net_types/ip.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// TODO: Edit this doc comment (it's copy+pasted from the Netstack3 core)
//! Internet Protocol (IP) types.
//!
//! This module provides support for various types and traits relating to IPv4
//! and IPv6, including a number of mechanisms for abstracting over details
//! which are shared between IPv4 and IPv6.
//!
//! # `Ip` and `IpAddress`
//!
//! The most important traits are [`Ip`] and [`IpAddress`].
//!
//! `Ip` represents a version of the IP protocol - either IPv4 or IPv6 - and is
//! implemented by [`Ipv4`] and [`Ipv6`]. These types exist only at the type
//! level - they cannot be constructed at runtime. They provide a place to put
//! constants and functionality which are not associated with a particular type,
//! and they allow code to be written which is generic over the version of the
//! IP protocol. For example:
//!
//! ```rust
//! # use net_types::ip::{Ip, IpAddress, Subnet};
//! struct Entry<A: IpAddress> {
//! subnet: Subnet<A>,
//! dest: Destination<A>,
//! }
//!
//! enum Destination<A: IpAddress> {
//! Local { device_id: usize },
//! Remote { dst: A },
//! }
//!
//! struct ForwardingTable<I: Ip> {
//! entries: Vec<Entry<I::Addr>>,
//! }
//! ```
//!
//! See also [`IpVersionMarker`].
//!
//! The `IpAddress` trait is implemented by the concrete [`Ipv4Addr`] and
//! [`Ipv6Addr`] types.
//!
//! # Runtime types
//!
//! Sometimes, it is not known at compile time which version of a given type -
//! IPv4 or IPv6 - is present. For these cases, enums are provided with variants
//! for both IPv4 and IPv6. These are [`IpAddr`], [`SubnetEither`], and
//! [`AddrSubnetEither`].
//!
//! # Composite types
//!
//! This modules also provides composite types such as [`Subnet`] and
//! [`AddrSubnet`].
use core::fmt::{self, Debug, Display, Formatter};
use core::hash::Hash;
use core::mem;
use core::ops::{Deref, DerefMut};
#[cfg(feature = "std")]
use std::net;
pub use net_types_macros::GenericOverIp;
use zerocopy::{FromBytes, Immutable, IntoBytes, KnownLayout, Unaligned};
use crate::{
sealed, LinkLocalAddr, LinkLocalAddress, MappedAddress, MulticastAddr, MulticastAddress,
NonMappedAddr, Scope, ScopeableAddress, SpecifiedAddr, SpecifiedAddress, UnicastAddr,
UnicastAddress, Witness,
};
// NOTE on passing by reference vs by value: Clippy advises us to pass IPv4
// addresses by value, and IPv6 addresses by reference. For concrete types, we
// do the right thing. For the IpAddress trait, we use references in order to
// optimize (albeit very slightly) for IPv6 performance.
/// An IP protocol version.
#[allow(missing_docs)]
#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash, PartialOrd, Ord)]
pub enum IpVersion {
V4,
V6,
}
/// Evaluates `expression` for any given `ip_version`.
///
/// `type_param` will be defined to be [`crate::ip::Ipv4`] for
/// [`crate::ip::IpVersion::V4`], and [`crate::ip::Ipv6`] for
/// [`crate::ip::IpVersion::V6`].
///
/// Example usage:
///
/// ```
/// let ip_version: IpVersion = foo();
/// for_any_ip_version!(ip_version, I, some_ip_generic_fn::<I>());
/// ```
#[macro_export]
macro_rules! for_any_ip_version {
($ip_version:expr, $type_param:ident, $expression:expr) => {
match $ip_version {
$crate::ip::IpVersion::V4 => {
type $type_param = $crate::ip::Ipv4;
$expression
}
$crate::ip::IpVersion::V6 => {
type $type_param = $crate::ip::Ipv6;
$expression
}
}
};
}
/// A zero-sized type that carries IP version information.
///
/// `IpVersionMarker` is typically used by types that are generic over IP
/// version, but without any other associated data. In this sense,
/// `IpVersionMarker` behaves similarly to [`PhantomData`].
///
/// [`PhantomData`]: core::marker::PhantomData
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, GenericOverIp)]
#[generic_over_ip(I, Ip)]
pub struct IpVersionMarker<I: Ip> {
_marker: core::marker::PhantomData<I>,
}
impl<I: Ip> IpVersionMarker<I> {
/// Creates a new `IpVersionMarker`.
// TODO(https://github.com/rust-lang/rust/issues/67792): Remove once
// `const_trait_impl` is stabilized.
pub const fn new() -> Self {
Self { _marker: core::marker::PhantomData }
}
}
impl<I: Ip> Default for IpVersionMarker<I> {
fn default() -> Self {
Self { _marker: core::marker::PhantomData }
}
}
impl<I: Ip> Debug for IpVersionMarker<I> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(f, "IpVersionMarker<{}>", I::NAME)
}
}
/// An IP address.
///
/// By default, the contained address types are [`Ipv4Addr`] and [`Ipv6Addr`].
/// However, any types can be provided. This is intended to support types like
/// `IpAddr<SpecifiedAddr<Ipv4Addr>, SpecifiedAddr<Ipv6Addr>>`. `From` is
/// implemented to support conversions in both directions between
/// `IpAddr<SpecifiedAddr<Ipv4Addr>, SpecifiedAddr<Ipv6Addr>>` and
/// `SpecifiedAddr<IpAddr>`, and similarly for other witness types.
#[allow(missing_docs)]
#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash, PartialOrd, Ord)]
pub enum IpAddr<V4 = Ipv4Addr, V6 = Ipv6Addr> {
V4(V4),
V6(V6),
}
impl<V4: Display, V6: Display> Display for IpAddr<V4, V6> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
match self {
Self::V4(v4) => v4.fmt(f),
Self::V6(v6) => v6.fmt(f),
}
}
}
impl<V4, V6> IpAddr<V4, V6> {
/// Transposes an `IpAddr` of a witness type to a witness type of an
/// `IpAddr`.
///
/// For example, `transpose` can be used to convert an
/// `IpAddr<SpecifiedAddr<Ipv4Addr>, SpecifiedAddr<Ipv6Addr>>` into a
/// `SpecifiedAddr<IpAddr<Ipv4Addr, Ipv6Addr>>`.
pub fn transpose<W: IpAddrWitness<V4 = V4, V6 = V6>>(self) -> W {
match self {
IpAddr::V4(addr) => W::from_v4(addr),
IpAddr::V6(addr) => W::from_v6(addr),
}
}
}
impl<A: IpAddress> From<A> for IpAddr {
#[inline]
fn from(addr: A) -> IpAddr {
addr.to_ip_addr()
}
}
impl<A: IpAddress, const N: usize> From<[A; N]> for IpAddr<[Ipv4Addr; N], [Ipv6Addr; N]> {
#[inline]
fn from(addrs: [A; N]) -> Self {
A::array_into_ip_addr(addrs)
}
}
#[cfg(feature = "std")]
impl From<net::IpAddr> for IpAddr {
#[inline]
fn from(addr: net::IpAddr) -> IpAddr {
match addr {
net::IpAddr::V4(addr) => IpAddr::V4(addr.into()),
net::IpAddr::V6(addr) => IpAddr::V6(addr.into()),
}
}
}
#[cfg(feature = "std")]
impl From<IpAddr> for net::IpAddr {
fn from(addr: IpAddr) -> net::IpAddr {
match addr {
IpAddr::V4(addr) => net::IpAddr::V4(addr.into()),
IpAddr::V6(addr) => net::IpAddr::V6(addr.into()),
}
}
}
impl IpVersion {
/// The number for this IP protocol version.
///
/// 4 for `V4` and 6 for `V6`.
#[inline]
pub fn version_number(self) -> u8 {
match self {
IpVersion::V4 => 4,
IpVersion::V6 => 6,
}
}
/// Is this IPv4?
#[inline]
pub fn is_v4(self) -> bool {
self == IpVersion::V4
}
/// Is this IPv6?
#[inline]
pub fn is_v6(self) -> bool {
self == IpVersion::V6
}
}
/// The maximum transmit unit, i.e., the maximum size of an entire IP packet
/// one link can transmit.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub struct Mtu(u32);
impl Mtu {
/// Creates MTU from the maximum size of an entire IP packet in bytes.
pub const fn new(mtu: u32) -> Self {
Self(mtu)
}
/// Gets the numeric value of the MTU.
pub const fn get(&self) -> u32 {
let Self(mtu) = self;
*mtu
}
/// Creates a new `Mtu` with the maximum possible representation.
pub const fn max() -> Self {
Self(u32::MAX)
}
/// Equivalent to [`Mtu::max`], but with a name more telling for usage in
/// contexts where many `Mtu` instances are composed to enforce a minimum
/// `Mtu` value.
pub const fn no_limit() -> Self {
Self::max()
}
}
impl From<Mtu> for u32 {
fn from(Mtu(mtu): Mtu) -> Self {
mtu
}
}
impl From<Mtu> for usize {
fn from(Mtu(mtu): Mtu) -> Self {
mtu.try_into().expect("mtu must fit usize")
}
}
/// A trait for IP protocol versions.
///
/// `Ip` encapsulates the details of a version of the IP protocol. It includes a
/// runtime representation of the protocol version ([`VERSION`]), the type of
/// addresses for this version ([`Addr`]), and a number of constants which exist
/// in both protocol versions. This trait is sealed, and there are guaranteed to
/// be no other implementors besides these. Code - including unsafe code - may
/// rely on this assumption for its correctness and soundness.
///
/// Note that the implementors of this trait cannot be instantiated; they only
/// exist at the type level.
///
/// [`VERSION`]: Ip::VERSION
/// [`Addr`]: Ip::Addr
pub trait Ip:
Sized
+ Clone
+ Copy
+ Debug
+ Default
+ Eq
+ Hash
+ Ord
+ PartialEq
+ PartialOrd
+ Send
+ Sync
+ sealed::Sealed
+ 'static
{
/// The IP version.
///
/// `V4` for IPv4 and `V6` for IPv6.
const VERSION: IpVersion;
/// The zero-sized-type IP version marker.
const VERSION_MARKER: IpVersionMarker<Self>;
/// The unspecified address.
///
/// This is 0.0.0.0 for IPv4 and :: for IPv6.
const UNSPECIFIED_ADDRESS: Self::Addr;
/// The default loopback address.
///
/// When sending packets to a loopback interface, this address is used as
/// the source address. It is an address in the [`LOOPBACK_SUBNET`].
///
/// [`LOOPBACK_SUBNET`]: Ip::LOOPBACK_SUBNET
const LOOPBACK_ADDRESS: SpecifiedAddr<Self::Addr>;
/// The subnet of loopback addresses.
///
/// Addresses in this subnet must not appear outside a host, and may only be
/// used for loopback interfaces.
const LOOPBACK_SUBNET: Subnet<Self::Addr>;
/// The subnet of multicast addresses.
const MULTICAST_SUBNET: Subnet<Self::Addr>;
/// The subnet of link-local unicast addresses.
///
/// Note that some multicast addresses are also link-local. In IPv4, these
/// are contained in the [link-local multicast subnet]. In IPv6, the
/// link-local multicast addresses are not organized into a single subnet;
/// instead, whether a multicast IPv6 address is link-local is a function of
/// its scope.
///
/// [link-local multicast subnet]: Ipv4::LINK_LOCAL_MULTICAST_SUBNET
const LINK_LOCAL_UNICAST_SUBNET: Subnet<Self::Addr>;
/// "IPv4" or "IPv6".
const NAME: &'static str;
/// The minimum link MTU for this version.
///
/// Every internet link supporting this IP version must have a maximum
/// transmission unit (MTU) of at least this many bytes. This MTU applies to
/// the size of an IP packet, and does not include any extra bytes used by
/// encapsulating packets (Ethernet frames, GRE packets, etc).
const MINIMUM_LINK_MTU: Mtu;
/// The address type for this IP version.
///
/// [`Ipv4Addr`] for IPv4 and [`Ipv6Addr`] for IPv6.
type Addr: IpAddress<Version = Self>
+ GenericOverIp<Self, Type = Self::Addr>
+ GenericOverIp<Ipv4, Type = Ipv4Addr>
+ GenericOverIp<Ipv6, Type = Ipv6Addr>;
/// Apply one of the given functions to the input and return the result.
///
/// This makes it possible to implement specialized behavior for IPv4 and
/// IPv6 versions that is more versatile than matching on [`Ip::VERSION`].
/// With a `match` expression, all branches must produce a value of the
/// same type. `map_ip` relaxes that restriction by instead requiring that
/// inputs and outputs are [`GenericOverIp`].
///
/// Using `map_ip`, you can write generic code with specialized
/// implementations for different IP versions where some or all of the input
/// and output arguments have a type parameter `I: Ip`. As an example,
/// consider the following:
///
/// ```
/// // Swaps the order of the addresses only if `I=Ipv4`.
/// fn swap_only_if_ipv4<I: Ip>(addrs: (I::Addr, I::Addr)) -> (I::Addr, I::Addr) {
/// I::map_ip::<(I::Addr, I::Addr), (I::Addr, I::Addr)>(
/// addrs,
/// |(a, b): (Ipv4Addr, Ipv4Addr)| (b, a),
/// |ab: (Ipv6Addr, Ipv6Addr)| ab
/// )
/// }
/// ```
///
/// Note that the input and output arguments both depend on the type
/// parameter `I`, but the closures take an [`Ipv4Addr`] or [`Ipv6Addr`].
///
/// Types that don't implement `GenericOverIp` can be wrapped in
/// [`IpInvariant`], which implements `GenericOverIp` assuming the type
/// inside doesn't have any IP-related components.
fn map_ip<
In: GenericOverIp<Self, Type = In> + GenericOverIp<Ipv4> + GenericOverIp<Ipv6>,
Out: GenericOverIp<Self, Type = Out> + GenericOverIp<Ipv4> + GenericOverIp<Ipv6>,
>(
input: In,
v4: impl FnOnce(<In as GenericOverIp<Ipv4>>::Type) -> <Out as GenericOverIp<Ipv4>>::Type,
v6: impl FnOnce(<In as GenericOverIp<Ipv6>>::Type) -> <Out as GenericOverIp<Ipv6>>::Type,
) -> Out;
/// Apply one of the given functions to the input and return the result.
///
/// This is similar to `map_ip`, except only the input type is required to
/// be [`GenericOverIp`], while the output type is invariant. This allows
/// callers to more conveniently write this use case without having to wrap
/// the result in a type like [`IpInvariant`].
fn map_ip_in<
In: GenericOverIp<Self, Type = In> + GenericOverIp<Ipv4> + GenericOverIp<Ipv6>,
Out,
>(
input: In,
v4: impl FnOnce(<In as GenericOverIp<Ipv4>>::Type) -> Out,
v6: impl FnOnce(<In as GenericOverIp<Ipv6>>::Type) -> Out,
) -> Out {
Self::map_ip::<_, IpInvariant<_>>(
input,
|input| IpInvariant(v4(input)),
|input| IpInvariant(v6(input)),
)
.into_inner()
}
/// Apply one of the given functions to the input and return the result.
///
/// This is similar to `map_ip`, except only the output type is required to
/// be [`GenericOverIp`], while the input type is invariant. This allows
/// callers to more conveniently write this use case without having to wrap
/// the input in a type like [`IpInvariant`].
fn map_ip_out<
In,
Out: GenericOverIp<Self, Type = Out> + GenericOverIp<Ipv4> + GenericOverIp<Ipv6>,
>(
input: In,
v4: impl FnOnce(In) -> <Out as GenericOverIp<Ipv4>>::Type,
v6: impl FnOnce(In) -> <Out as GenericOverIp<Ipv6>>::Type,
) -> Out {
Self::map_ip(
IpInvariant(input),
|IpInvariant(input)| v4(input),
|IpInvariant(input)| v6(input),
)
}
}
/// Invokes `I::map_ip`, passing the same function body as both arguments.
///
/// The first argument is always the `I` on which to invoke `I::map_ip`.
/// Optionally, this can include an alias (`I as IpAlias`) that should be bound
/// to `Ipv4` and `Ipv6` for each instantiation of the function body. (If the
/// `Ip` argument passed is a simple identifier, then it is automatically
/// aliased in this way.)
/// The next argument is the input to thread through `map_ip` to the function,
/// and the final argument is the function to be duplicated to serve as the
/// closures passed to `map_ip`.
///
/// This macro helps avoid code duplication when working with types that are
/// _not_ GenericOverIp, but have identical shapes such that the actual text of
/// the code you are writing is identical. This should be very rare, and is
/// generally limited to cases where we are interfacing with code that we don't
/// have the ability to make generic-over-IP -- when possible, it's better to
/// push `I: Ip` generics further through the types you are working with instead
/// so that you can avoid using `map_ip` entirely.
///
/// Example:
///
/// ```
/// // Imagine that `IpExt` is implemented for concrete `Ipv4` and `Ipv6` but
/// // not for blanket `I: Ip`.
/// struct Foo<I: IpExt>;
///
/// struct FooFactory;
/// impl FooFactory {
/// fn get<I: IpExt>(&self) -> Foo<I> {
/// unimplemented!()
/// }
/// }
///
/// struct FooSink<I: IpExt>;
/// impl<I: IpExt> FooSink<I> {
/// fn use_foo(&self, foo: Foo<I>) {
/// unimplemented!()
/// }
/// }
///
/// fn do_something<I: Ip>(factory: FooFactory) -> Foo<I> {
/// map_ip_twice!(
/// I,
/// (),
/// |()| {
/// // This works because even though the `I` from the function decl
/// // doesn't have an `IpExt` bound, it's aliased to either `Ipv4`
/// // or `Ipv6` here.
/// factory.get::<I>()
/// },
/// )
/// }
///
/// fn do_something_else<I: IpExt>(factory: FooFactory, foo_sink: FooSink<I>) {
/// map_ip_twice!(
/// // Introduce different alias to avoid shadowing `I`.
/// I as IpAlias,
/// (),
/// |()| {
/// let foo_with_orig_ip = factory.get::<I>();
/// // The fact that `I` was not shadowed allows us to make use of
/// // `foo_sink` by capture rather than needing to thread it
/// // through the generic-over-IP input.
/// foo_sink.use_foo(foo_with_orig_ip)
/// },
/// )
/// }
/// ```
#[macro_export]
macro_rules! map_ip_twice {
// This case triggers if we're passed an `Ip` implementor that is a simple
// identifier in-scope (e.g. `I`), which allows us to automatically alias it
// to `Ipv4` and `Ipv6` in each `$fn` instantiation.
($ip:ident, $input:expr, $fn:expr $(,)?) => {
$crate::map_ip_twice!($ip as $ip, $input, $fn)
};
// This case triggers if we're passed an `Ip` implementor that is _not_ an
// identifier, and thus we can't use it as the left-hand-side of a type
// alias binding (e.g. `<A as IpAddress>::Version`).
($ip:ty, $input:expr, $fn:expr $(,)?) => {
<$ip as $crate::ip::Ip>::map_ip($input, { $fn }, { $fn })
};
($ip:ty as $iptypealias:ident, $input:expr, $fn:expr $(,)?) => {
<$ip as $crate::ip::Ip>::map_ip(
$input,
{
#[allow(dead_code)]
type $iptypealias = $crate::ip::Ipv4;
$fn
},
{
#[allow(dead_code)]
type $iptypealias = $crate::ip::Ipv6;
$fn
},
)
};
}
/// IPv4.
///
/// `Ipv4` implements [`Ip`] for IPv4.
///
/// Note that this type has no value constructor. It is used purely at the type
/// level. Attempting to construct it by calling `Default::default` will panic.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum Ipv4 {}
impl Default for Ipv4 {
fn default() -> Ipv4 {
panic!("Ipv4 default")
}
}
impl sealed::Sealed for Ipv4 {}
impl Ip for Ipv4 {
const VERSION: IpVersion = IpVersion::V4;
const VERSION_MARKER: IpVersionMarker<Self> = IpVersionMarker::new();
// TODO(https://fxbug.dev/42163997): Document the standard in which this
// constant is defined.
const UNSPECIFIED_ADDRESS: Ipv4Addr = Ipv4Addr::new([0, 0, 0, 0]);
/// The default IPv4 address used for loopback, defined in [RFC 5735 Section
/// 3].
///
/// Note that while this address is the most commonly used address for
/// loopback traffic, any address in the [`LOOPBACK_SUBNET`] may be used.
///
/// [RFC 5735 Section 3]: https://datatracker.ietf.org/doc/html/rfc5735#section-3
/// [`LOOPBACK_SUBNET`]: Ipv4::LOOPBACK_SUBNET
const LOOPBACK_ADDRESS: SpecifiedAddr<Ipv4Addr> =
unsafe { SpecifiedAddr::new_unchecked(Ipv4Addr::new([127, 0, 0, 1])) };
/// The IPv4 loopback subnet, defined in [RFC 1122 Section 3.2.1.3].
///
/// [RFC 1122 Section 3.2.1.3]: https://www.rfc-editor.org/rfc/rfc1122.html#section-3.2.1.3
const LOOPBACK_SUBNET: Subnet<Ipv4Addr> =
Subnet { network: Ipv4Addr::new([127, 0, 0, 0]), prefix: 8 };
/// The IPv4 Multicast subnet, defined in [RFC 1112 Section 4].
///
/// [RFC 1112 Section 4]: https://www.rfc-editor.org/rfc/rfc1112.html#section-4
const MULTICAST_SUBNET: Subnet<Ipv4Addr> = Self::CLASS_D_SUBNET;
/// The subnet of link-local unicast IPv4 addresses, outlined in [RFC 3927
/// Section 2.1].
///
/// [RFC 3927 Section 2.1]: https://tools.ietf.org/html/rfc3927#section-2.1
const LINK_LOCAL_UNICAST_SUBNET: Subnet<Ipv4Addr> =
Subnet { network: Ipv4Addr::new([169, 254, 0, 0]), prefix: 16 };
const NAME: &'static str = "IPv4";
/// The IPv4 minimum link MTU.
