fuchsia_async/runtime/fuchsia/executor/send.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use super::common::{Executor, ExecutorTime, MAIN_TASK_ID};
use super::scope::ScopeHandle;
use crate::atomic_future::AtomicFuture;
use fuchsia_sync::{Condvar, Mutex};
use futures::FutureExt;
use std::future::Future;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use std::time::Duration;
use std::{fmt, thread, usize};
/// A multi-threaded port-based executor for Fuchsia OS. Requires that tasks scheduled on it
/// implement `Send` so they can be load balanced between worker threads.
///
/// Having a `SendExecutor` in scope allows the creation and polling of zircon objects, such as
/// [`fuchsia_async::Channel`].
///
/// # Panics
///
/// `SendExecutor` will panic on drop if any zircon objects attached to it are still alive. In other
/// words, zircon objects backed by a `SendExecutor` must be dropped before it.
pub struct SendExecutor {
/// The inner executor state.
inner: Arc<Executor>,
// LINT.IfChange
/// The root scope.
root_scope: ScopeHandle,
// LINT.ThenChange(//src/developer/debug/zxdb/console/commands/verb_async_backtrace.cc)
/// Worker thread handles
threads: Vec<thread::JoinHandle<()>>,
}
impl fmt::Debug for SendExecutor {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("SendExecutor").field("port", &self.inner.port).finish()
}
}
impl SendExecutor {
/// Create a new multi-threaded executor.
#[allow(deprecated)]
pub fn new(num_threads: usize) -> Self {
let inner = Arc::new(Executor::new(
ExecutorTime::RealTime,
/* is_local */ false,
num_threads.try_into().expect("no more than 256 threads are supported"),
));
let root_scope = ScopeHandle::root(inner.clone());
Executor::set_local(root_scope.clone());
Self { inner, root_scope, threads: Vec::default() }
}
/// Get a reference to the Fuchsia `zx::Port` being used to listen for events.
pub fn port(&self) -> &zx::Port {
&self.inner.port
}
/// Run `future` to completion, using this thread and `num_threads` workers in a pool to
/// poll active tasks.
// The debugger looks for this function on the stack, so if its (fully-qualified) name changes,
// the debugger needs to be updated.
// LINT.IfChange
pub fn run<F>(&mut self, future: F) -> F::Output
// LINT.ThenChange(//src/developer/debug/zxdb/console/commands/verb_async_backtrace.cc)
where
F: Future + Send + 'static,
F::Output: Send + 'static,
{
assert!(self.inner.is_real_time(), "Error: called `run` on an executor using fake time");
let pair = Arc::new((Mutex::new(None), Condvar::new()));
let pair2 = pair.clone();
// Spawn a future which will set the result upon completion.
Executor::spawn_main(
&self.inner,
&self.root_scope,
AtomicFuture::new(
future.map(move |fut_result| {
let (lock, cvar) = &*pair2;
let mut result = lock.lock();
*result = Some(fut_result);
cvar.notify_one();
}),
false,
),
);
self.root_scope.detach(MAIN_TASK_ID);
// Start worker threads, handing off timers from the current thread.
self.inner.done.store(false, Ordering::SeqCst);
self.create_worker_threads();
// Wait until the signal the future has completed.
let (lock, cvar) = &*pair;
let mut result = lock.lock();
if result.is_none() {
let mut last_polled = 0;
let mut last_tasks_ready = false;
loop {
// This timeout is chosen to be quite high since it impacts all processes that have
// multi-threaded async executors, and it exists to workaround arguably misbehaving
// users (see the comment below).
cvar.wait_for(&mut result, Duration::from_millis(250));
if result.is_some() {
break;
}
let polled = self.inner.polled.load(Ordering::Relaxed);
let tasks_ready = !self.inner.ready_tasks.is_empty();
if polled == last_polled && last_tasks_ready && tasks_ready {
// If this log message is printed, it most likely means that a task has blocked
// making a reentrant synchronous call that doesn't involve a port message being
// processed by this same executor. This can arise even if you would expect
// there to normally be other port messages involved. One example (that has
// actually happened): spawn a task to service a fuchsia.io connection, then try
// and synchronously connect to that service. If the task hasn't had a chance to
// run, then the async channel might not be registered with the executor, and so
// sending messages to the channel doesn't trigger a port message. Typically,
// the way to solve these issues is to run the service in a different executor
// (which could be the same or a different process).
eprintln!("Tasks might be stalled!");
self.inner.wake_one_thread();
}
last_polled = polled;
last_tasks_ready = tasks_ready;
}
}
// Spin down worker threads
self.join_all();
// Unwrap is fine because of the check to `is_none` above.
result.take().unwrap()
}
#[doc(hidden)]
/// Returns the root scope of the executor.
pub fn root_scope(&self) -> &ScopeHandle {
&self.root_scope
}
/// Add `self.num_threads` worker threads to the executor's thread pool.
/// `timers`: timers from the "main" thread which would otherwise be lost.
fn create_worker_threads(&mut self) {
for _ in 0..self.inner.num_threads {
let inner = self.inner.clone();
let root_scope = self.root_scope.clone();
self.threads.push(thread::spawn(move || {
Executor::set_local(root_scope);
inner.worker_lifecycle::</* UNTIL_STALLED: */ false>();
}));
}
}
fn join_all(&mut self) {
self.inner.mark_done();
// Join the worker threads
for thread in self.threads.drain(..) {
thread.join().expect("Couldn't join worker thread.");
}
}
}
impl Drop for SendExecutor {
fn drop(&mut self) {
self.join_all();
self.inner.on_parent_drop(&self.root_scope);
}
}
// TODO(https://fxbug.dev/42156503) test SendExecutor with unit tests
#[cfg(test)]
mod tests {
use super::SendExecutor;
use crate::{Task, Timer};
use futures::channel::oneshot;
use std::sync::{Arc, Condvar, Mutex};
#[test]
fn test_stalled_triggers_wake_up() {
SendExecutor::new(2).run(async {
// The timer will only fire on one thread, so use one so we can get to a point where
// only one thread is running.
Timer::new(zx::MonotonicDuration::from_millis(10)).await;
let (tx, rx) = oneshot::channel();
let pair = Arc::new((Mutex::new(false), Condvar::new()));
let pair2 = pair.clone();
let _task = Task::spawn(async move {
// Send a notification to the other task.
tx.send(()).unwrap();
// Now block the thread waiting for the result.
let (lock, cvar) = &*pair;
let mut done = lock.lock().unwrap();
while !*done {
done = cvar.wait(done).unwrap();
}
});
rx.await.unwrap();
let (lock, cvar) = &*pair2;
*lock.lock().unwrap() = true;
cvar.notify_one();
});
}
}