {
            addr: I::Addr,
        }

        #[derive(GenericOverIp)]
        #[generic_over_ip(T, GenericOverIp)]
        struct Generic<T> {
            foo: T,
        }

        fn do_something<I: Ip>(g: Generic<InnerGeneric<I>>) {
            I::map_ip(
                g,
                |g| {
                    let _: Ipv4Addr = g.foo.addr;
                },
                |g| {
                    let _: Ipv6Addr = g.foo.addr;
                },
            )
        }

        do_something::<Ipv4>(Generic { foo: InnerGeneric { addr: Ipv4::UNSPECIFIED_ADDRESS } });

        do_something::<Ipv6>(Generic { foo: InnerGeneric { addr: Ipv6::UNSPECIFIED_ADDRESS } });
    }

    #[test]
    fn enum_with_ip_version_parameter() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip(I, Ip)]
        enum Generic<I: Ip> {
            A(I::Addr),
            B(I::Addr),
        }

        assert_ip_generic!(Generic, Ip);
    }

    #[test]
    fn enum_with_unbounded_ip_version_parameter() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip(I, Ip)]
        enum Generic<I> {
            A(core::marker::PhantomData<I>),
            B(core::marker::PhantomData<I>),
        }

        assert_ip_generic!(Generic, Ip);
    }

    #[test]
    fn enum_with_ip_address_parameter() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip(A, IpAddress)]
        enum Generic<A: IpAddress> {
            A(A),
            B(A),
        }

        assert_ip_generic!(Generic, IpAddress);
    }

    #[test]
    fn enum_with_unbounded_ip_address_parameter() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip(A, IpAddress)]
        enum Generic<A> {
            A(A),
            B(A),
        }

        assert_ip_generic!(Generic, IpAddress);
    }

    #[test]
    fn struct_with_ip_version_and_other_parameters() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip(I, Ip)]
        struct AddrAndDevice<I: Ip, D> {
            addr: I::Addr,
            device: D,
        }
        struct Device;

        assert_ip_generic!(AddrAndDevice, Ip, Device);
    }

    #[test]
    fn enum_with_ip_version_and_other_parameters() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip(I, Ip)]
        enum AddrOrDevice<I: Ip, D> {
            Addr(I::Addr),
            Device(D),
        }
        struct Device;

        assert_ip_generic!(AddrOrDevice, Ip, Device);
    }

    #[test]
    fn struct_with_ip_address_and_other_parameters() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip(A, IpAddress)]
        struct AddrAndDevice<A: IpAddress, D> {
            addr: A,
            device: D,
        }
        struct Device;

        assert_ip_generic!(AddrAndDevice, IpAddress, Device);
    }

    #[test]
    fn struct_with_unbounded_ip_address_and_other_parameters() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip(A, IpAddress)]
        struct AddrAndDevice<A, D> {
            addr: A,
            device: D,
        }
        struct Device;

        assert_ip_generic!(AddrAndDevice, IpAddress, Device);
    }

    #[test]
    fn enum_with_ip_address_and_other_parameters() {
        #[allow(dead_code)]
        #[derive(GenericOverIp, Debug, PartialEq)]
        #[generic_over_ip(A, IpAddress)]
        enum AddrOrDevice<A: IpAddress, D> {
            Addr(A),
            Device(D),
        }
        struct Device;

        assert_ip_generic!(AddrOrDevice, IpAddress, Device);
    }

    #[test]
    fn struct_invariant_over_ip() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip()]
        struct Invariant(usize);

        assert_ip_generic!(Invariant);
    }

    #[test]
    fn enum_invariant_over_ip() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip()]
        enum Invariant {
            Usize(usize),
        }

        assert_ip_generic!(Invariant);
    }

    #[test]
    fn struct_invariant_over_ip_with_other_params() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip()]
        struct Invariant<B, C, D>(B, C, D);

        assert_ip_generic!(Invariant, usize, bool, char);
    }

    #[test]
    fn enum_invariant_over_ip_with_other_params() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip()]
        enum Invariant<A, B, C> {
            A(A),
            B(B),
            C(C),
        }

        assert_ip_generic!(Invariant, usize, bool, char);
    }

    #[test]
    fn struct_with_ip_version_extension_parameter() {
        trait FakeIpExt: Ip {
            type Associated;
        }
        impl FakeIpExt for Ipv4 {
            type Associated = u8;
        }
        impl FakeIpExt for Ipv6 {
            type Associated = u16;
        }

        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip(I, Ip)]
        struct Generic<I: FakeIpExt> {
            field: I::Associated,
        }

        assert_ip_generic!(Generic, Ip);
    }

    #[test]
    fn struct_with_ip_version_extension_parameter_but_no_ip_bound() {
        trait FakeIpExt: Ip {
            type Associated;
        }
        impl FakeIpExt for Ipv4 {
            type Associated = u8;
        }
        impl FakeIpExt for Ipv6 {
            type Associated = u16;
        }

        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip(I, Ip)]
        struct Generic<I: FakeIpExt> {
            field: I::Associated,
        }

        assert_ip_generic!(Generic, Ip);
    }

    #[test]
    fn struct_with_ip_address_extension_parameter() {
        trait FakeIpAddressExt: IpAddress {
            type Associated;
        }
        impl FakeIpAddressExt for Ipv4Addr {
            type Associated = u8;
        }
        impl FakeIpAddressExt for Ipv6Addr {
            type Associated = u16;
        }

        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip(A, IpAddress)]
        struct Generic<A: IpAddress + FakeIpAddressExt> {
            field: A::Associated,
        }

        assert_ip_generic!(Generic, IpAddress);
    }

    #[test]
    fn type_with_lifetime_and_ip_parameter() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip(I, Ip)]
        struct Generic<'a, I: Ip> {
            field: &'a I::Addr,
        }

        assert_ip_generic_is::<Generic<'static, Ipv4>, Ipv4, Generic<'static, Ipv4>>();
        assert_ip_generic_is::<Generic<'static, Ipv4>, Ipv6, Generic<'static, Ipv6>>();
        assert_ip_generic_is::<Generic<'static, Ipv6>, Ipv4, Generic<'static, Ipv4>>();
        assert_ip_generic_is::<Generic<'static, Ipv6>, Ipv6, Generic<'static, Ipv6>>();
    }

    #[test]
    fn type_with_lifetime_and_no_ip_parameter() {
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip()]
        struct Generic<'a> {
            field: &'a (),
        }

        assert_ip_generic_is::<Generic<'static>, Ipv4, Generic<'static>>();
        assert_ip_generic_is::<Generic<'static>, Ipv6, Generic<'static>>();
    }

    #[test]
    fn type_with_params_list_with_trailing_comma() {
        trait IpExtensionTraitWithVeryLongName {}
        trait OtherIpExtensionTraitWithVeryLongName {}
        trait LongNameToForceFormatterToBreakLineAndAddTrailingComma {}
        // Regression test for https://fxbug.dev/42080215
        #[allow(dead_code)]
        #[derive(GenericOverIp)]
        #[generic_over_ip(I, Ip)]
        struct Generic<
            I: Ip
                + IpExtensionTraitWithVeryLongName
                + OtherIpExtensionTraitWithVeryLongName
                + LongNameToForceFormatterToBreakLineAndAddTrailingComma,
        > {
            field: I::Addr,
        }
    }
}