///
/// Per [RFC 791 Section 3.2], "[\e\]very internet module must be able to
/// forward a datagram of 68 octets without further fragmentation."
///
/// [RFC 791 Section 3.2]: https://tools.ietf.org/html/rfc791#section-3.2
const MINIMUM_LINK_MTU: Mtu = Mtu(68);
type Addr = Ipv4Addr;
fn map_ip<
In: GenericOverIp<Self, Type = In> + GenericOverIp<Ipv4> + GenericOverIp<Ipv6>,
Out: GenericOverIp<Self, Type = Out> + GenericOverIp<Ipv4> + GenericOverIp<Ipv6>,
>(
input: In,
v4: impl FnOnce(<In as GenericOverIp<Ipv4>>::Type) -> <Out as GenericOverIp<Ipv4>>::Type,
_v6: impl FnOnce(<In as GenericOverIp<Ipv6>>::Type) -> <Out as GenericOverIp<Ipv6>>::Type,
) -> Out {
v4(input)
}
}
impl Ipv4 {
/// The limited broadcast address.
///
/// The limited broadcast address is considered to be a broadcast address on
/// all networks regardless of subnet address. This is distinct from the
/// subnet-specific broadcast address (e.g., 192.168.255.255 on the subnet
/// 192.168.0.0/16). It is defined in the [IANA IPv4 Special-Purpose Address
/// Registry].
///
/// [IANA IPv4 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
pub const LIMITED_BROADCAST_ADDRESS: SpecifiedAddr<Ipv4Addr> =
unsafe { SpecifiedAddr::new_unchecked(Ipv4Addr::new([255, 255, 255, 255])) };
/// The Class A subnet.
///
/// The Class A subnet is defined in [RFC 1812 section 2.2.5.1].
///
/// [RFC 1812 section 2.2.5.1]: https://datatracker.ietf.org/doc/html/rfc1812#section-2.2.5.1
pub const CLASS_A_SUBNET: Subnet<Ipv4Addr> =
Subnet { network: Ipv4Addr::new([0, 0, 0, 0]), prefix: 1 };
/// The Class B subnet.
///
/// The Class B subnet is defined in [RFC 1812 section 2.2.5.1].
///
/// [RFC 1812 section 2.2.5.1]: https://datatracker.ietf.org/doc/html/rfc1812#section-2.2.5.1
pub const CLASS_B_SUBNET: Subnet<Ipv4Addr> =
Subnet { network: Ipv4Addr::new([128, 0, 0, 0]), prefix: 2 };
/// The Class C subnet.
///
/// The Class C subnet is defined in [RFC 1812 section 2.2.5.1].
///
/// [RFC 1812 section 2.2.5.1]: https://datatracker.ietf.org/doc/html/rfc1812#section-2.2.5.1
pub const CLASS_C_SUBNET: Subnet<Ipv4Addr> =
Subnet { network: Ipv4Addr::new([192, 0, 0, 0]), prefix: 3 };
/// The Class D subnet.
///
/// This subnet is also known as the multicast subnet.
///
/// The Class D subnet is defined in [RFC 1812 section 2.2.5.1].
///
/// [RFC 1812 section 2.2.5.1]: https://datatracker.ietf.org/doc/html/rfc1812#section-2.2.5.1
pub const CLASS_D_SUBNET: Subnet<Ipv4Addr> =
Subnet { network: Ipv4Addr::new([224, 0, 0, 0]), prefix: 4 };
/// The Class E subnet.
///
/// The Class E subnet is meant for experimental purposes, and should not be
/// used on the general internet. [RFC 1812 Section 5.3.7] suggests that
/// routers SHOULD discard packets with a source address in the Class E
/// subnet. The Class E subnet is defined in [RFC 1112 Section 4].
///
/// [RFC 1812 Section 5.3.7]: https://tools.ietf.org/html/rfc1812#section-5.3.7
/// [RFC 1112 Section 4]: https://datatracker.ietf.org/doc/html/rfc1112#section-4
pub const CLASS_E_SUBNET: Subnet<Ipv4Addr> =
Subnet { network: Ipv4Addr::new([240, 0, 0, 0]), prefix: 4 };
/// The subnet of link-local multicast addresses, outlined in [RFC 5771
/// Section 4].
///
/// [RFC 5771 Section 4]: https://tools.ietf.org/html/rfc5771#section-4
pub const LINK_LOCAL_MULTICAST_SUBNET: Subnet<Ipv4Addr> =
Subnet { network: Ipv4Addr::new([224, 0, 0, 0]), prefix: 24 };
/// The multicast address subscribed to by all systems on the local network,
/// defined in the [IPv4 Multicast Address Space Registry].
///
/// [IPv4 Multicast Address Space Registry]: https://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml
pub const ALL_SYSTEMS_MULTICAST_ADDRESS: MulticastAddr<Ipv4Addr> =
unsafe { MulticastAddr::new_unchecked(Ipv4Addr::new([224, 0, 0, 1])) };
/// The multicast address subscribed to by all routers on the local network,
/// defined in the [IPv4 Multicast Address Space Registry].
///
/// [IPv4 Multicast Address Space Registry]: https://www.iana.org/assignments/multicast-addresses/multicast-addresses.xhtml
pub const ALL_ROUTERS_MULTICAST_ADDRESS: MulticastAddr<Ipv4Addr> =
unsafe { MulticastAddr::new_unchecked(Ipv4Addr::new([224, 0, 0, 2])) };
}
/// IPv6.
///
/// `Ipv6` implements [`Ip`] for IPv6.
///
/// Note that this type has no value constructor. It is used purely at the type
/// level. Attempting to construct it by calling `Default::default` will panic.
#[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub enum Ipv6 {}
impl Default for Ipv6 {
fn default() -> Ipv6 {
panic!("Ipv6 default")
}
}
impl sealed::Sealed for Ipv6 {}
impl Ip for Ipv6 {
const VERSION: IpVersion = IpVersion::V6;
const VERSION_MARKER: IpVersionMarker<Self> = IpVersionMarker::new();
/// The unspecified IPv6 address, defined in [RFC 4291 Section 2.5.2].
///
/// Per RFC 4291:
///
/// > The address 0:0:0:0:0:0:0:0 is called the unspecified address. It
/// > must never be assigned to any node. It indicates the absence of an
/// > address. One example of its use is in the Source Address field of any
/// > IPv6 packets sent by an initializing host before it has learned its
/// > own address.
/// >
/// > The unspecified address must not be used as the destination address of
/// > IPv6 packets or in IPv6 Routing headers. An IPv6 packet with a source
/// > address of unspecified must never be forwarded by an IPv6 router.
///
/// [RFC 4291 Section 2.5.2]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.2
const UNSPECIFIED_ADDRESS: Ipv6Addr = Ipv6Addr::new([0; 8]);
/// The loopback IPv6 address, defined in [RFC 4291 Section 2.5.3].
///
/// Per RFC 4291:
///
/// > The unicast address 0:0:0:0:0:0:0:1 is called the loopback address.
/// > It may be used by a node to send an IPv6 packet to itself. It must
/// > not be assigned to any physical interface. It is treated as having
/// > Link-Local scope, and may be thought of as the Link-Local unicast
/// > address of a virtual interface (typically called the "loopback
/// > interface") to an imaginary link that goes nowhere.
/// >
/// > The loopback address must not be used as the source address in IPv6
/// > packets that are sent outside of a single node. An IPv6 packet with
/// > a destination address of loopback must never be sent outside of a
/// > single node and must never be forwarded by an IPv6 router. A packet
/// > received on an interface with a destination address of loopback must
/// > be dropped.
///
/// [RFC 4291 Section 2.5.3]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.3
const LOOPBACK_ADDRESS: SpecifiedAddr<Ipv6Addr> =
unsafe { SpecifiedAddr::new_unchecked(Ipv6Addr::new([0, 0, 0, 0, 0, 0, 0, 1])) };
/// The subnet of loopback IPv6 addresses, defined in [RFC 4291 Section 2.4].
///
/// Note that the IPv6 loopback subnet is a /128, meaning that it contains
/// only one address - the [`LOOPBACK_ADDRESS`].
///
/// [RFC 4291 Section 2.4]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.4
/// [`LOOPBACK_ADDRESS`]: Ipv6::LOOPBACK_ADDRESS
const LOOPBACK_SUBNET: Subnet<Ipv6Addr> =
Subnet { network: Ipv6Addr::new([0, 0, 0, 0, 0, 0, 0, 1]), prefix: 128 };
/// The subnet of multicast IPv6 addresses, defined in [RFC 4291 Section
/// 2.7].
///
/// [RFC 4291 Section 2.7]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.7
const MULTICAST_SUBNET: Subnet<Ipv6Addr> =
Subnet { network: Ipv6Addr::new([0xff00, 0, 0, 0, 0, 0, 0, 0]), prefix: 8 };
/// The subnet of link-local unicast addresses, defined in [RFC 4291 Section
/// 2.4].
///
/// Note that multicast addresses can also be link-local. However, there is
/// no single subnet of link-local multicast addresses. For more details on
/// link-local multicast addresses, see [RFC 4291 Section 2.7].
///
/// [RFC 4291 Section 2.4]: https://tools.ietf.org/html/rfc4291#section-2.4
/// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
const LINK_LOCAL_UNICAST_SUBNET: Subnet<Ipv6Addr> =
Subnet { network: Ipv6Addr::new([0xfe80, 0, 0, 0, 0, 0, 0, 0]), prefix: 10 };
const NAME: &'static str = "IPv6";
/// The IPv6 minimum link MTU, defined in [RFC 8200 Section 5].
///
/// Per RFC 8200:
///
/// > IPv6 requires that every link in the Internet have an MTU of 1280
/// > octets or greater. This is known as the IPv6 minimum link MTU. On any
/// > link that cannot convey a 1280-octet packet in one piece, link-
/// > specific fragmentation and reassembly must be provided at a layer
/// > below IPv6.
///
/// [RFC 8200 Section 5]: https://tools.ietf.org/html/rfc8200#section-5
const MINIMUM_LINK_MTU: Mtu = Mtu(1280);
type Addr = Ipv6Addr;
fn map_ip<
In: GenericOverIp<Self, Type = In> + GenericOverIp<Ipv4> + GenericOverIp<Ipv6>,
Out: GenericOverIp<Self, Type = Out> + GenericOverIp<Ipv4> + GenericOverIp<Ipv6>,
>(
input: In,
_v4: impl FnOnce(<In as GenericOverIp<Ipv4>>::Type) -> <Out as GenericOverIp<Ipv4>>::Type,
v6: impl FnOnce(<In as GenericOverIp<Ipv6>>::Type) -> <Out as GenericOverIp<Ipv6>>::Type,
) -> Out {
v6(input)
}
}
impl Ipv6 {
/// The loopback address represented as a [`UnicastAddr`].
///
/// This is equivalent to [`LOOPBACK_ADDRESS`], except that it is a
/// [`UnicastAddr`] witness type.
///
/// [`LOOPBACK_ADDRESS`]: Ipv6::LOOPBACK_ADDRESS
pub const LOOPBACK_IPV6_ADDRESS: UnicastAddr<Ipv6Addr> =
unsafe { UnicastAddr::new_unchecked(Ipv6::LOOPBACK_ADDRESS.0) };
/// The IPv6 All Nodes multicast address in link-local scope, defined in
/// [RFC 4291 Section 2.7.1].
///
/// [RFC 4291 Section 2.7.1]: https://tools.ietf.org/html/rfc4291#section-2.7.1
pub const ALL_NODES_LINK_LOCAL_MULTICAST_ADDRESS: MulticastAddr<Ipv6Addr> =
unsafe { MulticastAddr::new_unchecked(Ipv6Addr::new([0xff02, 0, 0, 0, 0, 0, 0, 1])) };
/// The IPv6 All Routers multicast address in link-local scope, defined in
/// [RFC 4291 Section 2.7.1].
///
/// [RFC 4291 Section 2.7.1]: https://tools.ietf.org/html/rfc4291#section-2.7.1
pub const ALL_ROUTERS_LINK_LOCAL_MULTICAST_ADDRESS: MulticastAddr<Ipv6Addr> =
unsafe { MulticastAddr::new_unchecked(Ipv6Addr::new([0xff02, 0, 0, 0, 0, 0, 0, 2])) };
/// The (deprecated) subnet of site-local unicast addresses, defined in [RFC
/// 3513 Section 2.5.6].
///
/// The site-local unicast subnet was deprecated in [RFC 3879]:
///
/// > The special behavior of this prefix MUST no longer be supported in new
/// > implementations. The prefix MUST NOT be reassigned for other use
/// > except by a future IETF standards action... However, router
/// > implementations SHOULD be configured to prevent routing of this prefix
/// > by default.
///
/// [RFC 3513 Section 2.5.6]: https://tools.ietf.org/html/rfc3513#section-2.5.6
/// [RFC 3879]: https://tools.ietf.org/html/rfc3879
pub const SITE_LOCAL_UNICAST_SUBNET: Subnet<Ipv6Addr> =
Subnet { network: Ipv6Addr::new([0xfec0, 0, 0, 0, 0, 0, 0, 0]), prefix: 10 };
/// The length, in bits, of the interface identifier portion of unicast IPv6
/// addresses *except* for addresses which start with the binary value 000.
///
/// According to [RFC 4291 Section 2.5.1], "\[f\]or all unicast addresses,
/// except those that start with the binary value 000, Interface IDs are
/// required to be 64 bits."
///
/// Note that, per [RFC 4862 Section 5.5.3]:
///
/// > a future revision of the address architecture \[RFC4291\] and a future
/// > link-type-specific document, which will still be consistent with each
/// > other, could potentially allow for an interface identifier of length
/// > other than the value defined in the current documents. Thus, an
/// > implementation should not assume a particular constant. Rather, it
/// > should expect any lengths of interface identifiers.
///
/// In other words, this constant may be used to generate addresses or
/// subnet prefix lengths, but should *not* be used to validate addresses or
/// subnet prefix lengths generated by other software or other machines, as
/// it might be valid for other software or other machines to use an
/// interface identifier length different from this one.
///
/// [RFC 4291 Section 2.5.1]: https://tools.ietf.org/html/rfc4291#section-2.5.1
/// [RFC 4862 Section 5.5.3]: https://tools.ietf.org/html/rfc4862#section-5.5.3
pub const UNICAST_INTERFACE_IDENTIFIER_BITS: u8 = 64;
/// The length, in bits, of an IPv6 flow label, defined in [RFC 6437 Section 2].
///
/// [RFC 6437 Section 2]: https://tools.ietf.org/html/rfc6437#section-2
pub const FLOW_LABEL_BITS: u8 = 20;
}
/// An IPv4 or IPv6 address.
///
/// `IpAddress` is implemented by [`Ipv4Addr`] and [`Ipv6Addr`]. It is sealed,
/// and there are guaranteed to be no other implementors besides these. Code -
/// including unsafe code - may rely on this assumption for its correctness and
/// soundness.
pub trait IpAddress:
Sized
+ Eq
+ PartialEq
+ PartialOrd
+ Ord
+ Hash
+ Copy
+ Display
+ Debug
+ Default
+ Sync
+ Send
+ LinkLocalAddress
+ ScopeableAddress
+ GenericOverIp<Self::Version, Type = Self>
+ GenericOverIp<Ipv4, Type = Ipv4Addr>
+ GenericOverIp<Ipv6, Type = Ipv6Addr>
+ sealed::Sealed
+ 'static
{
/// The number of bytes in an address of this type.
///
/// 4 for IPv4 and 16 for IPv6.
const BYTES: u8;
/// The IP version type of this address.
///
/// [`Ipv4`] for [`Ipv4Addr`] and [`Ipv6`] for [`Ipv6Addr`].
type Version: Ip<Addr = Self>;
/// Gets the underlying bytes of the address.
fn bytes(&self) -> &[u8];
/// Masks off the top bits of the address.
///
/// Returns a copy of `self` where all but the top `bits` bits are set to
/// 0.
///
/// # Panics
///
/// `mask` panics if `bits` is out of range - if it is greater than 32 for
/// IPv4 or greater than 128 for IPv6.
fn mask(&self, bits: u8) -> Self;
/// Converts a statically-typed IP address into a dynamically-typed one.
fn to_ip_addr(&self) -> IpAddr;
/// Is this a loopback address?
///
/// `is_loopback` returns `true` if this address is a member of the
/// [`LOOPBACK_SUBNET`].
///
/// [`LOOPBACK_SUBNET`]: Ip::LOOPBACK_SUBNET
#[inline]
fn is_loopback(&self) -> bool {
Self::Version::LOOPBACK_SUBNET.contains(self)
}
/// Calculates the common prefix length between this address and `other`.
fn common_prefix_len(&self, other: &Self) -> u8;
/// Is this a unicast address contained in the given subnet?
///
/// `is_unicast_in_subnet` returns `true` if the given subnet contains this
/// address and the address is none of:
/// - a multicast address
/// - the IPv4 limited broadcast address
/// - the IPv4 subnet-specific broadcast address for the given subnet
/// - an IPv4 address whose host bits (those bits following the network
/// prefix) are all 0
/// - the unspecified address
/// - an IPv4 Class E address
///
/// Note two exceptions to these rules: If `subnet` is an IPv4 /32, then the
/// single unicast address in the subnet is also technically the subnet
/// broadcast address. If `subnet` is an IPv4 /31, then both addresses in
/// that subnet are broadcast addresses. In either case, the "no
/// subnet-specific broadcast" and "no address with a host part of all
/// zeroes" rules don't apply. Note further that this exception *doesn't*
/// apply to the unspecified address, which is never considered a unicast
/// address regardless of what subnet it's in.
///
/// # RFC Deep Dive
///
/// ## IPv4 addresses ending in zeroes
///
/// In this section, we justify the rule that IPv4 addresses whose host bits
/// are all 0 are not considered unicast addresses.
///
/// In earlier standards, an IPv4 address whose bits were all 0 after the
/// network prefix (e.g., 192.168.0.0 in the subnet 192.168.0.0/16) were a
/// form of "network-prefix-directed" broadcast addresses. Similarly,
/// 0.0.0.0 was considered a form of "limited broadcast address" (equivalent
/// to 255.255.255.255). These have since been deprecated (in the case of
/// 0.0.0.0, it is now considered the "unspecified" address).
///
/// As evidence that this deprecation is official, consider [RFC 1812
/// Section 5.3.5]. In reference to these types of addresses, it states that
/// "packets addressed to any of these addresses SHOULD be silently
/// discarded \[by routers\]". This not only deprecates them as broadcast
/// addresses, but also as unicast addresses (after all, unicast addresses
/// are not particularly useful if packets destined to them are discarded by
/// routers).
///
/// ## IPv4 /31 and /32 exceptions
///
/// In this section, we justify the exceptions that all addresses in IPv4
/// /31 and /32 subnets are considered unicast.
///
/// For /31 subnets, the case is easy. [RFC 3021 Section 2.1] states that
/// both addresses in a /31 subnet "MUST be interpreted as host addresses."
///
/// For /32, the case is a bit more vague. RFC 3021 makes no mention of /32
/// subnets. However, the same reasoning applies - if an exception is not
/// made, then there do not exist any host addresses in a /32 subnet. [RFC
/// 4632 Section 3.1] also vaguely implies this interpretation by referring
/// to addresses in /32 subnets as "host routes."
///
/// [RFC 1812 Section 5.3.5]: https://tools.ietf.org/html/rfc1812#page-92
/// [RFC 4632 Section 3.1]: https://tools.ietf.org/html/rfc4632#section-3.1
fn is_unicast_in_subnet(&self, subnet: &Subnet<Self>) -> bool;
// Functions used to implement internal types. These functions aren't
// particularly useful to users, but allow us to implement certain
// specialization-like behavior without actually relying on the unstable
// `specialization` feature.
#[doc(hidden)]
fn subnet_into_either(subnet: Subnet<Self>) -> SubnetEither;
#[doc(hidden)]
fn array_into_ip_addr<const N: usize>(addrs: [Self; N])
-> IpAddr<[Ipv4Addr; N], [Ipv6Addr; N]>;
}
impl<A: IpAddress> SpecifiedAddress for A {
/// Is this an address other than the unspecified address?
///
/// `is_specified` returns true if `self` is not equal to
/// [`A::Version::UNSPECIFIED_ADDRESS`].
///
/// [`A::Version::UNSPECIFIED_ADDRESS`]: Ip::UNSPECIFIED_ADDRESS
#[inline]
fn is_specified(&self) -> bool {
self != &A::Version::UNSPECIFIED_ADDRESS
}
}
/// Maps a method over an `IpAddr`, calling it after matching on the type of IP
/// address.
macro_rules! map_ip_addr {
($val:expr, $method:ident) => {
match $val {
IpAddr::V4(a) => a.$method(),
IpAddr::V6(a) => a.$method(),
}
};
}
impl SpecifiedAddress for IpAddr {
/// Is this an address other than the unspecified address?
///
/// `is_specified` returns true if `self` is not equal to
/// [`Ip::UNSPECIFIED_ADDRESS`] for the IP version of this address.
#[inline]
fn is_specified(&self) -> bool {
map_ip_addr!(self, is_specified)
}
}
impl<A: IpAddress> MulticastAddress for A {
/// Is this address in the multicast subnet?
///
/// `is_multicast` returns true if `self` is in
/// [`A::Version::MULTICAST_SUBNET`].
///
/// [`A::Version::MULTICAST_SUBNET`]: Ip::MULTICAST_SUBNET
#[inline]
fn is_multicast(&self) -> bool {
<A as IpAddress>::Version::MULTICAST_SUBNET.contains(self)
}
}
impl MulticastAddress for IpAddr {
/// Is this an address in the multicast subnet?
///
/// `is_multicast` returns true if `self` is in [`Ip::MULTICAST_SUBNET`] for
/// the IP version of this address.
