1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
// Copyright (c) 2017 Gilad Naaman
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

/// Macro to create a local `base_ptr` raw pointer of the given type, avoiding UB as
/// much as is possible currently.
#[cfg(maybe_uninit)]
#[macro_export]
#[doc(hidden)]
macro_rules! _memoffset__let_base_ptr {
    ($name:ident, $type:ty) => {
        // No UB here, and the pointer does not dangle, either.
        // But we have to make sure that `uninit` lives long enough,
        // so it has to be in the same scope as `$name`. That's why
        // `let_base_ptr` declares a variable (several, actually)
        // instead of returning one.
        let uninit = $crate::__priv::mem::MaybeUninit::<$type>::uninit();
        let $name: *const $type = uninit.as_ptr();
    };
}
#[cfg(not(maybe_uninit))]
#[macro_export]
#[doc(hidden)]
macro_rules! _memoffset__let_base_ptr {
    ($name:ident, $type:ty) => {
        // No UB right here, but we will later dereference this pointer to
        // offset into a field, and that is UB because the pointer is dangling.
        let $name = $crate::__priv::mem::align_of::<$type>() as *const $type;
    };
}

/// Macro to compute the distance between two pointers.
#[cfg(feature = "unstable_const")]
#[macro_export]
#[doc(hidden)]
macro_rules! _memoffset_offset_from_unsafe {
    ($field:expr, $base:expr) => {{
        let field = $field; // evaluate $field outside the `unsafe` block
        let base = $base; // evaluate $base outside the `unsafe` block
        // Compute offset, with unstable `offset_from` for const-compatibility.
        // (Requires the pointers to not dangle, but we already need that for `raw_field!` anyway.)
        unsafe { (field as *const u8).offset_from(base as *const u8) as usize }
    }};
}
#[cfg(not(feature = "unstable_const"))]
#[macro_export]
#[doc(hidden)]
macro_rules! _memoffset_offset_from_unsafe {
    ($field:expr, $base:expr) => {
        // Compute offset.
        ($field as usize) - ($base as usize)
    };
}

/// Calculates the offset of the specified field from the start of the named struct.
///
/// ## Examples
/// ```
/// use memoffset::offset_of;
///
/// #[repr(C, packed)]
/// struct Foo {
///     a: u32,
///     b: u64,
///     c: [u8; 5]
/// }
///
/// fn main() {
///     assert_eq!(offset_of!(Foo, a), 0);
///     assert_eq!(offset_of!(Foo, b), 4);
/// }
/// ```
///
/// ## Notes
/// Rust's ABI is unstable, and [type layout can be changed with each
/// compilation](https://doc.rust-lang.org/reference/type-layout.html).
///
/// Using `offset_of!` with a `repr(Rust)` struct will return the correct offset of the
/// specified `field` for a particular compilation, but the exact value may change
/// based on the compiler version, concrete struct type, time of day, or rustc's mood.
///
/// As a result, the value should not be retained and used between different compilations.
#[macro_export(local_inner_macros)]
macro_rules! offset_of {
    ($parent:path, $field:tt) => {{
        // Get a base pointer (non-dangling if rustc supports `MaybeUninit`).
        _memoffset__let_base_ptr!(base_ptr, $parent);
        // Get field pointer.
        let field_ptr = raw_field!(base_ptr, $parent, $field);
        // Compute offset.
        _memoffset_offset_from_unsafe!(field_ptr, base_ptr)
    }};
}

/// Calculates the offset of the specified field from the start of the tuple.
///
/// ## Examples
/// ```
/// use memoffset::offset_of_tuple;
///
/// fn main() {
///     assert!(offset_of_tuple!((u8, u32), 1) >= 0, "Tuples do not have a defined layout");
/// }
/// ```
#[cfg(tuple_ty)]
#[macro_export(local_inner_macros)]
macro_rules! offset_of_tuple {
    ($parent:ty, $field:tt) => {{
        // Get a base pointer (non-dangling if rustc supports `MaybeUninit`).
        _memoffset__let_base_ptr!(base_ptr, $parent);
        // Get field pointer.
        let field_ptr = raw_field_tuple!(base_ptr, $parent, $field);
        // Compute offset.
        _memoffset_offset_from_unsafe!(field_ptr, base_ptr)
    }};
}

/// Calculates the offset of the specified union member from the start of the union.
///
/// ## Examples
/// ```
/// use memoffset::offset_of_union;
///
/// #[repr(C, packed)]
/// union Foo {
///     foo32: i32,
///     foo64: i64,
/// }
///
/// fn main() {
///     assert!(offset_of_union!(Foo, foo64) == 0);
/// }
/// ```
///
/// ## Note
/// Due to macro_rules limitations, this macro will accept structs with a single field as well as unions.
/// This is not a stable guarantee, and future versions of this crate might fail
/// on any use of this macro with a struct, without a semver bump.
#[macro_export(local_inner_macros)]
macro_rules! offset_of_union {
    ($parent:path, $field:tt) => {{
        // Get a base pointer (non-dangling if rustc supports `MaybeUninit`).
        _memoffset__let_base_ptr!(base_ptr, $parent);
        // Get field pointer.
        let field_ptr = raw_field_union!(base_ptr, $parent, $field);
        // Compute offset.
        _memoffset_offset_from_unsafe!(field_ptr, base_ptr)
    }};
}