#[inline]
fn is_multicast(&self) -> bool {
map_ip_addr!(self, is_multicast)
}
}
impl LinkLocalAddress for Ipv4Addr {
/// Is this address in the link-local subnet?
///
/// `is_link_local` returns true if `self` is in
/// [`Ipv4::LINK_LOCAL_UNICAST_SUBNET`] or
/// [`Ipv4::LINK_LOCAL_MULTICAST_SUBNET`].
#[inline]
fn is_link_local(&self) -> bool {
Ipv4::LINK_LOCAL_UNICAST_SUBNET.contains(self)
|| Ipv4::LINK_LOCAL_MULTICAST_SUBNET.contains(self)
}
}
impl LinkLocalAddress for Ipv6Addr {
/// Is this address in the link-local subnet?
///
/// `is_link_local` returns true if `self` is in
/// [`Ipv6::LINK_LOCAL_UNICAST_SUBNET`], is a multicast address whose scope
/// is link-local, or is the address [`Ipv6::LOOPBACK_ADDRESS`] (per [RFC
/// 4291 Section 2.5.3], the loopback address is considered to have
/// link-local scope).
///
/// [RFC 4291 Section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
#[inline]
fn is_link_local(&self) -> bool {
Ipv6::LINK_LOCAL_UNICAST_SUBNET.contains(self)
|| (self.is_multicast() && self.scope() == Ipv6Scope::LinkLocal)
|| self == Ipv6::LOOPBACK_ADDRESS.deref()
}
}
impl LinkLocalAddress for IpAddr {
/// Is this address link-local?
#[inline]
fn is_link_local(&self) -> bool {
map_ip_addr!(self, is_link_local)
}
}
impl<A: IpAddress> MappedAddress for A {
/// Is this address non-mapped?
///
/// For IPv4 addresses, this always returns true because they do not have a
/// mapped address space.
///
/// For Ipv6 addresses, this returns true if `self` is outside of the IPv4
/// mapped Ipv6 address subnet, as defined in [RFC 4291 Section 2.5.5.2]
/// (e.g. `::FFFF:0:0/96`).
///
/// [RFC 4291 Section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
#[inline]
fn is_non_mapped(&self) -> bool {
A::Version::map_ip(self, |_addr_v4| true, |addr_v6| addr_v6.to_ipv4_mapped().is_none())
}
}
impl MappedAddress for IpAddr {
/// Is this address non-mapped?
#[inline]
fn is_non_mapped(&self) -> bool {
map_ip_addr!(self, is_non_mapped)
}
}
impl<I: Ip> GenericOverIp<I> for Ipv4Addr {
type Type = I::Addr;
}
impl<I: Ip> GenericOverIp<I> for Ipv6Addr {
type Type = I::Addr;
}
impl ScopeableAddress for Ipv4Addr {
type Scope = ();
/// The scope of this address.
///
/// Although IPv4 defines a link local subnet, IPv4 addresses are always
/// considered to be in the global scope.
fn scope(&self) {}
}
/// The list of IPv6 scopes.
///
/// These scopes are defined by [RFC 4291 Section 2.7].
///
/// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum Ipv6Scope {
/// The interface-local scope.
InterfaceLocal,
/// The link-local scope.
LinkLocal,
/// The admin-local scope.
AdminLocal,
/// The (deprecated) site-local scope.
///
/// The site-local scope was deprecated in [RFC 3879]. While this scope
/// is returned for both site-local unicast and site-local multicast
/// addresses, RFC 3879 says the following about site-local unicast addresses
/// in particular ("this prefix" refers to the [site-local unicast subnet]):
///
/// > The special behavior of this prefix MUST no longer be supported in new
/// > implementations. The prefix MUST NOT be reassigned for other use
/// > except by a future IETF standards action... However, router
/// > implementations SHOULD be configured to prevent routing of this prefix
/// > by default.
///
/// [RFC 3879]: https://tools.ietf.org/html/rfc3879
/// [site-local unicast subnet]: Ipv6::SITE_LOCAL_UNICAST_SUBNET
SiteLocal,
/// The organization-local scope.
OrganizationLocal,
/// The global scope.
Global,
/// Scopes which are reserved for future use by [RFC 4291 Section 2.7].
///
/// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
Reserved(Ipv6ReservedScope),
/// Scopes which are available for local definition by administrators.
Unassigned(Ipv6UnassignedScope),
}
/// The list of IPv6 scopes which are reserved for future use by [RFC 4291
/// Section 2.7].
///
/// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum Ipv6ReservedScope {
/// The scope with numerical value 0.
Scope0 = 0,
/// The scope with numerical value 3.
Scope3 = 3,
/// The scope with numerical value 0xF.
ScopeF = 0xF,
}
/// The list of IPv6 scopes which are available for local definition by
/// administrators.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum Ipv6UnassignedScope {
/// The scope with numerical value 6.
Scope6 = 6,
/// The scope with numerical value 7.
Scope7 = 7,
/// The scope with numerical value 9.
Scope9 = 9,
/// The scope with numerical value 0xA.
ScopeA = 0xA,
/// The scope with numerical value 0xB.
ScopeB = 0xB,
/// The scope with numerical value 0xC.
ScopeC = 0xC,
/// The scope with numerical value 0xD.
ScopeD = 0xD,
}
impl Scope for Ipv6Scope {
#[inline]
fn can_have_zone(&self) -> bool {
// Per RFC 6874 Section 4:
//
// > [I]mplementations MUST NOT allow use of this format except for
// > well-defined usages, such as sending to link-local addresses under
// > prefix fe80::/10. At the time of writing, this is the only
// > well-defined usage known.
//
// While this directive applies particularly to the human-readable
// string representation of IPv6 addresses and zone identifiers, it
// seems reasonable to limit the in-memory representation in the same
// way.
//
// Note that, if interpreted literally, this quote would bar the use of
// zone identifiers on link-local multicast addresses (they are not
// under the prefix fe80::/10). However, it seems clear that this is not
// the interpretation that was intended. Link-local multicast addresses
// have the same need for a zone identifier as link-local unicast
// addresses, and indeed, real systems like Linux allow link-local
// multicast addresses to be accompanied by zone identifiers.
matches!(self, Ipv6Scope::LinkLocal)
}
}
impl Ipv6Scope {
/// The multicast scope ID of an interface-local address, defined in [RFC
/// 4291 Section 2.7].
///
/// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
pub const MULTICAST_SCOPE_ID_INTERFACE_LOCAL: u8 = 1;
/// The multicast scope ID of a link-local address, defined in [RFC 4291
/// Section 2.7].
///
/// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
pub const MULTICAST_SCOPE_ID_LINK_LOCAL: u8 = 2;
/// The multicast scope ID of an admin-local address, defined in [RFC 4291
/// Section 2.7].
///
/// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
pub const MULTICAST_SCOPE_ID_ADMIN_LOCAL: u8 = 4;
/// The multicast scope ID of a (deprecated) site-local address, defined in
/// [RFC 4291 Section 2.7].
///
/// Note that site-local addresses are deprecated.
///
/// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
pub const MULTICAST_SCOPE_ID_SITE_LOCAL: u8 = 5;
/// The multicast scope ID of an organization-local address, defined in [RFC
/// 4291 Section 2.7].
///
/// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
pub const MULTICAST_SCOPE_ID_ORG_LOCAL: u8 = 8;
/// The multicast scope ID of global address, defined in [RFC 4291 Section
/// 2.7].
///
/// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
pub const MULTICAST_SCOPE_ID_GLOBAL: u8 = 0xE;
/// The ID used to indicate this scope in a multicast IPv6 address.
///
/// Per [RFC 4291 Section 2.7], the bits of a multicast IPv6 address are
/// laid out as follows:
///
/// ```text
/// | 8 | 4 | 4 | 112 bits |
/// +------ -+----+----+---------------------------------------------+
/// |11111111|flgs|scop| group ID |
/// +--------+----+----+---------------------------------------------+
/// ```
///
/// The 4-bit scop field encodes the scope of the address.
/// `multicast_scope_id` returns the numerical value used to encode this
/// scope in the scop field of a multicast address.
///
/// [RFC 4291 Section 2.7]: https://tools.ietf.org/html/rfc4291#section-2.7
pub fn multicast_scope_id(&self) -> u8 {
match self {
Ipv6Scope::Reserved(Ipv6ReservedScope::Scope0) => 0,
Ipv6Scope::InterfaceLocal => Self::MULTICAST_SCOPE_ID_INTERFACE_LOCAL,
Ipv6Scope::LinkLocal => Self::MULTICAST_SCOPE_ID_LINK_LOCAL,
Ipv6Scope::Reserved(Ipv6ReservedScope::Scope3) => 3,
Ipv6Scope::AdminLocal => Self::MULTICAST_SCOPE_ID_ADMIN_LOCAL,
Ipv6Scope::SiteLocal => Self::MULTICAST_SCOPE_ID_SITE_LOCAL,
Ipv6Scope::Unassigned(Ipv6UnassignedScope::Scope6) => 6,
Ipv6Scope::Unassigned(Ipv6UnassignedScope::Scope7) => 7,
Ipv6Scope::OrganizationLocal => Self::MULTICAST_SCOPE_ID_ORG_LOCAL,
Ipv6Scope::Unassigned(Ipv6UnassignedScope::Scope9) => 9,
Ipv6Scope::Unassigned(Ipv6UnassignedScope::ScopeA) => 0xA,
Ipv6Scope::Unassigned(Ipv6UnassignedScope::ScopeB) => 0xB,
Ipv6Scope::Unassigned(Ipv6UnassignedScope::ScopeC) => 0xC,
Ipv6Scope::Unassigned(Ipv6UnassignedScope::ScopeD) => 0xD,
Ipv6Scope::Global => Self::MULTICAST_SCOPE_ID_GLOBAL,
Ipv6Scope::Reserved(Ipv6ReservedScope::ScopeF) => 0xF,
}
}
}
impl ScopeableAddress for Ipv6Addr {
type Scope = Ipv6Scope;
/// The scope of this address.
#[inline]
fn scope(&self) -> Ipv6Scope {
if self.is_multicast() {
use Ipv6ReservedScope::*;
use Ipv6Scope::*;
use Ipv6UnassignedScope::*;
// The "scop" field of a multicast address is the last 4 bits of the
// second byte of the address (see
// https://tools.ietf.org/html/rfc4291#section-2.7).
match self.0[1] & 0xF {
0 => Reserved(Scope0),
Ipv6Scope::MULTICAST_SCOPE_ID_INTERFACE_LOCAL => InterfaceLocal,
Ipv6Scope::MULTICAST_SCOPE_ID_LINK_LOCAL => LinkLocal,
3 => Reserved(Scope3),
Ipv6Scope::MULTICAST_SCOPE_ID_ADMIN_LOCAL => AdminLocal,
Ipv6Scope::MULTICAST_SCOPE_ID_SITE_LOCAL => SiteLocal,
6 => Unassigned(Scope6),
7 => Unassigned(Scope7),
Ipv6Scope::MULTICAST_SCOPE_ID_ORG_LOCAL => OrganizationLocal,
9 => Unassigned(Scope9),
0xA => Unassigned(ScopeA),
0xB => Unassigned(ScopeB),
0xC => Unassigned(ScopeC),
0xD => Unassigned(ScopeD),
Ipv6Scope::MULTICAST_SCOPE_ID_GLOBAL => Global,
0xF => Reserved(ScopeF),
_ => unreachable!(),
}
} else if self.is_link_local() {
Ipv6Scope::LinkLocal
} else if self.is_site_local() {
Ipv6Scope::SiteLocal
} else {
Ipv6Scope::Global
}
}
}
impl Scope for IpAddr<(), Ipv6Scope> {
#[inline]
fn can_have_zone(&self) -> bool {
match self {
IpAddr::V4(scope) => scope.can_have_zone(),
IpAddr::V6(scope) => scope.can_have_zone(),
}
}
}
impl ScopeableAddress for IpAddr {
type Scope = IpAddr<(), Ipv6Scope>;
#[inline]
fn scope(&self) -> IpAddr<(), Ipv6Scope> {
match self {
IpAddr::V4(_) => IpAddr::V4(()),
IpAddr::V6(addr) => IpAddr::V6(addr.scope()),
}
}
}
// The definition of each trait for `IpAddr` is equal to the definition of that
// trait for whichever of `Ipv4Addr` and `Ipv6Addr` is actually present in the
// enum. Thus, we can convert between `$witness<IpvXAddr>`, `$witness<IpAddr>`,
// and `IpAddr<$witness<Ipv4Addr>, $witness<Ipv6Addr>>` arbitrarily.
/// Provides various useful `From` impls for an IP address witness type.
///
/// `impl_from_witness!($witness)` implements:
/// - `From<IpAddr<$witness<Ipv4Addr>, $witness<Ipv6Addr>>> for
/// $witness<IpAddr>`
/// - `From<$witness<IpAddr>> for IpAddr<$witness<Ipv4Addr>,
/// $witness<Ipv6Addr>>`
/// - `From<$witness<A>> for $witness<A>`
/// - `From<$witness<Ipv4Addr>> for IpAddr`
/// - `From<$witness<Ipv6Addr>> for IpAddr`
/// - `TryFrom<Ipv4Addr> for $witness<Ipv4Addr>`
/// - `TryFrom<Ipv6Addr> for $witness<Ipv6Addr>`
///
/// `impl_from_witness!($witness, $ipaddr, $new_unchecked)` implements:
/// - `From<$witness<$ipaddr>> for $witness<IpAddr>`
/// - `From<$witness<$ipaddr>> for $ipaddr`
/// - `TryFrom<$ipaddr> for $witness<$ipaddr>`
macro_rules! impl_from_witness {
($witness:ident, $witness_trait:ident) => {
impl From<IpAddr<$witness<Ipv4Addr>, $witness<Ipv6Addr>>> for $witness<IpAddr> {
fn from(addr: IpAddr<$witness<Ipv4Addr>, $witness<Ipv6Addr>>) -> $witness<IpAddr> {
unsafe {
Witness::new_unchecked(match addr {
IpAddr::V4(addr) => IpAddr::V4(addr.get()),
IpAddr::V6(addr) => IpAddr::V6(addr.get()),
})
}
}
}
impl From<$witness<IpAddr>> for IpAddr<$witness<Ipv4Addr>, $witness<Ipv6Addr>> {
fn from(addr: $witness<IpAddr>) -> IpAddr<$witness<Ipv4Addr>, $witness<Ipv6Addr>> {
unsafe {
match addr.get() {
IpAddr::V4(addr) => IpAddr::V4(Witness::new_unchecked(addr)),
IpAddr::V6(addr) => IpAddr::V6(Witness::new_unchecked(addr)),
}
}
}
}
impl<A: IpAddress> From<$witness<A>> for $witness<IpAddr> {
fn from(addr: $witness<A>) -> $witness<IpAddr> {
unsafe { Witness::new_unchecked(addr.to_ip_addr()) }
}
}
impl<A: IpAddress> From<$witness<A>> for IpAddr<$witness<Ipv4Addr>, $witness<Ipv6Addr>> {
fn from(addr: $witness<A>) -> IpAddr<$witness<Ipv4Addr>, $witness<Ipv6Addr>> {
let addr: $witness<IpAddr> = addr.into();
addr.into()
}
}
// NOTE: Orphan rules prevent implementing `From` for `A: IpAddress`.
impl<A: Into<Ipv4Addr> + $witness_trait + Copy> From<$witness<A>> for Ipv4Addr {
fn from(addr: $witness<A>) -> Ipv4Addr {
let addr: A = addr.get();
addr.into()
}
}
impl<A: Into<Ipv6Addr> + $witness_trait + Copy> From<$witness<A>> for Ipv6Addr {
fn from(addr: $witness<A>) -> Ipv6Addr {
let addr: A = addr.get();
addr.into()
}
}
// NOTE: Orphan rules prevent implementing `TryFrom` for `A: IpAddress`.
impl TryFrom<Ipv4Addr> for $witness<Ipv4Addr> {
type Error = ();
fn try_from(addr: Ipv4Addr) -> Result<$witness<Ipv4Addr>, ()> {
Witness::new(addr).ok_or(())
}
}
impl TryFrom<Ipv6Addr> for $witness<Ipv6Addr> {
type Error = ();
fn try_from(addr: Ipv6Addr) -> Result<$witness<Ipv6Addr>, ()> {
Witness::new(addr).ok_or(())
}
}
};
($witness:ident, $witness_trait:ident, $ipaddr:ident, $new_unchecked:expr) => {
impl From<$witness<$ipaddr>> for $witness<IpAddr> {
fn from(addr: $witness<$ipaddr>) -> $witness<IpAddr> {
let addr: $ipaddr = addr.get();
let addr: IpAddr = addr.into();
#[allow(unused_unsafe)] // For when a closure is passed
unsafe {
$new_unchecked(addr)
}
}
}
impl<A: Into<$ipaddr> + $witness_trait + Copy> From<$witness<A>> for $ipaddr {
fn from(addr: $witness<A>) -> $ipaddr {
let addr: A = addr.get();
addr.into()
}
}
impl TryFrom<$ipaddr> for $witness<$ipaddr> {
type Error = ();
fn try_from(addr: $ipaddr) -> Result<$witness<$ipaddr>, ()> {
Witness::new(addr).ok_or(())
}
}
};
}
impl_from_witness!(SpecifiedAddr, SpecifiedAddress);
impl_from_witness!(MulticastAddr, MulticastAddress);
impl_from_witness!(LinkLocalAddr, LinkLocalAddress);
impl_from_witness!(NonMappedAddr, MappedAddress);
// Only add `From` conversions for `Ipv6Addr`, because `Ipv4Addr` does not
// implement `UnicastAddress`.
impl_from_witness!(UnicastAddr, UnicastAddress, Ipv6Addr, UnicastAddr::new_unchecked);
/// The class of an IPv4 address.
///
/// The classful addressing scheme is obsoloted in favour of [CIDR] but is still
/// used on some systems. For more information, see [RFC 791 section 2.3] and
/// [RFC 1812 section 2.2.5.1].
///
/// [CIDR]: https://datatracker.ietf.org/doc/html/rfc1518
/// [RFC 791 section 2.3]: https://datatracker.ietf.org/doc/html/rfc791#section-2.3
/// [RFC 1812 section 2.2.5.1]: https://datatracker.ietf.org/doc/html/rfc1812#section-2.2.5.1
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum Ipv4AddressClass {
/// A Class A IPv4 address.
A,
/// A Class B IPv4 address.
B,
/// A Class C IPv4 address.
C,
/// A Class D IPv4 address.
///
/// Class D addresses are also known as multicast.
D,
/// A Class E IPv4 address.
///
/// Class E addresses are also known as experimental.
E,
}
impl Ipv4AddressClass {
/// Returns the default prefix length for an IPv4 address class if the
/// prefix is well-defined.
pub const fn default_prefix_len(self) -> Option<u8> {
// Per RFC 943 https://datatracker.ietf.org/doc/html/rfc943
//
// The first type of address, or class A, has a 7-bit network number
// and a 24-bit local address. The highest-order bit is set to 0.
// This allows 128 class A networks.
//
// 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |0| NETWORK | Local Address |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//
// Class A Address
//
// The second type of address, class B, has a 14-bit network number
// and a 16-bit local address. The two highest-order bits are set to
// 1-0. This allows 16,384 class B networks.
//
// 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |1 0| NETWORK | Local Address |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//
// Class B Address
//
// The third type of address, class C, has a 21-bit network number
// and a 8-bit local address. The three highest-order bits are set
// to 1-1-0. This allows 2,097,152 class C networks.
//
// 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |1 1 0| NETWORK | Local Address |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//
// Class C Address
match self {
Ipv4AddressClass::A => Some(8),
Ipv4AddressClass::B => Some(16),
Ipv4AddressClass::C => Some(24),
Ipv4AddressClass::D => None,
Ipv4AddressClass::E => None,
}
}
}
/// An IPv4 address.
///
/// # Layout
///
/// `Ipv4Addr` has the same layout as `[u8; 4]`, which is the layout that most
/// protocols use to represent an IPv4 address in their packet formats. This can
/// be useful when parsing an IPv4 address from a packet. For example:
///
/// ```rust
/// # use net_types::ip::Ipv4Addr;
/// /// An ICMPv4 Redirect Message header.
/// ///
/// /// `Icmpv4RedirectHeader` has the same layout as the header of an ICMPv4
/// /// Redirect Message.
/// #[repr(C)]
/// struct Icmpv4RedirectHeader {
/// typ: u8,
/// code: u8,
/// checksum: [u8; 2],
/// gateway: Ipv4Addr,
/// }
/// ```
#[derive(
Copy,
Clone,
Default,
PartialEq,
Eq,
PartialOrd,
Ord,
Hash,
KnownLayout,
FromBytes,
IntoBytes,
Immutable,
Unaligned,
)]
#[repr(transparent)]
pub struct Ipv4Addr([u8; 4]);
impl Ipv4Addr {
/// Creates a new IPv4 address.
#[inline]
pub const fn new(bytes: [u8; 4]) -> Self {
Ipv4Addr(bytes)
}
/// Gets the bytes of the IPv4 address.
#[inline]
pub const fn ipv4_bytes(self) -> [u8; 4] {
self.0
}
/// Is this the limited broadcast address?
///
/// `is_limited_broadcast` is a shorthand for comparing against
/// [`Ipv4::LIMITED_BROADCAST_ADDRESS`].
#[inline]
pub fn is_limited_broadcast(self) -> bool {
self == Ipv4::LIMITED_BROADCAST_ADDRESS.get()
}
/// Is this a Class E address?
///
/// `is_class_e` is a shorthand for checking membership in
/// [`Ipv4::CLASS_E_SUBNET`].
#[inline]
pub fn is_class_e(self) -> bool {
Ipv4::CLASS_E_SUBNET.contains(&self)
}
/// Converts the address to an IPv4-compatible IPv6 address according to
/// [RFC 4291 Section 2.5.5.1].
///
/// IPv4-compatible IPv6 addresses were defined to assist in the IPv6
/// transition, and are now specified in [RFC 4291 Section 2.5.5.1]. The
/// lowest-order 32 bits carry an IPv4 address, while the highest-order 96
/// bits are all set to 0 as in this diagram from the RFC:
///
/// ```text
/// | 80 bits | 16 | 32 bits |
/// +--------------------------------------+--------------------------+
/// |0000..............................0000|0000| IPv4 address |
/// +--------------------------------------+----+---------------------+
/// ```
///
/// Per RFC 4291:
///
/// > The 'IPv4-Compatible IPv6 address' is now deprecated because the
/// > current IPv6 transition mechanisms no longer use these addresses. New
/// > or updated implementations are not required to support this address
/// > type.
///
/// The more modern embedding format is IPv4-mapped IPv6 addressing - see
/// [`to_ipv6_mapped`].
///
/// [RFC 4291 Section 2.5.5.1]: https://tools.ietf.org/html/rfc4291#section-2.5.5.1
/// [`to_ipv6_mapped`]: Ipv4Addr::to_ipv6_mapped
#[inline]
pub fn to_ipv6_compatible(self) -> Ipv6Addr {
let Self([a, b, c, d]) = self;
Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, b, c, d])
}
/// Converts the address to an IPv4-mapped IPv6 address according to [RFC
/// 4291 Section 2.5.5.2].
///
/// IPv4-mapped IPv6 addresses are used to represent the addresses of IPv4
/// nodes as IPv6 addresses, and are defined in [RFC 4291 Section 2.5.5.2].
/// The lowest-order 32 bits carry an IPv4 address, the middle order 16 bits
/// carry the literal 0xFFFF, and the highest order 80 bits are set to 0 as
/// in this diagram from the RFC:
///
/// ```text
/// | 80 bits | 16 | 32 bits |
/// +--------------------------------------+--------------------------+
/// |0000..............................0000|FFFF| IPv4 address |
/// +--------------------------------------+----+---------------------+
/// ```
///
/// [RFC 4291 Section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
#[inline]
pub fn to_ipv6_mapped(self) -> SpecifiedAddr<Ipv6Addr> {
let Self([a, b, c, d]) = self;
SpecifiedAddr::new(Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, a, b, c, d]))
.unwrap()
}
/// Returns the address's class according to the obsoleted classful
/// addressing architecture.
pub fn class(&self) -> Ipv4AddressClass {
for (subnet, class) in [
(Ipv4::CLASS_A_SUBNET, Ipv4AddressClass::A),
(Ipv4::CLASS_B_SUBNET, Ipv4AddressClass::B),
(Ipv4::CLASS_C_SUBNET, Ipv4AddressClass::C),
(Ipv4::CLASS_D_SUBNET, Ipv4AddressClass::D),
(Ipv4::CLASS_E_SUBNET, Ipv4AddressClass::E),
] {
if subnet.contains(self) {
return class;
}
}
unreachable!("{} should fit into a class", self)
}
}
impl sealed::Sealed for Ipv4Addr {}
impl IpAddress for Ipv4Addr {
const BYTES: u8 = 4;
type Version = Ipv4;
#[inline]
fn mask(&self, bits: u8) -> Self {
assert!(bits <= 32);
// Need to perform a checked shift left in case `bits == 32`, in which
// case an unchecked shift left (`u32::MAX << bits`) would overflow,
// causing a panic in debug mode.
let mask = u32::MAX.checked_shl((32 - bits).into()).unwrap_or(0);
Ipv4Addr((u32::from_be_bytes(self.0) & mask).to_be_bytes())
}
#[inline]
fn bytes(&self) -> &[u8] {
&self.0
}
#[inline]
fn to_ip_addr(&self) -> IpAddr {
IpAddr::V4(*self)
}
#[inline]
fn common_prefix_len(&self, other: &Ipv4Addr) -> u8 {
let me = u32::from_be_bytes(self.0);
let other = u32::from_be_bytes(other.0);
// `same_bits` has a 0 wherever `me` and `other` have the same bit in a
// given position, and a 1 wherever they have opposite bits.
let same_bits = me ^ other;
same_bits.leading_zeros() as u8
}
#[inline]
fn is_unicast_in_subnet(&self, subnet: &Subnet<Self>) -> bool {
!self.is_multicast()
&& !self.is_limited_broadcast()
// This clause implements the rules that (the subnet broadcast is
// not unicast AND the address with an all-zeroes host part is not
// unicast) UNLESS the prefix length is 31 or 32.
&& (subnet.prefix() == 32
|| subnet.prefix() == 31
|| (*self != subnet.broadcast() && *self != subnet.network()))
&& self.is_specified()
&& !self.is_class_e()
&& subnet.contains(self)
}
fn subnet_into_either(subnet: Subnet<Ipv4Addr>) -> SubnetEither {
SubnetEither::V4(subnet)
}
#[inline]
fn array_into_ip_addr<const N: usize>(
addrs: [Self; N],
) -> IpAddr<[Ipv4Addr; N], [Ipv6Addr; N]> {
IpAddr::V4(addrs)
}
}
impl From<[u8; 4]> for Ipv4Addr {
#[inline]
fn from(bytes: [u8; 4]) -> Ipv4Addr {
Ipv4Addr(bytes)
}
}
#[cfg(feature = "std")]
impl From<net::Ipv4Addr> for Ipv4Addr {
#[inline]
fn from(ip: net::Ipv4Addr) -> Ipv4Addr {
Ipv4Addr::new(ip.octets())
}
}
#[cfg(feature = "std")]
impl From<Ipv4Addr> for net::Ipv4Addr {
#[inline]
fn from(ip: Ipv4Addr) -> net::Ipv4Addr {
net::Ipv4Addr::from(ip.0)
}
}
impl Display for Ipv4Addr {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
write!(f, "{}.{}.{}.{}", self.0[0], self.0[1], self.0[2], self.0[3])
}
}
impl Debug for Ipv4Addr {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
Display::fmt(self, f)
}
}
/// An IPv6 address.
///
/// # Layout
///
/// `Ipv6Addr` has the same layout as `[u8; 16]`, which is the layout that most
/// protocols use to represent an IPv6 address in their packet formats. This can
/// be useful when parsing an IPv6 address from a packet. For example:
///
/// ```rust
/// # use net_types::ip::Ipv6Addr;
/// /// The fixed part of an IPv6 packet header.
/// ///
/// /// `FixedHeader` has the same layout as the fixed part of an IPv6 packet
/// /// header.
/// #[repr(C)]
/// pub struct FixedHeader {
/// version_tc_flowlabel: [u8; 4],
/// payload_len: [u8; 2],
/// next_hdr: u8,
/// hop_limit: u8,
/// src_ip: Ipv6Addr,
/// dst_ip: Ipv6Addr,
/// }
/// ```
///
/// # `Display`
///
/// The [`Display`] impl for `Ipv6Addr` formats according to [RFC 5952].
///
/// Where RFC 5952 leaves decisions up to the implementation, `Ipv6Addr` matches
/// the behavior of [`std::net::Ipv6Addr`] - all IPv6 addresses are formatted
/// the same by `Ipv6Addr` as by `<std::net::Ipv6Addr as Display>::fmt`.
///
/// [RFC 5952]: https://datatracker.ietf.org/doc/html/rfc5952
#[derive(
Copy,
Clone,
Default,
PartialEq,
Eq,
PartialOrd,
Ord,
Hash,
KnownLayout,
FromBytes,
IntoBytes,
Immutable,
Unaligned,
)]
#[repr(transparent)]
pub struct Ipv6Addr([u8; 16]);
impl Ipv6Addr {
/// Creates a new IPv6 address from 16-bit segments.
#[inline]
pub const fn new(segments: [u16; 8]) -> Ipv6Addr {
#![allow(clippy::many_single_char_names)]
let [a, b, c, d, e, f, g, h] = segments;
let [aa, ab] = a.to_be_bytes();
let [ba, bb] = b.to_be_bytes();
let [ca, cb] = c.to_be_bytes();
let [da, db] = d.to_be_bytes();
let [ea, eb] = e.to_be_bytes();
let [fa, fb] = f.to_be_bytes();
let [ga, gb] = g.to_be_bytes();
let [ha, hb] = h.to_be_bytes();
Ipv6Addr([aa, ab, ba, bb, ca, cb, da, db, ea, eb, fa, fb, ga, gb, ha, hb])
}
/// Creates a new IPv6 address from bytes.
#[inline]
pub const fn from_bytes(bytes: [u8; 16]) -> Ipv6Addr {
Ipv6Addr(bytes)
}
/// Gets the bytes of the IPv6 address.
#[inline]
pub const fn ipv6_bytes(&self) -> [u8; 16] {
self.0
}
/// Gets the 16-bit segments of the IPv6 address.
#[inline]
pub fn segments(&self) -> [u16; 8] {
#![allow(clippy::many_single_char_names)]
let [a, b, c, d, e, f, g, h]: [zerocopy::network_endian::U16; 8] =
zerocopy::transmute!(self.ipv6_bytes());
[a.into(), b.into(), c.into(), d.into(), e.into(), f.into(), g.into(), h.into()]
}
/// Converts this `Ipv6Addr` to the IPv6 Solicited-Node Address, used in
/// Neighbor Discovery, defined in [RFC 4291 Section 2.7.1].
///
/// [RFC 4291 Section 2.7.1]: https://tools.ietf.org/html/rfc4291#section-2.7.1
#[inline]
pub const fn to_solicited_node_address(&self) -> MulticastAddr<Ipv6Addr> {
// TODO(brunodalbo) benchmark this generation and evaluate if using
// bit operations with u128 could be faster. This is very likely
// going to be on a hot path.
// We know we are not breaking the guarantee that `MulticastAddr` provides
// when calling `new_unchecked` because the address we provide it is
// a multicast address as defined by RFC 4291 section 2.7.1.
unsafe {
MulticastAddr::new_unchecked(Ipv6Addr::from_bytes([
0xff, 0x02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x01, 0xff, self.0[13], self.0[14],
self.0[15],
]))
}
}
/// Is this a valid unicast address?
///
/// A valid unicast address is any unicast address that can be bound to an
/// interface (not the unspecified or loopback addresses).
/// `addr.is_valid_unicast()` is equivalent to `!(addr.is_loopback() ||
/// !addr.is_specified() || addr.is_multicast())`.
#[inline]
pub fn is_valid_unicast(&self) -> bool {
!(self.is_loopback() || !self.is_specified() || self.is_multicast())
}
/// Is this address in the (deprecated) site-local unicast subnet?
///
/// `is_site_local` returns true if `self` is in the (deprecated)
/// [`Ipv6::SITE_LOCAL_UNICAST_SUBNET`]. See that constant's documentation
/// for more details on deprecation and how the subnet should be used in
/// light of deprecation.
#[inline]
pub fn is_site_local(&self) -> bool {
Ipv6::SITE_LOCAL_UNICAST_SUBNET.contains(self)
}
/// Is this a unicast link-local address?
///
/// `addr.is_unicast_link_local()` is equivalent to
/// `addr.is_unicast_in_subnet(&Ipv6::LINK_LOCAL_UNICAST_SUBNET)`.
#[inline]
pub fn is_unicast_link_local(&self) -> bool {
self.is_unicast_in_subnet(&Ipv6::LINK_LOCAL_UNICAST_SUBNET)
}
/// Tries to extract the IPv4 address from an IPv4-compatible IPv6 address.
///
/// IPv4-compatible IPv6 addresses were defined to assist in the IPv6
/// transition, and are now specified in [RFC 4291 Section 2.5.5.1]. The
/// lowest-order 32 bits carry an IPv4 address, while the highest-order 96
/// bits are all set to 0 as in this diagram from the RFC:
///
/// ```text
/// | 80 bits | 16 | 32 bits |
/// +--------------------------------------+--------------------------+
/// |0000..............................0000|0000| IPv4 address |
/// +--------------------------------------+----+---------------------+
/// ```
///
/// `to_ipv4_compatible` checks to see if `self` is an IPv4-compatible
/// IPv6 address. If it is, the IPv4 address is extracted and returned.
///
/// Per RFC 4291:
///
/// > The 'IPv4-Compatible IPv6 address' is now deprecated because the
/// > current IPv6 transition mechanisms no longer use these addresses. New
/// > or updated implementations are not required to support this address
/// > type.
///
/// The more modern embedding format is IPv4-mapped IPv6 addressing - see
/// [`to_ipv4_mapped`].
///
/// [RFC 4291 Section 2.5.5.1]: https://tools.ietf.org/html/rfc4291#section-2.5.5.1
/// [`to_ipv4_mapped`]: Ipv6Addr::to_ipv4_mapped
pub fn to_ipv4_compatible(&self) -> Option<Ipv4Addr> {
if let [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, b, c, d] = self.0 {
Some(Ipv4Addr::new([a, b, c, d]))
} else {
None
}
}
/// Tries to extract the IPv4 address from an IPv4-mapped IPv6 address.
///
/// IPv4-mapped IPv6 addresses are used to represent the addresses of IPv4
/// nodes as IPv6 addresses, and are defined in [RFC 4291 Section 2.5.5.2].
/// The lowest-order 32 bits carry an IPv4 address, the middle order 16 bits
/// carry the literal 0xFFFF, and the highest order 80 bits are set to 0 as
/// in this diagram from the RFC:
///
/// ```text
/// | 80 bits | 16 | 32 bits |
/// +--------------------------------------+--------------------------+
/// |0000..............................0000|FFFF| IPv4 address |
/// +--------------------------------------+----+---------------------+
/// ```
///
/// `to_ipv4_mapped` checks to see if `self` is an IPv4-mapped
/// IPv6 address. If it is, the IPv4 address is extracted and returned.
///
/// [RFC 4291 Section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
pub fn to_ipv4_mapped(&self) -> Option<Ipv4Addr> {
if let [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, a, b, c, d] = self.0 {
Some(Ipv4Addr::new([a, b, c, d]))
} else {
None
}
}
}
impl sealed::Sealed for Ipv6Addr {}
/// [`Ipv4Addr`] is convertible into [`Ipv6Addr`] through
/// [`Ipv4Addr::to_ipv6_mapped`].
impl From<Ipv4Addr> for Ipv6Addr {
fn from(addr: Ipv4Addr) -> Ipv6Addr {
*addr.to_ipv6_mapped()
}
}
impl IpAddress for Ipv6Addr {
const BYTES: u8 = 16;
type Version = Ipv6;
#[inline]
fn mask(&self, bits: u8) -> Ipv6Addr {
assert!(bits <= 128);
// Need to perform a checked shift left in case `bits == 128`, in which
// case an unchecked shift left (`u128::MAX << bits`) would overflow,
// causing a panic in debug mode.
let mask = u128::MAX.checked_shl((128 - bits).into()).unwrap_or(0);
Ipv6Addr((u128::from_be_bytes(self.0) & mask).to_be_bytes())
}
#[inline]
fn bytes(&self) -> &[u8] {
&self.0
}
#[inline]
fn to_ip_addr(&self) -> IpAddr {
IpAddr::V6(*self)
}
#[inline]
fn common_prefix_len(&self, other: &Ipv6Addr) -> u8 {
let me = u128::from_be_bytes(self.0);
let other = u128::from_be_bytes(other.0);
// `same_bits` has a 0 wherever `me` and `other` have the same bit in a
// given position, and a 1 wherever they have opposite bits.
let same_bits = me ^ other;
same_bits.leading_zeros() as u8
}
#[inline]
fn is_unicast_in_subnet(&self, subnet: &Subnet<Self>) -> bool {
!self.is_multicast() && self.is_specified() && subnet.contains(self)
}
fn subnet_into_either(subnet: Subnet<Ipv6Addr>) -> SubnetEither {
SubnetEither::V6(subnet)
}
#[inline]
fn array_into_ip_addr<const N: usize>(
addrs: [Self; N],
) -> IpAddr<[Ipv4Addr; N], [Ipv6Addr; N]> {
IpAddr::V6(addrs)
}
}
impl UnicastAddress for Ipv6Addr {
/// Is this a unicast address?
///
/// `addr.is_unicast()` is equivalent to `!addr.is_multicast() &&
/// addr.is_specified()`.
#[inline]
fn is_unicast(&self) -> bool {
!self.is_multicast() && self.is_specified()
}
}
impl From<[u8; 16]> for Ipv6Addr {
#[inline]
fn from(bytes: [u8; 16]) -> Ipv6Addr {
Ipv6Addr::from_bytes(bytes)
}
}
#[cfg(feature = "std")]
impl From<net::Ipv6Addr> for Ipv6Addr {
#[inline]
fn from(addr: net::Ipv6Addr) -> Ipv6Addr {
Ipv6Addr::from_bytes(addr.octets())
}
}
#[cfg(feature = "std")]
impl From<Ipv6Addr> for net::Ipv6Addr {
#[inline]
fn from(addr: Ipv6Addr) -> net::Ipv6Addr {
net::Ipv6Addr::from(addr.ipv6_bytes())
}
}
impl Display for Ipv6Addr {
/// Formats an IPv6 address according to [RFC 5952].
///
/// Where RFC 5952 leaves decisions up to the implementation, this function
/// matches the behavior of [`std::net::Ipv6Addr`] - all IPv6 addresses are
/// formatted the same by this function as by `<std::net::Ipv6Addr as
/// Display>::fmt`.
///
/// [RFC 5952]: https://datatracker.ietf.org/doc/html/rfc5952
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
// `fmt_inner` implements the core of the formatting algorithm, but does
// not handle precision or width requirements. Those are handled below
// by creating a scratch buffer, calling `fmt_inner` on that scratch
// buffer, and then satisfying those requirements.
fn fmt_inner<W: fmt::Write>(addr: &Ipv6Addr, w: &mut W) -> Result<(), fmt::Error> {
// We special-case the unspecified address, localhost address, and
// IPv4-mapped addresses, but not IPv4-compatible addresses. We
// follow Rust's behavior here: https://github.com/rust-lang/rust/pull/112606
if !addr.is_specified() {
write!(w, "::")
} else if addr.is_loopback() {
write!(w, "::1")
} else if let Some(v4) = addr.to_ipv4_mapped() {
write!(w, "::ffff:{}", v4)
} else {
let segments = addr.segments();
let longest_zero_span = {
let mut longest_zero_span = 0..0;
let mut current_zero_span = 0..0;
for (i, seg) in segments.iter().enumerate() {
if *seg == 0 {
current_zero_span.end = i + 1;
if current_zero_span.len() > longest_zero_span.len() {
longest_zero_span = current_zero_span.clone();
}
} else {
let next_idx = i + 1;
current_zero_span = next_idx..next_idx;
}
}
longest_zero_span
};
let write_slice = |w: &mut W, slice: &[u16]| {
if let [head, tail @ ..] = slice {
write!(w, "{:x}", head)?;
for seg in tail {
write!(w, ":{:x}", seg)?;
}
}
Ok(())
};
// Note that RFC 5952 gives us a choice of when to compress a
// run of zeroes:
//
// It is possible to select whether or not to omit just one
// 16-bit 0 field.
//
// Given this choice, we opt to match the stdlib's behavior.
// This makes it easier to write tests (we can simply check to
// see whether our behavior matches `std`'s behavior on a range
// of inputs), and makes it so that our `Ipv6Addr` type is,
// behaviorally, more of a drop-in for `std::net::Ipv6Addr` than
// it would be if we were to diverge on formatting. This makes
// replacing `std::net::Ipv6Addr` with our `Ipv6Addr` easier for
// clients, and also makes it an easier choice since they don't
// have to weigh whether the difference in behavior is
// acceptable for them.
if longest_zero_span.len() > 1 {
write_slice(w, &segments[..longest_zero_span.start])?;
w.write_str("::")?;
write_slice(w, &segments[longest_zero_span.end..])
} else {
write_slice(w, &segments)
}
}
}
if f.precision().is_none() && f.width().is_none() {
// Fast path: No precision or width requirements, so write directly
// to `f`.
fmt_inner(self, f)
} else {
// Slow path: Precision or width requirement(s), so construct a
// scratch buffer, use the `fmt_inner` to fill it, then use `f.pad`
// to satisfy precision/width requirement(s).
// `[u8]` does not implement `core::fmt::Write`, so we provide our
// own wrapper which does.
struct ByteSlice<'a>(&'a mut [u8]);
impl<'a> fmt::Write for ByteSlice<'a> {
fn write_str(&mut self, s: &str) -> Result<(), fmt::Error> {
let from = s.as_bytes();
if from.len() > self.0.len() {
return Err(fmt::Error);
}
// Temporarily replace `self.0` with an empty slice and move
// the old value of `self.0` into our scope so that we can
// operate on it by value. This allows us to split it in two
// (`to` and `remaining`) and then overwrite `self.0` with
// `remaining`.
let to = mem::replace(&mut self.0, &mut [][..]);
let (to, remaining) = to.split_at_mut(from.len());
to.copy_from_slice(from);
self.0 = remaining;
Ok(())
}
}
// The maximum length for an IPv6 address displays all 8 pairs of
// bytes in hexadecimal representation (4 characters per two bytes
// of IPv6 address), each separated with colons (7 colons total).
const MAX_DISPLAY_LEN: usize = (4 * 8) + 7;
let mut scratch = [0u8; MAX_DISPLAY_LEN];
let mut scratch_slice = ByteSlice(&mut scratch[..]);
// `fmt_inner` only returns an error if a method on `w` returns an
// error. Since, in this call to `fmt_inner`, `w` is
// `scratch_slice`, the only error that could happen would be if we
// run out of space, but we know we won't because `scratch_slice`
// has `MAX_DISPLAY_LEN` bytes, which is enough to hold any
// formatted IPv6 address.
fmt_inner(self, &mut scratch_slice)
.expect("<Ipv6Addr as Display>::fmt: fmt_inner should have succeeded because the scratch buffer was long enough");
let unwritten = scratch_slice.0.len();
let len = MAX_DISPLAY_LEN - unwritten;
// `fmt_inner` only writes valid UTF-8.
let str = core::str::from_utf8(&scratch[..len])
.expect("<Ipv6Addr as Display>::fmt: scratch buffer should contain valid UTF-8");
f.pad(str)
}
}
}
impl Debug for Ipv6Addr {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
Display::fmt(self, f)
}
}
/// The source address from an IPv6 packet.