#[cfg(test)]
mod tests {
    #[test]
    fn offset_simple() {
        #[repr(C)]
        struct Foo {
            a: u32,
            b: [u8; 2],
            c: i64,
        }

        assert_eq!(offset_of!(Foo, a), 0);
        assert_eq!(offset_of!(Foo, b), 4);
        assert_eq!(offset_of!(Foo, c), 8);
    }

    #[test]
    #[cfg_attr(miri, ignore)] // this creates unaligned references
    fn offset_simple_packed() {
        #[repr(C, packed)]
        struct Foo {
            a: u32,
            b: [u8; 2],
            c: i64,
        }

        assert_eq!(offset_of!(Foo, a), 0);
        assert_eq!(offset_of!(Foo, b), 4);
        assert_eq!(offset_of!(Foo, c), 6);
    }

    #[test]
    fn tuple_struct() {
        #[repr(C)]
        struct Tup(i32, i32);

        assert_eq!(offset_of!(Tup, 0), 0);
        assert_eq!(offset_of!(Tup, 1), 4);
    }

    #[test]
    fn offset_union() {
        // Since we're specifying repr(C), all fields are supposed to be at offset 0
        #[repr(C)]
        union Foo {
            a: u32,
            b: [u8; 2],
            c: i64,
        }

        assert_eq!(offset_of_union!(Foo, a), 0);
        assert_eq!(offset_of_union!(Foo, b), 0);
        assert_eq!(offset_of_union!(Foo, c), 0);
    }

    #[test]
    fn path() {
        mod sub {
            #[repr(C)]
            pub struct Foo {
                pub x: u32,
            }
        }

        assert_eq!(offset_of!(sub::Foo, x), 0);
    }

    #[test]
    fn inside_generic_method() {
        struct Pair<T, U>(T, U);

        fn foo<T, U>(_: Pair<T, U>) -> usize {
            offset_of!(Pair<T, U>, 1)
        }

        assert_eq!(foo(Pair(0, 0)), 4);
    }

    #[cfg(tuple_ty)]
    #[test]
    fn test_tuple_offset() {
        let f = (0i32, 0.0f32, 0u8);
        let f_ptr = &f as *const _;
        let f1_ptr = &f.1 as *const _;

        assert_eq!(
            f1_ptr as usize - f_ptr as usize,
            offset_of_tuple!((i32, f32, u8), 1)
        );
    }

    #[test]
    fn test_raw_field() {
        #[repr(C)]
        struct Foo {
            a: u32,
            b: [u8; 2],
            c: i64,
        }

        let f: Foo = Foo {
            a: 0,
            b: [0, 0],
            c: 0,
        };
        let f_ptr = &f as *const _;
        assert_eq!(f_ptr as usize + 0, raw_field!(f_ptr, Foo, a) as usize);
        assert_eq!(f_ptr as usize + 4, raw_field!(f_ptr, Foo, b) as usize);
        assert_eq!(f_ptr as usize + 8, raw_field!(f_ptr, Foo, c) as usize);
    }

    #[cfg(tuple_ty)]
    #[test]
    fn test_raw_field_tuple() {
        let t = (0u32, 0u8, false);
        let t_ptr = &t as *const _;
        let t_addr = t_ptr as usize;

        assert_eq!(
            &t.0 as *const _ as usize - t_addr,
            raw_field_tuple!(t_ptr, (u32, u8, bool), 0) as usize - t_addr
        );
        assert_eq!(
            &t.1 as *const _ as usize - t_addr,
            raw_field_tuple!(t_ptr, (u32, u8, bool), 1) as usize - t_addr
        );
        assert_eq!(
            &t.2 as *const _ as usize - t_addr,
            raw_field_tuple!(t_ptr, (u32, u8, bool), 2) as usize - t_addr
        );
    }

    #[test]
    fn test_raw_field_union() {
        #[repr(C)]
        union Foo {
            a: u32,
            b: [u8; 2],
            c: i64,
        }

        let f = Foo { a: 0 };
        let f_ptr = &f as *const _;
        assert_eq!(f_ptr as usize + 0, raw_field_union!(f_ptr, Foo, a) as usize);
        assert_eq!(f_ptr as usize + 0, raw_field_union!(f_ptr, Foo, b) as usize);
        assert_eq!(f_ptr as usize + 0, raw_field_union!(f_ptr, Foo, c) as usize);
    }

    #[cfg(feature = "unstable_const")]
    #[test]
    fn const_offset() {
        #[repr(C)]
        struct Foo {
            a: u32,
            b: [u8; 2],
            c: i64,
        }

        assert_eq!([0; offset_of!(Foo, b)].len(), 4);
    }

    #[cfg(feature = "unstable_const")]
    #[test]
    fn const_offset_interior_mutable() {
        #[repr(C)]
        struct Foo {
            a: u32,
            b: core::cell::Cell<u32>,
        }

        assert_eq!([0; offset_of!(Foo, b)].len(), 4);
    }

    #[cfg(feature = "unstable_const")]
    #[test]
    fn const_fn_offset() {
        const fn test_fn() -> usize {
            #[repr(C)]
            struct Foo {
                a: u32,
                b: [u8; 2],
                c: i64,
            }

            offset_of!(Foo, b)
        }

        assert_eq!([0; test_fn()].len(), 4);
    }
}