///
/// An `Ipv6SourceAddr` represents the source address from an IPv6 packet, which
/// may only be either:
/// * unicast and non-mapped (e.g. not an ipv4-mapped-ipv6 address), or
/// * unspecified.
#[allow(missing_docs)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub enum Ipv6SourceAddr {
Unicast(NonMappedAddr<UnicastAddr<Ipv6Addr>>),
Unspecified,
}
impl crate::sealed::Sealed for Ipv6SourceAddr {}
impl Ipv6SourceAddr {
/// Constructs a new `Ipv6SourceAddr`.
///
/// Returns `None` if `addr` does not satisfy the properties required of an
/// `Ipv6SourceAddr`.
#[inline]
pub fn new(addr: Ipv6Addr) -> Option<Ipv6SourceAddr> {
if let Some(addr) = UnicastAddr::new(addr) {
NonMappedAddr::new(addr).map(Ipv6SourceAddr::Unicast)
} else if !addr.is_specified() {
Some(Ipv6SourceAddr::Unspecified)
} else {
None
}
}
}
impl Witness<Ipv6Addr> for Ipv6SourceAddr {
#[inline]
fn new(addr: Ipv6Addr) -> Option<Ipv6SourceAddr> {
Ipv6SourceAddr::new(addr)
}
#[inline]
unsafe fn new_unchecked(addr: Ipv6Addr) -> Ipv6SourceAddr {
Ipv6SourceAddr::new(addr).unwrap()
}
#[inline]
fn into_addr(self) -> Ipv6Addr {
match self {
Ipv6SourceAddr::Unicast(addr) => **addr,
Ipv6SourceAddr::Unspecified => Ipv6::UNSPECIFIED_ADDRESS,
}
}
}
impl SpecifiedAddress for Ipv6SourceAddr {
fn is_specified(&self) -> bool {
self != &Ipv6SourceAddr::Unspecified
}
}
impl UnicastAddress for Ipv6SourceAddr {
fn is_unicast(&self) -> bool {
matches!(self, Ipv6SourceAddr::Unicast(_))
}
}
impl LinkLocalAddress for Ipv6SourceAddr {
fn is_link_local(&self) -> bool {
let addr: Ipv6Addr = self.into();
addr.is_link_local()
}
}
impl MappedAddress for Ipv6SourceAddr {
fn is_non_mapped(&self) -> bool {
let addr: Ipv6Addr = self.into();
addr.is_non_mapped()
}
}
impl From<Ipv6SourceAddr> for Ipv6Addr {
fn from(addr: Ipv6SourceAddr) -> Ipv6Addr {
addr.get()
}
}
impl From<&'_ Ipv6SourceAddr> for Ipv6Addr {
fn from(addr: &Ipv6SourceAddr) -> Ipv6Addr {
match addr {
Ipv6SourceAddr::Unicast(addr) => addr.get(),
Ipv6SourceAddr::Unspecified => Ipv6::UNSPECIFIED_ADDRESS,
}
}
}
impl TryFrom<Ipv6Addr> for Ipv6SourceAddr {
type Error = ();
fn try_from(addr: Ipv6Addr) -> Result<Ipv6SourceAddr, ()> {
Ipv6SourceAddr::new(addr).ok_or(())
}
}
impl AsRef<Ipv6Addr> for Ipv6SourceAddr {
fn as_ref(&self) -> &Ipv6Addr {
match self {
Ipv6SourceAddr::Unicast(addr) => addr,
Ipv6SourceAddr::Unspecified => &Ipv6::UNSPECIFIED_ADDRESS,
}
}
}
impl Deref for Ipv6SourceAddr {
type Target = Ipv6Addr;
fn deref(&self) -> &Ipv6Addr {
self.as_ref()
}
}
impl Display for Ipv6SourceAddr {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
match self {
Ipv6SourceAddr::Unicast(addr) => write!(f, "{}", addr),
Ipv6SourceAddr::Unspecified => write!(f, "::"),
}
}
}
impl Debug for Ipv6SourceAddr {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
Display::fmt(self, f)
}
}
/// An IPv6 address stored as a unicast or multicast witness type.
///
/// `UnicastOrMulticastIpv6Addr` is either a [`UnicastAddr`] or a
/// [`MulticastAddr`]. It allows the user to match on the unicast-ness or
/// multicast-ness of an IPv6 address and obtain a statically-typed witness in
/// each case. This is useful if the user needs to call different functions
/// which each take a witness type.
#[allow(missing_docs)]
#[derive(Copy, Clone, Eq, PartialEq)]
pub enum UnicastOrMulticastIpv6Addr {
Unicast(UnicastAddr<Ipv6Addr>),
Multicast(MulticastAddr<Ipv6Addr>),
}
impl UnicastOrMulticastIpv6Addr {
/// Constructs a new `UnicastOrMulticastIpv6Addr`.
///
/// Returns `None` if `addr` is the unspecified address.
pub fn new(addr: Ipv6Addr) -> Option<UnicastOrMulticastIpv6Addr> {
SpecifiedAddr::new(addr).map(UnicastOrMulticastIpv6Addr::from_specified)
}
/// Constructs a new `UnicastOrMulticastIpv6Addr` from a specified address.
pub fn from_specified(addr: SpecifiedAddr<Ipv6Addr>) -> UnicastOrMulticastIpv6Addr {
if addr.is_unicast() {
UnicastOrMulticastIpv6Addr::Unicast(UnicastAddr(addr.get()))
} else {
UnicastOrMulticastIpv6Addr::Multicast(MulticastAddr(addr.get()))
}
}
}
impl crate::sealed::Sealed for UnicastOrMulticastIpv6Addr {}
impl Witness<Ipv6Addr> for UnicastOrMulticastIpv6Addr {
#[inline]
fn new(addr: Ipv6Addr) -> Option<UnicastOrMulticastIpv6Addr> {
UnicastOrMulticastIpv6Addr::new(addr)
}
#[inline]
unsafe fn new_unchecked(addr: Ipv6Addr) -> UnicastOrMulticastIpv6Addr {
UnicastOrMulticastIpv6Addr::new(addr).unwrap()
}
#[inline]
fn into_addr(self) -> Ipv6Addr {
match self {
UnicastOrMulticastIpv6Addr::Unicast(addr) => addr.get(),
UnicastOrMulticastIpv6Addr::Multicast(addr) => addr.get(),
}
}
}
impl UnicastAddress for UnicastOrMulticastIpv6Addr {
fn is_unicast(&self) -> bool {
matches!(self, UnicastOrMulticastIpv6Addr::Unicast(_))
}
}
impl MulticastAddress for UnicastOrMulticastIpv6Addr {
fn is_multicast(&self) -> bool {
matches!(self, UnicastOrMulticastIpv6Addr::Multicast(_))
}
}
impl LinkLocalAddress for UnicastOrMulticastIpv6Addr {
fn is_link_local(&self) -> bool {
match self {
UnicastOrMulticastIpv6Addr::Unicast(addr) => addr.is_link_local(),
UnicastOrMulticastIpv6Addr::Multicast(addr) => addr.is_link_local(),
}
}
}
impl MappedAddress for UnicastOrMulticastIpv6Addr {
fn is_non_mapped(&self) -> bool {
match self {
UnicastOrMulticastIpv6Addr::Unicast(addr) => addr.is_non_mapped(),
UnicastOrMulticastIpv6Addr::Multicast(addr) => addr.is_non_mapped(),
}
}
}
impl From<UnicastOrMulticastIpv6Addr> for Ipv6Addr {
fn from(addr: UnicastOrMulticastIpv6Addr) -> Ipv6Addr {
addr.get()
}
}
impl From<&'_ UnicastOrMulticastIpv6Addr> for Ipv6Addr {
fn from(addr: &UnicastOrMulticastIpv6Addr) -> Ipv6Addr {
addr.get()
}
}
impl From<UnicastAddr<Ipv6Addr>> for UnicastOrMulticastIpv6Addr {
fn from(addr: UnicastAddr<Ipv6Addr>) -> UnicastOrMulticastIpv6Addr {
UnicastOrMulticastIpv6Addr::Unicast(addr)
}
}
impl From<MulticastAddr<Ipv6Addr>> for UnicastOrMulticastIpv6Addr {
fn from(addr: MulticastAddr<Ipv6Addr>) -> UnicastOrMulticastIpv6Addr {
UnicastOrMulticastIpv6Addr::Multicast(addr)
}
}
impl TryFrom<Ipv6Addr> for UnicastOrMulticastIpv6Addr {
type Error = ();
fn try_from(addr: Ipv6Addr) -> Result<UnicastOrMulticastIpv6Addr, ()> {
UnicastOrMulticastIpv6Addr::new(addr).ok_or(())
}
}
impl AsRef<Ipv6Addr> for UnicastOrMulticastIpv6Addr {
fn as_ref(&self) -> &Ipv6Addr {
match self {
UnicastOrMulticastIpv6Addr::Unicast(addr) => addr,
UnicastOrMulticastIpv6Addr::Multicast(addr) => addr,
}
}
}
impl Deref for UnicastOrMulticastIpv6Addr {
type Target = Ipv6Addr;
fn deref(&self) -> &Ipv6Addr {
self.as_ref()
}
}
impl Display for UnicastOrMulticastIpv6Addr {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
match self {
UnicastOrMulticastIpv6Addr::Unicast(addr) => write!(f, "{}", addr),
UnicastOrMulticastIpv6Addr::Multicast(addr) => write!(f, "{}", addr),
}
}
}
impl Debug for UnicastOrMulticastIpv6Addr {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
Display::fmt(self, f)
}
}
/// The error returned from [`Subnet::new`] and [`SubnetEither::new`].
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum SubnetError {
/// The network prefix is longer than the number of bits in the address (32
/// for IPv4/128 for IPv6).
PrefixTooLong,
/// The network address has some bits in the host part (past the network
/// prefix) set to one.
HostBitsSet,
}
/// A prefix was provided which is longer than the number of bits in the address
/// (32 for IPv4/128 for IPv6).
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct PrefixTooLongError;
/// An IP subnet.
///
/// `Subnet` is a combination of an IP network address and a prefix length.
#[derive(Copy, Clone, Eq, PartialEq, Hash)]
pub struct Subnet<A> {
// invariant: only contains prefix bits
network: A,
prefix: u8,
}
impl<A: core::cmp::Ord> core::cmp::PartialOrd for Subnet<A> {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
Some(self.cmp(other))
}
}
/// Subnet ordering always orders from least-specific to most-specific subnet.
impl<A: core::cmp::Ord> core::cmp::Ord for Subnet<A> {
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
let Self { network, prefix } = self;
let Self { network: other_network, prefix: other_prefix } = other;
match prefix.cmp(other_prefix) {
core::cmp::Ordering::Equal => network.cmp(other_network),
ord => ord,
}
}
}
impl<A> Subnet<A> {
/// Creates a new subnet without enforcing correctness.
///
/// # Safety
///
/// Unlike `new`, `new_unchecked` does not validate that `prefix` is in the
/// proper range, and does not check that `network` has only the top
/// `prefix` bits set. It is up to the caller to guarantee that `prefix` is
/// in the proper range, and that none of the bits of `network` beyond the
/// prefix are set.
#[inline]
pub const unsafe fn new_unchecked(network: A, prefix: u8) -> Subnet<A> {
Subnet { network, prefix }
}
}
impl<A: IpAddress> Subnet<A> {
/// Creates a new subnet.
///
/// `new` creates a new subnet with the given network address and prefix
/// length. It returns `Err` if `prefix` is longer than the number of bits
/// in this type of IP address (32 for IPv4 and 128 for IPv6) or if any of
/// the host bits (beyond the first `prefix` bits) are set in `network`.
#[inline]
pub fn new(network: A, prefix: u8) -> Result<Subnet<A>, SubnetError> {
if prefix > A::BYTES * 8 {
return Err(SubnetError::PrefixTooLong);
}
// TODO(joshlf): Is there a more efficient way we can perform this
// check?
if network != network.mask(prefix) {
return Err(SubnetError::HostBitsSet);
}
Ok(Subnet { network, prefix })
}
/// Creates a new subnet from the address of a host in that subnet.
///
/// Unlike [`new`], the `host` address may have host bits set.
///
/// [`new`]: Subnet::new
#[inline]
pub fn from_host(host: A, prefix: u8) -> Result<Subnet<A>, PrefixTooLongError> {
if prefix > A::BYTES * 8 {
return Err(PrefixTooLongError);
}
let network = host.mask(prefix);
Ok(Subnet { network, prefix })
}
/// Gets the network address component of this subnet.
///
/// Any bits beyond the prefix will be zero.
#[inline]
pub fn network(&self) -> A {
self.network
}
/// Gets the prefix length component of this subnet.
#[inline]
pub fn prefix(&self) -> u8 {
self.prefix
}
/// Tests whether an address is in this subnet.
///
/// Tests whether `addr` is in this subnet by testing whether the prefix
/// bits match the prefix bits of the subnet's network address. This is
/// equivalent to `sub.network() == addr.mask(sub.prefix())`.
#[inline]
pub fn contains(&self, addr: &A) -> bool {
self.network == addr.mask(self.prefix)
}
}
impl Subnet<Ipv4Addr> {
// TODO(joshlf): If we introduce a separate type for an address in a subnet
// (with fewer requirements than `AddrSubnet` has now so that a broadcast
// address is representable), then that type could implement
// `BroadcastAddress`, and `broadcast` could return
// `BroadcastAddr<Foo<Ipv4Addr>>`.
/// Gets the broadcast address in this IPv4 subnet.
#[inline]
pub fn broadcast(self) -> Ipv4Addr {
if self.prefix == 32 {
// shifting right by the size of the value is undefined
self.network
} else {
let mask = <u32>::max_value() >> self.prefix;
Ipv4Addr::new((u32::from_be_bytes(self.network.0) | mask).to_be_bytes())
}
}
}
impl<A: IpAddress> Display for Subnet<A> {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
write!(f, "{}/{}", self.network, self.prefix)
}
}
impl<A: IpAddress> Debug for Subnet<A> {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
write!(f, "{}/{}", self.network, self.prefix)
}
}
impl<A, I: Ip> GenericOverIp<I> for Subnet<A> {
type Type = Subnet<I::Addr>;
}
/// An IPv4 subnet or an IPv6 subnet.
///
/// `SubnetEither` is an enum of [`Subnet<Ipv4Addr>`] and `Subnet<Ipv6Addr>`.
///
/// [`Subnet<Ipv4Addr>`]: Subnet
#[allow(missing_docs)]
#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash)]
pub enum SubnetEither {
V4(Subnet<Ipv4Addr>),
V6(Subnet<Ipv6Addr>),
}
impl SubnetEither {
/// Creates a new subnet.
///
/// `new` creates a new subnet with the given network address and prefix
/// length. It returns `Err` if `prefix` is longer than the number of bits
/// in this type of IP address (32 for IPv4 and 128 for IPv6) or if any of
/// the host bits (beyond the first `prefix` bits) are set in `network`.
#[inline]
pub fn new(network: IpAddr, prefix: u8) -> Result<SubnetEither, SubnetError> {
Ok(match network {
IpAddr::V4(network) => SubnetEither::V4(Subnet::new(network, prefix)?),
IpAddr::V6(network) => SubnetEither::V6(Subnet::new(network, prefix)?),
})
}
/// Creates a new subnet from the address of a host in that subnet.
///
/// Unlike [`new`], the `host` address may have host bits set.
///
/// [`new`]: SubnetEither::new
#[inline]
pub fn from_host(host: IpAddr, prefix: u8) -> Result<SubnetEither, PrefixTooLongError> {
Ok(match host {
IpAddr::V4(host) => SubnetEither::V4(Subnet::from_host(host, prefix)?),
IpAddr::V6(host) => SubnetEither::V6(Subnet::from_host(host, prefix)?),
})
}
/// Gets the network and prefix.
#[inline]
pub fn net_prefix(&self) -> (IpAddr, u8) {
match self {
SubnetEither::V4(v4) => (v4.network.into(), v4.prefix),
SubnetEither::V6(v6) => (v6.network.into(), v6.prefix),
}
}
}
impl<A: IpAddress> From<Subnet<A>> for SubnetEither {
fn from(subnet: Subnet<A>) -> SubnetEither {
A::subnet_into_either(subnet)
}
}
/// The error returned from [`AddrSubnet::new`] and [`AddrSubnetEither::new`].
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum AddrSubnetError {
/// The network prefix is longer than the number of bits in the address (32
/// for IPv4/128 for IPv6).
PrefixTooLong,
/// The address is not a unicast address in the given subnet (see
/// [`IpAddress::is_unicast_in_subnet`]).
NotUnicastInSubnet,
/// The address does not satisfy the requirements of the witness type.
InvalidWitness,
}
// TODO(joshlf): Is the unicast restriction always necessary, or will some users
// want the AddrSubnet functionality without that restriction?
/// An address and that address's subnet.
///
/// An `AddrSubnet` is a pair of an address and a subnet which maintains the
/// invariant that the address is guaranteed to be a unicast address in the
/// subnet. `S` is the type of address ([`Ipv4Addr`] or [`Ipv6Addr`]), and `A`
/// is the type of the address in the subnet, which is always a witness wrapper
/// around `S`. By default, it is `SpecifiedAddr<S>`.
#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash)]
pub struct AddrSubnet<S: IpAddress, A: Witness<S> + Copy = SpecifiedAddr<S>> {
// TODO(joshlf): Would it be more performant to store these as just an
// address and subnet mask? It would make the object smaller and so cheaper
// to pass around, but it would make certain operations more expensive.
addr: A,
subnet: Subnet<S>,
}
impl<S: IpAddress, A: Witness<S> + Copy> AddrSubnet<S, A> {
/// Creates a new `AddrSubnet`.
///
/// `new` is like [`from_witness`], except that it also converts `addr` into
/// the appropriate witness type, returning
/// [`AddrSubnetError::InvalidWitness`] if the conversion fails.
///
/// [`from_witness`]: Witness::from_witness
#[inline]
pub fn new(addr: S, prefix: u8) -> Result<AddrSubnet<S, A>, AddrSubnetError> {
AddrSubnet::from_witness(A::new(addr).ok_or(AddrSubnetError::InvalidWitness)?, prefix)
}
/// Creates a new `AddrSubnet` without checking for validity.
///
/// # Safety
///
/// Unlike [`new`], `new_unchecked` does not validate that `prefix` is in the
/// proper range, and does not check that `addr` is a valid value for the
/// witness type `A`. It is up to the caller to guarantee that `prefix` is
/// in the proper range, and `A::new(addr)` is not `None`.
///
/// [`new`]: AddrSubnet::new
#[inline]
pub unsafe fn new_unchecked(addr: S, prefix: u8) -> Self {
let (subnet, addr) =
unsafe { (Subnet::new_unchecked(addr.mask(prefix), prefix), A::new_unchecked(addr)) };
AddrSubnet { addr, subnet }
}
/// Creates a new `AddrSubnet` from an existing witness.
///
/// `from_witness` creates a new `AddrSubnet` with the given address and
/// prefix length. The network address of the subnet is taken to be the
/// first `prefix` bits of the address. It returns `Err` if `prefix` is
/// longer than the number of bits in this type of IP address (32 for IPv4
/// and 128 for IPv6) or if `addr` is not a unicast address in the resulting
/// subnet (see [`IpAddress::is_unicast_in_subnet`]).
pub fn from_witness(addr: A, prefix: u8) -> Result<AddrSubnet<S, A>, AddrSubnetError> {
if prefix > S::BYTES * 8 {
return Err(AddrSubnetError::PrefixTooLong);
}
let subnet = Subnet { network: addr.as_ref().mask(prefix), prefix };
if !addr.as_ref().is_unicast_in_subnet(&subnet) {
return Err(AddrSubnetError::NotUnicastInSubnet);
}
Ok(AddrSubnet { addr, subnet })
}
/// Gets the subnet.
#[inline]
pub fn subnet(&self) -> Subnet<S> {
self.subnet
}
/// Gets the address.
#[inline]
pub fn addr(&self) -> A {
self.addr
}
/// Gets the address and subnet.
#[inline]
pub fn addr_subnet(self) -> (A, Subnet<S>) {
(self.addr, self.subnet)
}
/// Constructs a new `AddrSubnet` of a different witness type.
#[inline]
pub fn to_witness<B: Witness<S> + Copy>(&self) -> AddrSubnet<S, B>
where
A: Into<B>,
{
AddrSubnet { addr: self.addr.into(), subnet: self.subnet }
}
/// Wraps an additional witness onto this [`AddrSubnet`].
#[inline]
pub fn add_witness<B: Witness<A> + Witness<S> + Copy>(&self) -> Option<AddrSubnet<S, B>> {
let addr = B::new(self.addr)?;
Some(AddrSubnet { addr, subnet: self.subnet })
}
/// Replaces the [`AddrSubnet`] witness.
#[inline]
pub fn replace_witness<B: Witness<S> + Copy>(&self) -> Option<AddrSubnet<S, B>> {
let addr = B::new(self.addr.get())?;
Some(AddrSubnet { addr, subnet: self.subnet })
}
}
impl<S: IpAddress, A: Witness<S> + Copy + Display> Display for AddrSubnet<S, A> {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
write!(f, "{}/{}", self.addr, self.subnet.prefix)
}
}
impl<A: Witness<Ipv6Addr> + Copy> AddrSubnet<Ipv6Addr, A> {
/// Gets the address as a [`UnicastAddr`] witness.
///
/// Since one of the invariants on an `AddrSubnet` is that its contained
/// address is unicast in its subnet, `ipv6_unicast_addr` can infallibly
/// convert its stored address to a `UnicastAddr`.
pub fn ipv6_unicast_addr(&self) -> UnicastAddr<Ipv6Addr> {
unsafe { UnicastAddr::new_unchecked(self.addr.get()) }
}
/// Constructs a new `AddrSubnet` which stores a [`UnicastAddr`] witness.
///
/// Since one of the invariants on an `AddrSubnet` is that its contained
/// address is unicast in its subnet, `to_unicast` can infallibly convert
/// its stored address to a `UnicastAddr`.
pub fn to_unicast(&self) -> AddrSubnet<Ipv6Addr, UnicastAddr<Ipv6Addr>> {
let AddrSubnet { addr, subnet } = *self;
let addr = unsafe { UnicastAddr::new_unchecked(addr.get()) };
AddrSubnet { addr, subnet }
}
}
/// An IP prefix length.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, GenericOverIp)]
#[generic_over_ip(I, Ip)]
pub struct PrefixLength<I: Ip> {
/// `inner` is guaranteed to be a valid prefix length for `I::Addr`.
inner: u8,
_ip: IpVersionMarker<I>,
}
impl<I: Ip> PrefixLength<I> {
/// Returns the prefix length.
///
/// The returned length is guaranteed to be a valid prefix length for
/// `I::Addr`.
pub const fn get(self) -> u8 {
let Self { inner, _ip } = self;
inner
}
/// Gets the subnet-mask representation of this prefix length.
pub fn get_mask(self) -> I::Addr {
I::map_ip(
self,
|prefix_len| Ipv4::LIMITED_BROADCAST_ADDRESS.mask(prefix_len.get()),
|prefix_len| Ipv6Addr([u8::MAX; 16]).mask(prefix_len.get()),
)
}
/// Constructs a `PrefixLength` from a given prefix length without checking
/// whether it is too long for the address type.
///
/// # Safety
/// `prefix_length` must be less than or equal to the number of bits in
/// `I::Addr`. In other words, `prefix_length <= I::Addr::BYTES * 8`.
pub const unsafe fn new_unchecked(prefix_length: u8) -> Self {
Self { inner: prefix_length, _ip: I::VERSION_MARKER }
}
/// Constructs a `PrefixLength` from a given unverified prefix length.
///
/// Returns `Err(PrefixTooLongError)` if `prefix_length` is too long for the
/// address type.
pub const fn new(prefix_length: u8) -> Result<Self, PrefixTooLongError> {
if prefix_length > I::Addr::BYTES * 8 {
return Err(PrefixTooLongError);
}
Ok(Self { inner: prefix_length, _ip: I::VERSION_MARKER })
}
/// Constructs a `PrefixLength` from an IP address representing a subnet mask.
///
/// Returns `Err(NotSubnetMaskError)` if `subnet_mask` is not a valid subnet
/// mask.
pub fn try_from_subnet_mask(subnet_mask: I::Addr) -> Result<Self, NotSubnetMaskError> {
let IpInvariant((count_ones, leading_ones)) = I::map_ip(
subnet_mask,
|subnet_mask| {
let number = u32::from_be_bytes(subnet_mask.ipv4_bytes());
IpInvariant((number.count_ones(), number.leading_ones()))
},
|subnet_mask| {
let number = u128::from_be_bytes(subnet_mask.ipv6_bytes());
IpInvariant((number.count_ones(), number.leading_ones()))
},
);
if leading_ones != count_ones {
return Err(NotSubnetMaskError);
}
Ok(Self {
inner: u8::try_from(leading_ones)
.expect("the number of bits in an IP address fits in u8"),
_ip: IpVersionMarker::default(),
})
}
}
impl<I: Ip> From<PrefixLength<I>> for u8 {
fn from(value: PrefixLength<I>) -> Self {
value.get()
}
}
/// An IP address was provided which is not a valid subnet mask (the address
/// has set bits after the first unset bit).
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct NotSubnetMaskError;
/// A type which is witness to some property about an [`IpAddress`], `A`.
///
/// `IpAddressWitness<A>` extends [`Witness`] of the `IpAddress` type `A` by
/// adding an associated type for the type-erased `IpAddr` version of the same
/// witness type. For example, the following implementation is provided for
/// `SpecifiedAddr<A>`:
///
/// ```rust,ignore
/// impl<A: IpAddress> IpAddressWitness<A> for SpecifiedAddr<A> {
/// type IpAddrWitness = SpecifiedAddr<IpAddr>;
/// }
/// ```
pub trait IpAddressWitness<A: IpAddress>: Witness<A> {
/// The type-erased version of `Self`.
///
/// For example, `SpecifiedAddr<Ipv4Addr>: IpAddressWitness<IpAddrWitness =
/// SpecifiedAddr<IpAddr>>`.
type IpAddrWitness: IpAddrWitness + From<Self>;
}
macro_rules! impl_ip_address_witness {
($witness:ident) => {
impl<A: IpAddress> IpAddressWitness<A> for $witness<A> {
type IpAddrWitness = $witness<IpAddr>;
}
};
}
impl_ip_address_witness!(SpecifiedAddr);
impl_ip_address_witness!(MulticastAddr);
impl_ip_address_witness!(LinkLocalAddr);
/// A type which is a witness to some property about an [`IpAddress`].
///
/// `IpAddrWitness` extends [`Witness`] of [`IpAddr`] by adding associated types
/// for the IPv4- and IPv6-specific versions of the same witness type. For
/// example, the following implementation is provided for
/// `SpecifiedAddr<IpAddr>`:
///
/// ```rust,ignore
/// impl IpAddrWitness for SpecifiedAddr<IpAddr> {
/// type V4 = SpecifiedAddr<Ipv4Addr>;
/// type V6 = SpecifiedAddr<Ipv6Addr>;
/// }
/// ```
pub trait IpAddrWitness: Witness<IpAddr> + Into<IpAddr<Self::V4, Self::V6>> + Copy {
/// The IPv4-specific version of `Self`.
///
/// For example, `SpecifiedAddr<IpAddr>: IpAddrWitness<V4 =
/// SpecifiedAddr<Ipv4Addr>>`.
type V4: Witness<Ipv4Addr> + Into<Self> + Copy;
/// The IPv6-specific version of `Self`.
///
/// For example, `SpecifiedAddr<IpAddr>: IpAddrWitness<V6 =
/// SpecifiedAddr<Ipv6Addr>>`.
type V6: Witness<Ipv6Addr> + Into<Self> + Copy;
// TODO(https://github.com/rust-lang/rust/issues/44491): Remove these
// functions once implied where bounds make them unnecessary.
/// Converts an IPv4-specific witness into a general witness.
fn from_v4(addr: Self::V4) -> Self {
addr.into()
}
/// Converts an IPv6-specific witness into a general witness.
fn from_v6(addr: Self::V6) -> Self {
addr.into()
}
}
macro_rules! impl_ip_addr_witness {
($witness:ident) => {
impl IpAddrWitness for $witness<IpAddr> {
type V4 = $witness<Ipv4Addr>;
type V6 = $witness<Ipv6Addr>;
}
};
}
impl_ip_addr_witness!(SpecifiedAddr);
impl_ip_addr_witness!(MulticastAddr);
impl_ip_addr_witness!(LinkLocalAddr);
/// An address and that address's subnet, either IPv4 or IPv6.
///
/// `AddrSubnetEither` is an enum of [`AddrSubnet<Ipv4Addr>`] and
/// `AddrSubnet<Ipv6Addr>`.
///
/// [`AddrSubnet<Ipv4Addr>`]: AddrSubnet
#[allow(missing_docs)]
#[derive(Copy, Clone, Eq, PartialEq, Debug, Hash)]
pub enum AddrSubnetEither<A: IpAddrWitness = SpecifiedAddr<IpAddr>> {
V4(AddrSubnet<Ipv4Addr, A::V4>),
V6(AddrSubnet<Ipv6Addr, A::V6>),
}
impl<A: IpAddrWitness> AddrSubnetEither<A> {
/// Creates a new `AddrSubnetEither`.
///
/// `new` creates a new `AddrSubnetEither` with the given address and prefix
/// length. It returns `Err` under the same conditions as
/// [`AddrSubnet::new`].
#[inline]
pub fn new(addr: IpAddr, prefix: u8) -> Result<AddrSubnetEither<A>, AddrSubnetError> {
Ok(match addr {
IpAddr::V4(addr) => AddrSubnetEither::V4(AddrSubnet::new(addr, prefix)?),
IpAddr::V6(addr) => AddrSubnetEither::V6(AddrSubnet::new(addr, prefix)?),
})
}
/// Creates a new `AddrSubnetEither` from trusted inputs.
///
/// # Safety
///
/// Unlike [`new`], this assumes that the provided address satisfies the
/// requirements of the witness type `A`, and that `prefix` is not too large
/// for the IP version of the address in `addr`.
///
/// [`new`]: AddrSubnetEither::new
#[inline]
pub unsafe fn new_unchecked(addr: IpAddr, prefix: u8) -> Self {
match addr {
IpAddr::V4(addr) => {
AddrSubnetEither::V4(unsafe { AddrSubnet::new_unchecked(addr, prefix) })
}
IpAddr::V6(addr) => {
AddrSubnetEither::V6(unsafe { AddrSubnet::new_unchecked(addr, prefix) })
}
}
}
/// Gets the IP address.
pub fn addr(&self) -> A {
match self {
AddrSubnetEither::V4(v4) => v4.addr.into(),
AddrSubnetEither::V6(v6) => v6.addr.into(),
}
}
/// Gets the IP address and prefix.
#[inline]
pub fn addr_prefix(&self) -> (A, u8) {
match self {
AddrSubnetEither::V4(v4) => (v4.addr.into(), v4.subnet.prefix),
AddrSubnetEither::V6(v6) => (v6.addr.into(), v6.subnet.prefix),
}
}
/// Gets the IP address and subnet.
#[inline]
pub fn addr_subnet(&self) -> (A, SubnetEither) {
match self {
AddrSubnetEither::V4(v4) => (v4.addr.into(), SubnetEither::V4(v4.subnet)),
AddrSubnetEither::V6(v6) => (v6.addr.into(), SubnetEither::V6(v6.subnet)),
}
}
}
impl<S: IpAddress, A: IpAddressWitness<S> + Copy> From<AddrSubnet<S, A>>
for AddrSubnetEither<A::IpAddrWitness>
{
#[inline]
fn from(addr_sub: AddrSubnet<S, A>) -> AddrSubnetEither<A::IpAddrWitness> {
let (addr, sub) = addr_sub.addr_subnet();
// This unwrap is safe because:
// - `addr_sub: AddrSubnet<S, A>`, so we know that `addr` and
// `sub.prefix` are valid arguments to `AddrSubnet::new` (which is
// what `AddrSubnetEither::new` calls under the hood).
// - `A::IpAddrWitness` is the same witness type as `A`, but wrapping
// `IpAddr` instead of `Ipv4Addr` or `Ipv6Addr`. `addr: A` means that
// `addr` satisfies the property witnessed by the witness type `A`,
// which is the same property witnessed by `A::IpAddrWitness`. Thus,
// we're guaranteed that, when `AddrSubnetEither::new` tries to
// construct the witness, it will succeed.
AddrSubnetEither::new(addr.get().to_ip_addr(), sub.prefix()).unwrap()
}
}
impl<A> Display for AddrSubnetEither<A>
where
A: IpAddrWitness,
A::V4: Display,
A::V6: Display,
{
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
match self {
Self::V4(a) => write!(f, "{}", a),
Self::V6(a) => write!(f, "{}", a),
}
}
}
/// Marks types that are generic over IP version.
///
/// This should be implemented by types that contain a generic parameter
/// [`I: Ip`](Ip) or [`A: IpAddress`](IpAddress) to allow them to be used with
/// [`Ip::map_ip`].
///
/// Implementations of this trait should generally be themselves generic over
/// `Ip`. For example:
/// ```
/// struct AddrAndSubnet<I: Ip> {
/// addr: I::Addr,
/// subnet: Subnet<I::Addr>
/// }
///
/// impl <I: Ip, NewIp: Ip> GenericOverIp<NewIp> for AddrAndSubnet<I> {
/// type Type = AddrAndSubnet<NewIp>;
/// }
/// ```
pub trait GenericOverIp<NewIp: Ip> {
/// The type of `Self` when its IP-generic parameter is replaced with the
/// type `NewIp`.
type Type;
}
/// Wrapper type that implements [`GenericOverIp`] with `Type<I: Ip>=Self`.
///
/// This can be used to make a compound type implement `GenericOverIp` with
/// some portion that is invariant over IP version.
pub struct IpInvariant<T>(pub T);
impl<T> IpInvariant<T> {
/// Consumes the `IpInvariant` and returns the wrapped value.
pub fn into_inner(self) -> T {
self.0
}
}
impl<I: Ip, T> GenericOverIp<I> for IpInvariant<T> {
type Type = Self;
}
impl<I: Ip> GenericOverIp<I> for core::convert::Infallible {
type Type = Self;
}
/// A wrapper structure to add an IP version marker to an IP-invariant type.
#[derive(GenericOverIp, Default, Debug, PartialOrd, Ord, Eq, PartialEq, Hash)]
#[generic_over_ip(I, Ip)]
pub struct IpMarked<I: Ip, T> {
inner: T,
_marker: IpVersionMarker<I>,
}
impl<I: Ip, T> Deref for IpMarked<I, T> {
type Target = T;
fn deref(&self) -> &Self::Target {
self.as_ref()
}
}
impl<I: Ip, T> DerefMut for IpMarked<I, T> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.as_mut()
}
}
impl<I: Ip, T> AsRef<T> for IpMarked<I, T> {
fn as_ref(&self) -> &T {
&self.inner
}
}
impl<I: Ip, T> AsMut<T> for IpMarked<I, T> {
fn as_mut(&mut self) -> &mut T {
&mut self.inner
}
}
impl<I: Ip, T> IpMarked<I, T> {
/// Constructs a new `IpMarked` from the provided `T`.
pub fn new(inner: T) -> Self {
Self { inner, _marker: IpVersionMarker::<I>::new() }
}
/// Consumes the `IpMarked` and returns the contained `T` by value.
pub fn into_inner(self) -> T {
let Self { inner, _marker } = self;
inner
}
/// Gets an immutable reference to the underlying `T`.
pub fn get(&self) -> &T {
self.as_ref()
}
/// Gets an mutable reference to the underlying `T`.
pub fn get_mut(&mut self) -> &mut T {
self.as_mut()
}
}
/// Calls the provided macro with all suffixes of the input.
macro_rules! for_each_tuple_ {
( $m:ident !! ) => ( $m! { });
( $m:ident !! $h:ident, $($t:ident,)* ) => (
$m! { $h $($t)* }
for_each_tuple_! { $m !! $($t,)* }
);
}
/// Calls the provided macro with 0-12 type parameters.
macro_rules! for_each_tuple {
($m:ident) => {
for_each_tuple_! { $m !! A, B, C, D, E, F, G, H, I, J, K, L, }
};
}
/// Implements GenericOverIp for a tuple with the provided generic parameters.
macro_rules! ip_generic_tuple {
() => {
impl<I: Ip> GenericOverIp<I> for () {
type Type = Self;
}
};
( $name0:ident $($name:ident)* ) => (
impl<P: Ip, $name0: GenericOverIp<P>, $($name: GenericOverIp<P>,)*>
GenericOverIp<P> for ($name0, $($name,)*) {
type Type = ($name0::Type, $($name::Type,)*);
}
);
}
for_each_tuple!(ip_generic_tuple);
macro_rules! ip_generic {
( $type:ident < $($params:ident),* >) => {
impl<IpType: Ip, $($params: GenericOverIp<IpType>),*>
GenericOverIp<IpType> for $type<$($params),*> {
type Type = $type<$($params::Type),*>;
}
};
( $type:ident) => {
impl<IpType: Ip> GenericOverIp<IpType> for $type {
type Type = Self;
}
}
}
// Implement GenericOverIp for common types.
ip_generic!(bool);
ip_generic!(isize);
ip_generic!(i8);
ip_generic!(i16);
ip_generic!(i32);
ip_generic!(i64);
ip_generic!(usize);
ip_generic!(u8);
ip_generic!(u16);
ip_generic!(u32);
ip_generic!(u64);
ip_generic!(Option<T>);
ip_generic!(Result<R, E>);
#[cfg(feature = "std")]
ip_generic!(Vec<T>);
impl<'s, NewIp: Ip, T: GenericOverIp<NewIp>> GenericOverIp<NewIp> for &'s T
where
T::Type: 's,
{
type Type = &'s T::Type;
}
impl<'s, NewIp: Ip, T: GenericOverIp<NewIp>> GenericOverIp<NewIp> for &'s mut T
where
T::Type: 's,
{
type Type = &'s mut T::Type;
}
#[cfg(test)]
mod tests {
use super::*;
use test_case::test_case;
#[test]
fn test_map_ip_associated_constant() {
fn get_loopback_address<I: Ip>() -> SpecifiedAddr<I::Addr> {
I::map_ip((), |()| Ipv4::LOOPBACK_ADDRESS, |()| Ipv6::LOOPBACK_ADDRESS)
}
assert_eq!(get_loopback_address::<Ipv4>(), Ipv4::LOOPBACK_ADDRESS);
assert_eq!(get_loopback_address::<Ipv6>(), Ipv6::LOOPBACK_ADDRESS);
}
#[test]
fn test_map_ip_different_behavior() {
fn filter_v4<I: Ip>(addr: I::Addr) -> Option<I::Addr> {
I::map_ip(addr, |addr| Some(addr), |_addr| None)
}
assert_eq!(filter_v4::<Ipv4>(*Ipv4::LOOPBACK_ADDRESS), Some(*Ipv4::LOOPBACK_ADDRESS));
assert_eq!(filter_v4::<Ipv6>(*Ipv6::LOOPBACK_ADDRESS), None);
}
#[test]
fn test_map_ip_extension_trait_fn() {
trait FakeIpExt: Ip {
fn reverse_addr_bytes(a: Self::Addr) -> Self::Addr;
}
impl FakeIpExt for Ipv4 {
fn reverse_addr_bytes(a: Self::Addr) -> Self::Addr {
let Ipv4Addr(mut bytes) = a;
bytes.reverse();
Ipv4Addr(bytes)
}
}
impl FakeIpExt for Ipv6 {
fn reverse_addr_bytes(a: Self::Addr) -> Self::Addr {
let Ipv6Addr(mut bytes) = a;
bytes.reverse();
Ipv6Addr(bytes)
}
}
fn reverse_bytes<A: IpAddress>(addr: A) -> A
where
A::Version: FakeIpExt,
{
A::Version::map_ip(addr, Ipv4::reverse_addr_bytes, Ipv6::reverse_addr_bytes)
}
assert_eq!(reverse_bytes(Ipv4Addr([1, 2, 3, 4])), Ipv4Addr([4, 3, 2, 1]));
assert_eq!(
reverse_bytes(Ipv6Addr([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])),
Ipv6Addr([16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1])
);
}
#[test]
fn test_map_ip_extension_trait_associated_type() {
trait FakeIpExt: Ip {
type PackedInt;
}
impl FakeIpExt for Ipv4 {
type PackedInt = u32;
}
impl FakeIpExt for Ipv6 {
type PackedInt = u128;
}
#[derive(Debug, PartialEq)]
struct Int<T>(T);
impl<T, I: FakeIpExt> GenericOverIp<I> for Int<T> {
type Type = Int<I::PackedInt>;
}
fn from_be_bytes<A: IpAddress>(addr: A) -> Int<<A::Version as FakeIpExt>::PackedInt>
where
A::Version: FakeIpExt,
{
A::Version::map_ip(
addr,
|Ipv4Addr(bytes)| Int(<Ipv4 as FakeIpExt>::PackedInt::from_be_bytes(bytes)),
|Ipv6Addr(bytes)| Int(<Ipv6 as FakeIpExt>::PackedInt::from_be_bytes(bytes)),
)
}
assert_eq!(from_be_bytes(Ipv4::LOOPBACK_ADDRESS.get()), Int(0x7f000001u32));
assert_eq!(from_be_bytes(Ipv6::LOOPBACK_ADDRESS.get()), Int(1u128));
}
#[test]
fn map_ip_twice() {
struct FooV4 {
field: Ipv4Addr,
}
impl Default for FooV4 {
fn default() -> Self {
Self { field: Ipv4::UNSPECIFIED_ADDRESS }
}
}
struct FooV6 {
field: Ipv6Addr,
}
impl Default for FooV6 {
fn default() -> Self {
Self { field: Ipv6::UNSPECIFIED_ADDRESS }
}
}
trait IpExt {
type Foo: Default;
}
impl IpExt for Ipv4 {
type Foo = FooV4;
}
impl IpExt for Ipv6 {
type Foo = FooV6;
}
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
struct Foo<I: IpExt>(I::Foo);
fn do_something<I: Ip + IpExt>(
foo: Foo<I>,
extra_foo: Foo<I>,
captured_foo: Foo<I>,
) -> I::Addr {
let addr: I::Addr = map_ip_twice!(I, foo, |Foo(foo)| { foo.field });
// Observe that we can use an associated item with `map_ip_twice!
// too.
let _: I::Addr =
map_ip_twice!(<<I as Ip>::Addr as IpAddress>::Version, extra_foo, |Foo(foo)| {
// Since `captured_foo` is captured rather than fed through the
// generic-over-ip input, this wouldn't work if `I` was aliased
// concretely to `Ipv4` or `Ipv6`.
let _: &Foo<I> = &captured_foo;
foo.field
});
addr
}
assert_eq!(
do_something(
Foo::<Ipv4>(FooV4 { field: Ipv4::UNSPECIFIED_ADDRESS }),
Foo::<Ipv4>(FooV4 { field: Ipv4::UNSPECIFIED_ADDRESS }),
Foo::<Ipv4>(FooV4 { field: Ipv4::UNSPECIFIED_ADDRESS })
),
Ipv4::UNSPECIFIED_ADDRESS
);
assert_eq!(
do_something(
Foo::<Ipv6>(FooV6 { field: Ipv6::UNSPECIFIED_ADDRESS }),
Foo::<Ipv6>(FooV6 { field: Ipv6::UNSPECIFIED_ADDRESS }),
Foo::<Ipv6>(FooV6 { field: Ipv6::UNSPECIFIED_ADDRESS })
),
Ipv6::UNSPECIFIED_ADDRESS
);
fn do_something_with_default_type_alias_shadowing<I: Ip>() -> (I::Addr, IpVersion) {
let (field, IpInvariant(version)) = map_ip_twice!(I, (), |()| {
// Note that there's no `IpExt` bound on `I`, so `I` wouldn't
// work here unless it was automatically aliased to `Ipv4` or `Ipv6`.
let foo: Foo<I> = Foo(<I as IpExt>::Foo::default());
(foo.0.field, IpInvariant(I::VERSION))
},);
(field, version)
}
fn do_something_with_type_alias<I: Ip>() -> (I::Addr, IpVersion) {
// Show that the type alias inside the macro shadows
// whatever it was bound to outside the macro.
#[allow(dead_code)]
type IpAlias = usize;
let (field, IpInvariant(version)) = map_ip_twice!(I as IpAlias, (), |()| {
// Note that there's no `IpExt` bound on `I`, so `I` wouldn't
// work here -- only `IpAlias`, since `IpAlias` is explicitly
// an alias of `Ipv4` or `Ipv6`.
let foo: Foo<IpAlias> = Foo(<IpAlias as IpExt>::Foo::default());
(foo.0.field, IpInvariant(IpAlias::VERSION))
},);
(field, version)
}
assert_eq!(
do_something_with_default_type_alias_shadowing::<Ipv4>(),
(Ipv4::UNSPECIFIED_ADDRESS, IpVersion::V4)
);
assert_eq!(
do_something_with_default_type_alias_shadowing::<Ipv6>(),
(Ipv6::UNSPECIFIED_ADDRESS, IpVersion::V6)
);
assert_eq!(
do_something_with_type_alias::<Ipv4>(),
(Ipv4::UNSPECIFIED_ADDRESS, IpVersion::V4)
);
assert_eq!(
do_something_with_type_alias::<Ipv6>(),
(Ipv6::UNSPECIFIED_ADDRESS, IpVersion::V6)
);
}
#[test]
fn test_loopback_unicast() {
// The loopback addresses are constructed as `SpecifiedAddr`s directly,
// bypassing the actual check against `is_specified`. Test that that's
// actually valid.
assert!(Ipv4::LOOPBACK_ADDRESS.0.is_specified());
assert!(Ipv6::LOOPBACK_ADDRESS.0.is_specified());
}
#[test]
fn test_specified() {
// For types that implement SpecifiedAddress,
// UnicastAddress::is_unicast, MulticastAddress::is_multicast, and
// LinkLocalAddress::is_link_local all imply
// SpecifiedAddress::is_specified. Test that that's true for both IPv4
// and IPv6.
assert!(!Ipv6::UNSPECIFIED_ADDRESS.is_specified());
assert!(!Ipv4::UNSPECIFIED_ADDRESS.is_specified());
// Unicast
assert!(!Ipv6::UNSPECIFIED_ADDRESS.is_unicast());
let unicast = Ipv6Addr([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]);
assert!(unicast.is_unicast());
assert!(unicast.is_specified());
// Multicast
assert!(!Ipv4::UNSPECIFIED_ADDRESS.is_multicast());
assert!(!Ipv6::UNSPECIFIED_ADDRESS.is_multicast());
let multicast = Ipv4::MULTICAST_SUBNET.network;
assert!(multicast.is_multicast());
assert!(multicast.is_specified());
let multicast = Ipv6::MULTICAST_SUBNET.network;
assert!(multicast.is_multicast());
assert!(multicast.is_specified());
// Link-local
assert!(!Ipv4::UNSPECIFIED_ADDRESS.is_link_local());
assert!(!Ipv6::UNSPECIFIED_ADDRESS.is_link_local());
let link_local = Ipv4::LINK_LOCAL_UNICAST_SUBNET.network;
assert!(link_local.is_link_local());
assert!(link_local.is_specified());
let link_local = Ipv4::LINK_LOCAL_MULTICAST_SUBNET.network;
assert!(link_local.is_link_local());
assert!(link_local.is_specified());
let link_local = Ipv6::LINK_LOCAL_UNICAST_SUBNET.network;
assert!(link_local.is_link_local());
assert!(link_local.is_specified());
let mut link_local = Ipv6::MULTICAST_SUBNET.network;
link_local.0[1] = 0x02;
assert!(link_local.is_link_local());
assert!(link_local.is_specified());
assert!(Ipv6::LOOPBACK_ADDRESS.is_link_local());
}
#[test]
fn test_link_local() {
// IPv4
assert!(Ipv4::LINK_LOCAL_UNICAST_SUBNET.network.is_link_local());
assert!(Ipv4::LINK_LOCAL_MULTICAST_SUBNET.network.is_link_local());
// IPv6
assert!(Ipv6::LINK_LOCAL_UNICAST_SUBNET.network.is_link_local());
assert!(Ipv6::LINK_LOCAL_UNICAST_SUBNET.network.is_unicast_link_local());
let mut addr = Ipv6::MULTICAST_SUBNET.network;
for flags in 0..=0x0F {
// Set the scope to link-local and the flags to `flags`.
addr.0[1] = (flags << 4) | 0x02;
// Test that a link-local multicast address is always considered
// link-local regardless of which flags are set.
assert!(addr.is_link_local());
assert!(!addr.is_unicast_link_local());
}
// Test that a non-multicast address (outside of the link-local subnet)
// is never considered link-local even if the bits are set that, in a
// multicast address, would put it in the link-local scope.
let mut addr = Ipv6::LOOPBACK_ADDRESS.get();
// Explicitly set the scope to link-local.
addr.0[1] = 0x02;
assert!(!addr.is_link_local());
}
#[test]
fn test_subnet_new() {
assert_eq!(
Subnet::new(Ipv4Addr::new([255, 255, 255, 255]), 32).unwrap(),
Subnet { network: Ipv4Addr::new([255, 255, 255, 255]), prefix: 32 },
);
// Prefix exceeds 32 bits
assert_eq!(
Subnet::new(Ipv4Addr::new([255, 255, 0, 0]), 33),
Err(SubnetError::PrefixTooLong)
);
assert_eq!(
Subnet::from_host(Ipv4Addr::new([255, 255, 255, 255]), 33),
Err(PrefixTooLongError)
);
// Network address has more than top 8 bits set
assert_eq!(Subnet::new(Ipv4Addr::new([255, 255, 0, 0]), 8), Err(SubnetError::HostBitsSet));
// Host address is allowed to have host bits set
assert_eq!(
Subnet::from_host(Ipv4Addr::new([255, 255, 0, 0]), 8),
Ok(Subnet { network: Ipv4Addr::new([255, 0, 0, 0]), prefix: 8 })
);
assert_eq!(
AddrSubnet::<_, SpecifiedAddr<_>>::new(Ipv4Addr::new([1, 2, 3, 4]), 32).unwrap(),
AddrSubnet {
addr: SpecifiedAddr(Ipv4Addr::new([1, 2, 3, 4])),
subnet: Subnet { network: Ipv4Addr::new([1, 2, 3, 4]), prefix: 32 }
}
);
// The unspecified address will always fail because it is not valid for
// the `SpecifiedAddr` witness (use assert, not assert_eq, because
// AddrSubnet doesn't impl Debug).
assert!(
AddrSubnet::<_, SpecifiedAddr<_>>::new(Ipv4::UNSPECIFIED_ADDRESS, 16)
== Err(AddrSubnetError::InvalidWitness)
);
assert!(
AddrSubnet::<_, SpecifiedAddr<_>>::new(Ipv6::UNSPECIFIED_ADDRESS, 64)
== Err(AddrSubnetError::InvalidWitness)
);
// Prefix exceeds 32/128 bits
assert!(
AddrSubnet::<_, SpecifiedAddr<_>>::new(Ipv4Addr::new([1, 2, 3, 4]), 33)
== Err(AddrSubnetError::PrefixTooLong)
);
assert!(
AddrSubnet::<_, SpecifiedAddr<_>>::new(
Ipv6Addr::from([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]),
129,
) == Err(AddrSubnetError::PrefixTooLong)
);
// Limited broadcast
assert!(
AddrSubnet::<_, SpecifiedAddr<_>>::new(Ipv4::LIMITED_BROADCAST_ADDRESS.get(), 16)
== Err(AddrSubnetError::NotUnicastInSubnet)
);
// Subnet broadcast
assert!(
AddrSubnet::<_, SpecifiedAddr<_>>::new(Ipv4Addr::new([192, 168, 255, 255]), 16)
== Err(AddrSubnetError::NotUnicastInSubnet)
);
// Multicast
assert!(
AddrSubnet::<_, SpecifiedAddr<_>>::new(Ipv4Addr::new([224, 0, 0, 1]), 16)
== Err(AddrSubnetError::NotUnicastInSubnet)
);
assert!(
AddrSubnet::<_, SpecifiedAddr<_>>::new(
Ipv6Addr::from([0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]),
64,
) == Err(AddrSubnetError::NotUnicastInSubnet)
);
// If we use the `LinkLocalAddr` witness type, then non link-local
// addresses are rejected. Note that this address was accepted above
// when `SpecifiedAddr` was used.
assert!(
AddrSubnet::<_, LinkLocalAddr<Ipv4Addr>>::new(Ipv4Addr::new([1, 2, 3, 4]), 32)
== Err(AddrSubnetError::InvalidWitness)
);
}
#[test]
fn test_is_unicast_in_subnet() {
// Valid unicast in subnet
let subnet =
Subnet::new(Ipv4Addr::new([1, 2, 0, 0]), 16).expect("1.2.0.0/16 is a valid subnet");
assert!(Ipv4Addr::new([1, 2, 3, 4]).is_unicast_in_subnet(&subnet));
assert!(!Ipv4Addr::new([2, 2, 3, 4]).is_unicast_in_subnet(&subnet));
let subnet =
Subnet::new(Ipv6Addr::from([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), 64)
.expect("1::/64 is a valid subnet");
assert!(Ipv6Addr::from([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
.is_unicast_in_subnet(&subnet));
assert!(!Ipv6Addr::from([2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
.is_unicast_in_subnet(&subnet));
// Unspecified address
assert!(!Ipv4::UNSPECIFIED_ADDRESS
.is_unicast_in_subnet(&Subnet::new(Ipv4::UNSPECIFIED_ADDRESS, 16).unwrap()));
assert!(!Ipv6::UNSPECIFIED_ADDRESS
.is_unicast_in_subnet(&Subnet::new(Ipv6::UNSPECIFIED_ADDRESS, 64).unwrap()));
// The "31- or 32-bit prefix" exception doesn't apply to the unspecified
// address (IPv4 only).
assert!(!Ipv4::UNSPECIFIED_ADDRESS
.is_unicast_in_subnet(&Subnet::new(Ipv4::UNSPECIFIED_ADDRESS, 31).unwrap()));
assert!(!Ipv4::UNSPECIFIED_ADDRESS
.is_unicast_in_subnet(&Subnet::new(Ipv4::UNSPECIFIED_ADDRESS, 32).unwrap()));
// All-zeroes host part (IPv4 only)
assert!(!Ipv4Addr::new([1, 2, 0, 0])
.is_unicast_in_subnet(&Subnet::new(Ipv4Addr::new([1, 2, 0, 0]), 16).unwrap()));
// Exception: 31- or 32-bit prefix (IPv4 only)
assert!(Ipv4Addr::new([1, 2, 3, 0])
.is_unicast_in_subnet(&Subnet::new(Ipv4Addr::new([1, 2, 3, 0]), 31).unwrap()));
assert!(Ipv4Addr::new([1, 2, 3, 0])
.is_unicast_in_subnet(&Subnet::new(Ipv4Addr::new([1, 2, 3, 0]), 32).unwrap()));
// Limited broadcast (IPv4 only)
assert!(!Ipv4::LIMITED_BROADCAST_ADDRESS
.get()
.is_unicast_in_subnet(&Subnet::new(Ipv4Addr::new([128, 0, 0, 0]), 1).unwrap()));
// Subnet broadcast (IPv4 only)
assert!(!Ipv4Addr::new([1, 2, 255, 255])
.is_unicast_in_subnet(&Subnet::new(Ipv4Addr::new([1, 2, 0, 0]), 16).unwrap()));
// Exception: 31- or 32-bit prefix (IPv4 only)
assert!(Ipv4Addr::new([1, 2, 255, 255])
.is_unicast_in_subnet(&Subnet::new(Ipv4Addr::new([1, 2, 255, 254]), 31).unwrap()));
assert!(Ipv4Addr::new([1, 2, 255, 255])
.is_unicast_in_subnet(&Subnet::new(Ipv4Addr::new([1, 2, 255, 255]), 32).unwrap()));
// Multicast
assert!(!Ipv4Addr::new([224, 0, 0, 1]).is_unicast_in_subnet(&Ipv4::MULTICAST_SUBNET));
assert!(!Ipv6Addr::from([0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
.is_unicast_in_subnet(&Ipv6::MULTICAST_SUBNET));
// Class E (IPv4 only)
assert!(!Ipv4Addr::new([240, 0, 0, 1]).is_unicast_in_subnet(&Ipv4::CLASS_E_SUBNET));
}
macro_rules! add_mask_test {
($name:ident, $addr:ident, $from_ip:expr => {
$($mask:expr => $to_ip:expr),*
}) => {
#[test]
fn $name() {
let from = $addr::from($from_ip);
$(assert_eq!(from.mask($mask), $addr::from($to_ip), "(`{}`.mask({}))", from, $mask);)*
}
};
($name:ident, $addr:ident, $from_ip:expr => {
$($mask:expr => $to_ip:expr),*,
}) => {
add_mask_test!($name, $addr, $from_ip => { $($mask => $to_ip),* });
};
}
add_mask_test!(v4_full_mask, Ipv4Addr, [255, 254, 253, 252] => {
32 => [255, 254, 253, 252],
28 => [255, 254, 253, 240],
24 => [255, 254, 253, 0],
20 => [255, 254, 240, 0],
16 => [255, 254, 0, 0],
12 => [255, 240, 0, 0],
8 => [255, 0, 0, 0],
4 => [240, 0, 0, 0],
0 => [0, 0, 0, 0],
});
add_mask_test!(v6_full_mask, Ipv6Addr,
[0xFF, 0xFE, 0xFD, 0xFC, 0xFB, 0xFA, 0xF9, 0xF8, 0xF7, 0xF6, 0xF5, 0xF4, 0xF3, 0xF2, 0xF1, 0xF0] => {
128 => [0xFF, 0xFE, 0xFD, 0xFC, 0xFB, 0xFA, 0xF9, 0xF8, 0xF7, 0xF6, 0xF5, 0xF4, 0xF3, 0xF2, 0xF1, 0xF0],
112 => [0xFF, 0xFE, 0xFD, 0xFC, 0xFB, 0xFA, 0xF9, 0xF8, 0xF7, 0xF6, 0xF5, 0xF4, 0xF3, 0xF2, 0x00, 0x00],
96 => [0xFF, 0xFE, 0xFD, 0xFC, 0xFB, 0xFA, 0xF9, 0xF8, 0xF7, 0xF6, 0xF5, 0xF4, 0x00, 0x00, 0x00, 0x00],
80 => [0xFF, 0xFE, 0xFD, 0xFC, 0xFB, 0xFA, 0xF9, 0xF8, 0xF7, 0xF6, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
64 => [0xFF, 0xFE, 0xFD, 0xFC, 0xFB, 0xFA, 0xF9, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
48 => [0xFF, 0xFE, 0xFD, 0xFC, 0xFB, 0xFA, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
32 => [0xFF, 0xFE, 0xFD, 0xFC, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
16 => [0xFF, 0xFE, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
8 => [0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
0 => [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00],
}
);
#[test_case([255, 255, 255, 0] => Ok(24))]
#[test_case([255, 255, 254, 0] => Ok(23))]
#[test_case([255, 255, 253, 0] => Err(NotSubnetMaskError))]
#[test_case([255, 255, 0, 255] => Err(NotSubnetMaskError))]
#[test_case([255, 255, 255, 255] => Ok(32))]
#[test_case([0, 0, 0, 0] => Ok(0))]
#[test_case([0, 0, 0, 255] => Err(NotSubnetMaskError))]
fn test_ipv4_prefix_len_try_from_subnet_mask(
subnet_mask: [u8; 4],
) -> Result<u8, NotSubnetMaskError> {
let subnet_mask = Ipv4Addr::from(subnet_mask);
PrefixLength::<Ipv4>::try_from_subnet_mask(subnet_mask).map(|prefix_len| prefix_len.get())
}
#[test_case([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0] => Ok(64))]
#[test_case([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0, 0, 0, 0, 0, 0, 0, 0] => Ok(63))]
#[test_case([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xEF, 0, 0, 0, 0, 0, 0, 0, 0] => Err(NotSubnetMaskError))]
#[test_case([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0, 0, 0, 0, 0, 0, 0, 1] => Err(NotSubnetMaskError))]
#[test_case([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] => Ok(0))]
#[test_case([0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF] => Ok(128))]
#[test_case([0, 0, 0, 0, 0, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0] => Err(NotSubnetMaskError))]
fn test_ipv6_prefix_len_try_from_subnet_mask(
subnet_mask: [u8; 16],
) -> Result<u8, NotSubnetMaskError> {
let subnet_mask = Ipv6Addr::from(subnet_mask);
PrefixLength::<Ipv6>::try_from_subnet_mask(subnet_mask).map(|prefix_len| prefix_len.get())
}
#[test_case(0 => true)]
#[test_case(1 => true)]
#[test_case(32 => true)]
#[test_case(33 => false)]
#[test_case(128 => false)]
#[test_case(129 => false)]
#[test_case(255 => false)]
fn test_ipv4_prefix_len_new(prefix_len: u8) -> bool {
PrefixLength::<Ipv4>::new(prefix_len).is_ok()
}
#[test_case(0 => true)]
#[test_case(1 => true)]
#[test_case(32 => true)]
#[test_case(33 => true)]
#[test_case(128 => true)]
#[test_case(129 => false)]
#[test_case(255 => false)]
fn test_ipv6_prefix_len_new(prefix_len: u8) -> bool {
PrefixLength::<Ipv6>::new(prefix_len).is_ok()
}
#[test_case(0 => [0, 0, 0, 0])]
#[test_case(6 => [252, 0, 0, 0])]
#[test_case(16 => [255, 255, 0, 0])]
#[test_case(25 => [255, 255, 255, 128])]
#[test_case(32 => [255, 255, 255, 255])]
fn test_ipv4_prefix_len_get_mask(prefix_len: u8) -> [u8; 4] {
let Ipv4Addr(inner) = PrefixLength::<Ipv4>::new(prefix_len).unwrap().get_mask();
inner
}
#[test_case(0 => [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])]
#[test_case(6 => [0xFC, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])]
#[test_case(64 => [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0])]
#[test_case(65 => [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x80, 0, 0, 0, 0, 0, 0, 0])]
#[test_case(128 => [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF])]
fn test_ipv6_prefix_len_get_mask(prefix_len: u8) -> [u8; 16] {
let Ipv6Addr(inner) = PrefixLength::<Ipv6>::new(prefix_len).unwrap().get_mask();
inner
}
#[test]
fn test_ipv6_solicited_node() {
let addr = Ipv6Addr::new([0xfe80, 0, 0, 0, 0x52e5, 0x49ff, 0xfeb5, 0x5aa0]);
let solicited = Ipv6Addr::new([0xff02, 0, 0, 0, 0, 0x01, 0xffb5, 0x5aa0]);
assert_eq!(addr.to_solicited_node_address().get(), solicited);
}
#[test]
fn test_ipv6_address_types() {
assert!(!Ipv6Addr::from([0; 16]).is_specified());
assert!(Ipv6Addr::new([0, 0, 0, 0, 0, 0, 0, 1]).is_loopback());
let link_local = Ipv6Addr::new([0xfe80, 0, 0, 0, 0x52e5, 0x49ff, 0xfeb5, 0x5aa0]);
assert!(link_local.is_link_local());
assert!(link_local.is_valid_unicast());
assert!(link_local.to_solicited_node_address().is_multicast());
let global_unicast = Ipv6Addr::new([0x80, 0, 0, 0, 0x52e5, 0x49ff, 0xfeb5, 0x5aa0]);
assert!(global_unicast.is_valid_unicast());
assert!(global_unicast.to_solicited_node_address().is_multicast());
let multi = Ipv6Addr::new([0xff02, 0, 0, 0, 0, 0x01, 0xffb5, 0x5aa0]);
assert!(multi.is_multicast());
assert!(!multi.is_valid_unicast());
}
#[test]
fn test_const_witness() {
// Test that all of the addresses that we initialize at compile time
// using `new_unchecked` constructors are valid for their witness types.
assert!(Ipv4::LOOPBACK_ADDRESS.0.is_specified());
assert!(Ipv6::LOOPBACK_ADDRESS.0.is_specified());
assert!(Ipv4::LIMITED_BROADCAST_ADDRESS.0.is_specified());
assert!(Ipv4::ALL_ROUTERS_MULTICAST_ADDRESS.0.is_multicast());
assert!(Ipv6::ALL_NODES_LINK_LOCAL_MULTICAST_ADDRESS.0.is_multicast());
assert!(Ipv6::ALL_ROUTERS_LINK_LOCAL_MULTICAST_ADDRESS.0.is_multicast());
}
#[test]
fn test_ipv6_scope() {
use Ipv6ReservedScope::*;
use Ipv6Scope::*;
use Ipv6UnassignedScope::*;
// Test unicast scopes.
assert_eq!(Ipv6::SITE_LOCAL_UNICAST_SUBNET.network.scope(), SiteLocal);
assert_eq!(Ipv6::LINK_LOCAL_UNICAST_SUBNET.network.scope(), LinkLocal);
assert_eq!(Ipv6::UNSPECIFIED_ADDRESS.scope(), Global);
// Test multicast scopes.
let assert_scope = |value, scope| {
let mut addr = Ipv6::MULTICAST_SUBNET.network;
// Set the "scop" field manually.
addr.0[1] |= value;
assert_eq!(addr.scope(), scope);
};
assert_scope(0, Reserved(Scope0));
assert_scope(1, InterfaceLocal);
assert_scope(2, LinkLocal);
assert_scope(3, Reserved(Scope3));
assert_scope(4, AdminLocal);
assert_scope(5, SiteLocal);
assert_scope(6, Unassigned(Scope6));
assert_scope(7, Unassigned(Scope7));
assert_scope(8, OrganizationLocal);
assert_scope(9, Unassigned(Scope9));
assert_scope(0xA, Unassigned(ScopeA));
assert_scope(0xB, Unassigned(ScopeB));
assert_scope(0xC, Unassigned(ScopeC));
assert_scope(0xD, Unassigned(ScopeD));
assert_scope(0xE, Global);
assert_scope(0xF, Reserved(ScopeF));
}
#[test]
fn test_ipv6_multicast_scope_id() {
const ALL_SCOPES: &[Ipv6Scope] = &[
Ipv6Scope::Reserved(Ipv6ReservedScope::Scope0),
Ipv6Scope::InterfaceLocal,
Ipv6Scope::LinkLocal,
Ipv6Scope::Reserved(Ipv6ReservedScope::Scope3),
Ipv6Scope::AdminLocal,
Ipv6Scope::SiteLocal,
Ipv6Scope::Unassigned(Ipv6UnassignedScope::Scope6),
Ipv6Scope::Unassigned(Ipv6UnassignedScope::Scope7),
Ipv6Scope::OrganizationLocal,
Ipv6Scope::Unassigned(Ipv6UnassignedScope::Scope9),
Ipv6Scope::Unassigned(Ipv6UnassignedScope::ScopeA),
Ipv6Scope::Unassigned(Ipv6UnassignedScope::ScopeB),
Ipv6Scope::Unassigned(Ipv6UnassignedScope::ScopeC),
Ipv6Scope::Unassigned(Ipv6UnassignedScope::ScopeD),
Ipv6Scope::Global,
Ipv6Scope::Reserved(Ipv6ReservedScope::ScopeF),
];
for (i, a) in ALL_SCOPES.iter().enumerate() {
assert_eq!(a.multicast_scope_id(), i.try_into().unwrap());
}
}
#[test]
fn test_ipv4_embedded() {
// Test Ipv4Addr's to_ipv6_compatible and to_ipv6_mapped methods.
assert_eq!(
Ipv4Addr::new([1, 2, 3, 4]).to_ipv6_compatible(),
Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4])
);
assert_eq!(
Ipv4Addr::new([1, 2, 3, 4]).to_ipv6_mapped().get(),
Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, 1, 2, 3, 4]),
);
// Test Ipv6Addr's to_ipv4_compatible and to_ipv4_mapped methods.
let compatible = Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4]);
let mapped = Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, 1, 2, 3, 4]);
let not_embedded = Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 1, 2, 3, 4]);
let v4 = Ipv4Addr::new([1, 2, 3, 4]);
assert_eq!(compatible.to_ipv4_compatible(), Some(v4));
assert_eq!(compatible.to_ipv4_mapped(), None);
assert_eq!(mapped.to_ipv4_compatible(), None);
assert_eq!(mapped.to_ipv4_mapped(), Some(v4));
assert_eq!(not_embedded.to_ipv4_compatible(), None);
assert_eq!(not_embedded.to_ipv4_mapped(), None);
assert_eq!(
NonMappedAddr::new(compatible),
Some(unsafe { NonMappedAddr::new_unchecked(compatible) })
);
assert_eq!(NonMappedAddr::new(mapped), None);
assert_eq!(
NonMappedAddr::new(not_embedded),
Some(unsafe { NonMappedAddr::new_unchecked(not_embedded) })
);
assert_eq!(NonMappedAddr::new(v4), Some(unsafe { NonMappedAddr::new_unchecked(v4) }));
}
#[test]
fn test_common_prefix_len_ipv6() {
let ip1 = Ipv6Addr::from([0xFF, 0xFF, 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
let ip2 = Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
let ip3 = Ipv6Addr::from([0xFF, 0xFF, 0x80, 0xFF, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
let ip4 = Ipv6Addr::from([0xFF, 0xFF, 0xC0, 0x20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
let compare_with_ip1 = |target, expect| {
assert_eq!(ip1.common_prefix_len(&target), expect, "{} <=> {}", ip1, target);
};
compare_with_ip1(ip1, 128);
compare_with_ip1(ip2, 0);
compare_with_ip1(ip3, 24);
compare_with_ip1(ip4, 17);
}
#[test]
fn test_common_prefix_len_ipv4() {
let ip1 = Ipv4Addr::new([0xFF, 0xFF, 0x80, 0]);
let ip2 = Ipv4Addr::new([0, 0, 0, 0]);
let ip3 = Ipv4Addr::new([0xFF, 0xFF, 0x80, 0xFF]);
let ip4 = Ipv4Addr::new([0xFF, 0xFF, 0xC0, 0x20]);
let compare_with_ip1 = |target, expect| {
assert_eq!(ip1.common_prefix_len(&target), expect, "{} <=> {}", ip1, target);
};
compare_with_ip1(ip1, 32);
compare_with_ip1(ip2, 0);
compare_with_ip1(ip3, 24);
compare_with_ip1(ip4, 17);
}
#[test]
fn test_ipv6_display() {
// Test that `addr` is formatted the same by our `Display` impl as by
// the standard library's `Display` impl. Optionally test that it
// matches a particular expected string.
fn test_one(addr: Ipv6Addr, expect: Option<&str>) {
let formatted = format!("{}", addr);
if let Some(expect) = expect {
assert_eq!(formatted, expect);
}
// NOTE: We use `std` here even though we're not inside of the
// `std_tests` module because we're using `std` to test
// functionality that is present even when the `std` Cargo feature
// is not used.
//
// Note that we use `std::net::Ipv6Addr::from(addr.segments())`
// rather than `std::net::Ipv6Addr::from(addr)` because, when the
// `std` Cargo feature is disabled, the `From<Ipv6Addr> for
// std::net::Ipv6Addr` impl is not emitted.
let formatted_std = format!("{}", std::net::Ipv6Addr::from(addr.segments()));
assert_eq!(formatted, formatted_std);
}
test_one(Ipv6::UNSPECIFIED_ADDRESS, Some("::"));
test_one(*Ipv6::LOOPBACK_ADDRESS, Some("::1"));
test_one(Ipv6::MULTICAST_SUBNET.network, Some("ff00::"));
test_one(Ipv6::LINK_LOCAL_UNICAST_SUBNET.network, Some("fe80::"));
test_one(*Ipv6::ALL_NODES_LINK_LOCAL_MULTICAST_ADDRESS, Some("ff02::1"));
test_one(*Ipv6::ALL_NODES_LINK_LOCAL_MULTICAST_ADDRESS, Some("ff02::1"));
test_one(*Ipv6::ALL_ROUTERS_LINK_LOCAL_MULTICAST_ADDRESS, Some("ff02::2"));
test_one(Ipv6::SITE_LOCAL_UNICAST_SUBNET.network, Some("fec0::"));
test_one(Ipv6Addr::new([1, 0, 0, 0, 0, 0, 0, 0]), Some("1::"));
test_one(Ipv6Addr::new([0, 0, 0, 1, 2, 3, 4, 5]), Some("::1:2:3:4:5"));
// Treating each pair of bytes as a bit (either 0x0000 or 0x0001), cycle
// through every possible IPv6 address. Since the formatting algorithm
// is only sensitive to zero vs nonzero for any given byte pair, this
// gives us effectively complete coverage of the input space.
for byte in 0u8..=255 {
test_one(
Ipv6Addr::new([
u16::from(byte & 0b1),
u16::from((byte & 0b10) >> 1),
u16::from((byte & 0b100) >> 2),
u16::from((byte & 0b1000) >> 3),
u16::from((byte & 0b10000) >> 4),
u16::from((byte & 0b100000) >> 5),
u16::from((byte & 0b1000000) >> 6),
u16::from((byte & 0b10000000) >> 7),
]),
None,
);
}
}
#[test_case(Ipv4::UNSPECIFIED_ADDRESS, Ipv4AddressClass::A; "first_class_a")]
#[test_case(Ipv4Addr::new([127, 255, 255, 255]), Ipv4AddressClass::A; "last_class_a")]
#[test_case(Ipv4Addr::new([128, 0, 0, 0]), Ipv4AddressClass::B; "first_class_b")]
#[test_case(Ipv4Addr::new([191, 255, 255, 255]), Ipv4AddressClass::B; "last_class_b")]
#[test_case(Ipv4Addr::new([192, 0, 0, 0]), Ipv4AddressClass::C; "first_class_c")]
#[test_case(Ipv4Addr::new([223, 255, 255, 255]), Ipv4AddressClass::C; "last_class_c")]
#[test_case(Ipv4Addr::new([224, 0, 0, 0]), Ipv4AddressClass::D; "first_class_d")]
#[test_case(Ipv4Addr::new([239, 255, 255, 255]), Ipv4AddressClass::D; "last_class_d")]
#[test_case(Ipv4Addr::new([240, 0, 0, 0]), Ipv4AddressClass::E; "first_class_e")]
#[test_case(Ipv4Addr::new([255, 255, 255, 255]), Ipv4AddressClass::E; "last_class_e")]
fn ipv4addr_class(addr: Ipv4Addr, class: Ipv4AddressClass) {
assert_eq!(addr.class(), class)
}
#[test_case(
Subnet::new(Ipv4Addr::new([192, 168, 1, 0]), 24).unwrap(),
Subnet::new(Ipv4Addr::new([192, 168, 2, 0]), 24).unwrap()
; "ipv4_same_prefix")]
#[test_case(
Subnet::new(Ipv4Addr::new([192, 168, 2, 0]), 24).unwrap(),
Subnet::new(Ipv4Addr::new([192, 168, 1, 0]), 32).unwrap()
; "ipv4_by_prefix")]
#[test_case(
Subnet::new(Ipv6Addr::new([1, 0, 0, 0, 0, 0, 0, 0]), 64).unwrap(),
Subnet::new(Ipv6Addr::new([2, 0, 0, 0, 0, 0, 0, 0]), 64).unwrap()
; "ipv6_same_prefix")]
#[test_case(
Subnet::new(Ipv6Addr::new([2, 0, 0, 0, 0, 0, 0, 0]), 64).unwrap(),
Subnet::new(Ipv6Addr::new([1, 0, 0, 0, 0, 0, 0, 0]), 128).unwrap()
; "ipv6_by_prefix")]
fn subnet_ord<A: core::cmp::Ord>(a: Subnet<A>, b: Subnet<A>) {
assert!(a < b);
}
#[cfg(feature = "std")]
mod std_tests {
use super::*;
#[test]
fn test_conversions() {
let v4 = Ipv4Addr::new([127, 0, 0, 1]);
let v6 = Ipv6Addr::from([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]);
let std_v4 = net::Ipv4Addr::new(127, 0, 0, 1);
let std_v6 = net::Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
let converted: IpAddr = net::IpAddr::V4(std_v4).into();
assert_eq!(converted, IpAddr::V4(v4));
let converted: IpAddr = net::IpAddr::V6(std_v6).into();
assert_eq!(converted, IpAddr::V6(v6));
let converted: net::IpAddr = IpAddr::V4(v4).into();
assert_eq!(converted, net::IpAddr::V4(std_v4));
let converted: net::IpAddr = IpAddr::V6(v6).into();
assert_eq!(converted, net::IpAddr::V6(std_v6));
let converted: Ipv4Addr = std_v4.into();
assert_eq!(converted, v4);
let converted: Ipv6Addr = std_v6.into();
assert_eq!(converted, v6);
let converted: net::Ipv4Addr = v4.into();
assert_eq!(converted, std_v4);
let converted: net::Ipv6Addr = v6.into();
assert_eq!(converted, std_v6);
}
}
}
/// Tests of the [`GenericOverIp`] derive macro.
#[cfg(test)]
mod macro_test {
use super::*;
/// No-op function that will only compile if `T::Type<I> = Other`.
fn assert_ip_generic_is<T, I, Other>()
where
I: Ip,
T: GenericOverIp<I, Type = Other>,
{
// Do nothing; this function just serves to assert that the argument
// does in fact implement GenericOverIp.
}
macro_rules! assert_ip_generic {
($name:ident, Ip $(,$($param:ident),*)?) => {
assert_ip_generic_is::<$name<Ipv4 $(, $($param,)*)?>, Ipv4, $name<Ipv4 $(, $($param,)*)?>>();
assert_ip_generic_is::<$name<Ipv4 $(, $($param,)*)?>, Ipv6, $name<Ipv6 $(, $($param,)*)?>>();
assert_ip_generic_is::<$name<Ipv6 $(, $($param,)*)?>, Ipv4, $name<Ipv4 $(, $($param,)*)?>>();
assert_ip_generic_is::<$name<Ipv6 $(, $($param,)*)?>, Ipv6, $name<Ipv6 $(, $($param,)*)?>>();
};
($name:ident, IpAddress $(,$($param:ident),*)?) => {
assert_ip_generic_is::<$name<Ipv4Addr $(, $($param,)*)?>, Ipv4, $name<Ipv4Addr $(, $($param,)*)?>>();
assert_ip_generic_is::<$name<Ipv4Addr $(, $($param,)*)?>, Ipv6, $name<Ipv6Addr $(, $($param,)*)?>>();
assert_ip_generic_is::<$name<Ipv6Addr $(, $($param,)*)?>, Ipv4, $name<Ipv4Addr $(, $($param,)*)?>>();
assert_ip_generic_is::<$name<Ipv6Addr $(, $($param,)*)?>, Ipv6, $name<Ipv6Addr $(, $($param,)*)?>>();
};
($name:ident $(,$($param:ident),*)?) => {
assert_ip_generic_is::<$name<$($($param,)*)?>, Ipv4, $name<$($($param,)*)?>>();
assert_ip_generic_is::<$name<$($($param,)*)?>, Ipv6, $name<$($($param,)*)?>>();
assert_ip_generic_is::<$name<$($($param,)*)?>, Ipv4, $name<$($($param,)*)?>>();
assert_ip_generic_is::<$name<$($($param,)*)?>, Ipv6, $name<$($($param,)*)?>>();
};
}
#[test]
fn struct_with_ip_version_parameter() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
struct Generic<I: Ip> {
addr: I::Addr,
}
assert_ip_generic!(Generic, Ip);
}
#[test]
fn struct_with_unbounded_ip_version_parameter() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
struct Generic<I> {
addr: core::marker::PhantomData<I>,
}
assert_ip_generic!(Generic, Ip);
}
#[test]
fn struct_with_ip_address_parameter() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip(A, IpAddress)]
struct Generic<A: IpAddress> {
addr: A,
}
assert_ip_generic!(Generic, IpAddress);
}
#[test]
fn struct_with_unbounded_ip_address_parameter() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip(A, IpAddress)]
struct Generic<A> {
addr: A,
}
assert_ip_generic!(Generic, IpAddress);
}
#[test]
fn struct_with_generic_over_ip_parameter() {
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
struct InnerGeneric<I: Ip> {
addr: I::Addr,
}
#[derive(GenericOverIp)]
#[generic_over_ip(T, GenericOverIp)]
struct Generic<T> {
foo: T,
}
fn do_something<I: Ip>(g: Generic<InnerGeneric<I>>) {
I::map_ip(
g,
|g| {
let _: Ipv4Addr = g.foo.addr;
},
|g| {
let _: Ipv6Addr = g.foo.addr;
},
)
}
do_something::<Ipv4>(Generic { foo: InnerGeneric { addr: Ipv4::UNSPECIFIED_ADDRESS } });
do_something::<Ipv6>(Generic { foo: InnerGeneric { addr: Ipv6::UNSPECIFIED_ADDRESS } });
}
#[test]
fn enum_with_ip_version_parameter() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
enum Generic<I: Ip> {
A(I::Addr),
B(I::Addr),
}
assert_ip_generic!(Generic, Ip);
}
#[test]
fn enum_with_unbounded_ip_version_parameter() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
enum Generic<I> {
A(core::marker::PhantomData<I>),
B(core::marker::PhantomData<I>),
}
assert_ip_generic!(Generic, Ip);
}
#[test]
fn enum_with_ip_address_parameter() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip(A, IpAddress)]
enum Generic<A: IpAddress> {
A(A),
B(A),
}
assert_ip_generic!(Generic, IpAddress);
}
#[test]
fn enum_with_unbounded_ip_address_parameter() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip(A, IpAddress)]
enum Generic<A> {
A(A),
B(A),
}
assert_ip_generic!(Generic, IpAddress);
}
#[test]
fn struct_with_ip_version_and_other_parameters() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
struct AddrAndDevice<I: Ip, D> {
addr: I::Addr,
device: D,
}
struct Device;
assert_ip_generic!(AddrAndDevice, Ip, Device);
}
#[test]
fn enum_with_ip_version_and_other_parameters() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
enum AddrOrDevice<I: Ip, D> {
Addr(I::Addr),
Device(D),
}
struct Device;
assert_ip_generic!(AddrOrDevice, Ip, Device);
}
#[test]
fn struct_with_ip_address_and_other_parameters() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip(A, IpAddress)]
struct AddrAndDevice<A: IpAddress, D> {
addr: A,
device: D,
}
struct Device;
assert_ip_generic!(AddrAndDevice, IpAddress, Device);
}
#[test]
fn struct_with_unbounded_ip_address_and_other_parameters() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip(A, IpAddress)]
struct AddrAndDevice<A, D> {
addr: A,
device: D,
}
struct Device;
assert_ip_generic!(AddrAndDevice, IpAddress, Device);
}
#[test]
fn enum_with_ip_address_and_other_parameters() {
#[allow(dead_code)]
#[derive(GenericOverIp, Debug, PartialEq)]
#[generic_over_ip(A, IpAddress)]
enum AddrOrDevice<A: IpAddress, D> {
Addr(A),
Device(D),
}
struct Device;
assert_ip_generic!(AddrOrDevice, IpAddress, Device);
}
#[test]
fn struct_invariant_over_ip() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip()]
struct Invariant(usize);
assert_ip_generic!(Invariant);
}
#[test]
fn enum_invariant_over_ip() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip()]
enum Invariant {
Usize(usize),
}
assert_ip_generic!(Invariant);
}
#[test]
fn struct_invariant_over_ip_with_other_params() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip()]
struct Invariant<B, C, D>(B, C, D);
assert_ip_generic!(Invariant, usize, bool, char);
}
#[test]
fn enum_invariant_over_ip_with_other_params() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip()]
enum Invariant<A, B, C> {
A(A),
B(B),
C(C),
}
assert_ip_generic!(Invariant, usize, bool, char);
}
#[test]
fn struct_with_ip_version_extension_parameter() {
trait FakeIpExt: Ip {
type Associated;
}
impl FakeIpExt for Ipv4 {
type Associated = u8;
}
impl FakeIpExt for Ipv6 {
type Associated = u16;
}
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
struct Generic<I: FakeIpExt> {
field: I::Associated,
}
assert_ip_generic!(Generic, Ip);
}
#[test]
fn struct_with_ip_version_extension_parameter_but_no_ip_bound() {
trait FakeIpExt: Ip {
type Associated;
}
impl FakeIpExt for Ipv4 {
type Associated = u8;
}
impl FakeIpExt for Ipv6 {
type Associated = u16;
}
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
struct Generic<I: FakeIpExt> {
field: I::Associated,
}
assert_ip_generic!(Generic, Ip);
}
#[test]
fn struct_with_ip_address_extension_parameter() {
trait FakeIpAddressExt: IpAddress {
type Associated;
}
impl FakeIpAddressExt for Ipv4Addr {
type Associated = u8;
}
impl FakeIpAddressExt for Ipv6Addr {
type Associated = u16;
}
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip(A, IpAddress)]
struct Generic<A: IpAddress + FakeIpAddressExt> {
field: A::Associated,
}
assert_ip_generic!(Generic, IpAddress);
}
#[test]
fn type_with_lifetime_and_ip_parameter() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
struct Generic<'a, I: Ip> {
field: &'a I::Addr,
}
assert_ip_generic_is::<Generic<'static, Ipv4>, Ipv4, Generic<'static, Ipv4>>();
assert_ip_generic_is::<Generic<'static, Ipv4>, Ipv6, Generic<'static, Ipv6>>();
assert_ip_generic_is::<Generic<'static, Ipv6>, Ipv4, Generic<'static, Ipv4>>();
assert_ip_generic_is::<Generic<'static, Ipv6>, Ipv6, Generic<'static, Ipv6>>();
}
#[test]
fn type_with_lifetime_and_no_ip_parameter() {
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip()]
struct Generic<'a> {
field: &'a (),
}
assert_ip_generic_is::<Generic<'static>, Ipv4, Generic<'static>>();
assert_ip_generic_is::<Generic<'static>, Ipv6, Generic<'static>>();
}
#[test]
fn type_with_params_list_with_trailing_comma() {
trait IpExtensionTraitWithVeryLongName {}
trait OtherIpExtensionTraitWithVeryLongName {}
trait LongNameToForceFormatterToBreakLineAndAddTrailingComma {}
// Regression test for https://fxbug.dev/42080215
#[allow(dead_code)]
#[derive(GenericOverIp)]
#[generic_over_ip(I, Ip)]
struct Generic<
I: Ip
+ IpExtensionTraitWithVeryLongName
+ OtherIpExtensionTraitWithVeryLongName
+ LongNameToForceFormatterToBreakLineAndAddTrailingComma,
> {
field: I::Addr,
}
}
}