fuchsia_async/runtime/fuchsia/executor/
send.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use super::common::{Executor, ExecutorTime, MAIN_TASK_ID};
use super::scope::ScopeHandle;
use crate::atomic_future::AtomicFuture;
use fuchsia_sync::{Condvar, Mutex};

use futures::FutureExt;
use std::future::Future;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use std::time::Duration;
use std::{fmt, thread, usize};

/// A multi-threaded port-based executor for Fuchsia OS. Requires that tasks scheduled on it
/// implement `Send` so they can be load balanced between worker threads.
///
/// Having a `SendExecutor` in scope allows the creation and polling of zircon objects, such as
/// [`fuchsia_async::Channel`].
///
/// # Panics
///
/// `SendExecutor` will panic on drop if any zircon objects attached to it are still alive. In other
/// words, zircon objects backed by a `SendExecutor` must be dropped before it.
pub struct SendExecutor {
    /// The inner executor state.
    inner: Arc<Executor>,
    // LINT.IfChange
    /// The root scope.
    root_scope: ScopeHandle,
    // LINT.ThenChange(//src/developer/debug/zxdb/console/commands/verb_async_backtrace.cc)
    /// Worker thread handles
    threads: Vec<thread::JoinHandle<()>>,
}

impl fmt::Debug for SendExecutor {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("SendExecutor").field("port", &self.inner.port).finish()
    }
}

impl SendExecutor {
    /// Create a new multi-threaded executor.
    #[allow(deprecated)]
    pub fn new(num_threads: usize) -> Self {
        let inner = Arc::new(Executor::new(
            ExecutorTime::RealTime,
            /* is_local */ false,
            num_threads.try_into().expect("no more than 256 threads are supported"),
        ));
        let root_scope = ScopeHandle::root(inner.clone());
        Executor::set_local(root_scope.clone());
        Self { inner, root_scope, threads: Vec::default() }
    }

    /// Get a reference to the Fuchsia `zx::Port` being used to listen for events.
    pub fn port(&self) -> &zx::Port {
        &self.inner.port
    }

    /// Run `future` to completion, using this thread and `num_threads` workers in a pool to
    /// poll active tasks.
    // The debugger looks for this function on the stack, so if its (fully-qualified) name changes,
    // the debugger needs to be updated.
    // LINT.IfChange
    pub fn run<F>(&mut self, future: F) -> F::Output
    // LINT.ThenChange(//src/developer/debug/zxdb/console/commands/verb_async_backtrace.cc)
    where
        F: Future + Send + 'static,
        F::Output: Send + 'static,
    {
        assert!(self.inner.is_real_time(), "Error: called `run` on an executor using fake time");

        let pair = Arc::new((Mutex::new(None), Condvar::new()));
        let pair2 = pair.clone();

        // Spawn a future which will set the result upon completion.
        Executor::spawn_main(
            &self.inner,
            &self.root_scope,
            AtomicFuture::new(
                future.map(move |fut_result| {
                    let (lock, cvar) = &*pair2;
                    let mut result = lock.lock();
                    *result = Some(fut_result);
                    cvar.notify_one();
                }),
                false,
            ),
        );
        self.root_scope.detach(MAIN_TASK_ID);

        // Start worker threads, handing off timers from the current thread.
        self.inner.done.store(false, Ordering::SeqCst);
        self.create_worker_threads();

        // Wait until the signal the future has completed.
        let (lock, cvar) = &*pair;
        let mut result = lock.lock();
        if result.is_none() {
            let mut last_polled = 0;
            let mut last_tasks_ready = false;
            loop {
                // This timeout is chosen to be quite high since it impacts all processes that have
                // multi-threaded async executors, and it exists to workaround arguably misbehaving
                // users (see the comment below).
                cvar.wait_for(&mut result, Duration::from_millis(250));
                if result.is_some() {
                    break;
                }
                let polled = self.inner.polled.load(Ordering::Relaxed);
                let tasks_ready = !self.inner.ready_tasks.is_empty();
                if polled == last_polled && last_tasks_ready && tasks_ready {
                    // If this log message is printed, it most likely means that a task has blocked
                    // making a reentrant synchronous call that doesn't involve a port message being
                    // processed by this same executor. This can arise even if you would expect
                    // there to normally be other port messages involved. One example (that has
                    // actually happened): spawn a task to service a fuchsia.io connection, then try
                    // and synchronously connect to that service. If the task hasn't had a chance to
                    // run, then the async channel might not be registered with the executor, and so
                    // sending messages to the channel doesn't trigger a port message. Typically,
                    // the way to solve these issues is to run the service in a different executor
                    // (which could be the same or a different process).
                    eprintln!("Tasks might be stalled!");
                    self.inner.wake_one_thread();
                }
                last_polled = polled;
                last_tasks_ready = tasks_ready;
            }
        }

        // Spin down worker threads
        self.join_all();

        // Unwrap is fine because of the check to `is_none` above.
        result.take().unwrap()
    }

    #[doc(hidden)]
    /// Returns the root scope of the executor.
    pub fn root_scope(&self) -> &ScopeHandle {
        &self.root_scope
    }

    /// Add `self.num_threads` worker threads to the executor's thread pool.
    /// `timers`: timers from the "main" thread which would otherwise be lost.
    fn create_worker_threads(&mut self) {
        for _ in 0..self.inner.num_threads {
            let inner = self.inner.clone();
            let root_scope = self.root_scope.clone();
            self.threads.push(thread::spawn(move || {
                Executor::set_local(root_scope);
                inner.worker_lifecycle::</* UNTIL_STALLED: */ false>();
            }));
        }
    }

    fn join_all(&mut self) {
        self.inner.mark_done();

        // Join the worker threads
        for thread in self.threads.drain(..) {
            thread.join().expect("Couldn't join worker thread.");
        }
    }
}

impl Drop for SendExecutor {
    fn drop(&mut self) {
        self.join_all();
        self.inner.on_parent_drop(&self.root_scope);
    }
}

// TODO(https://fxbug.dev/42156503) test SendExecutor with unit tests

#[cfg(test)]
mod tests {
    use super::SendExecutor;
    use crate::{Task, Timer};

    use futures::channel::oneshot;
    use std::sync::{Arc, Condvar, Mutex};

    #[test]
    fn test_stalled_triggers_wake_up() {
        SendExecutor::new(2).run(async {
            // The timer will only fire on one thread, so use one so we can get to a point where
            // only one thread is running.
            Timer::new(zx::MonotonicDuration::from_millis(10)).await;

            let (tx, rx) = oneshot::channel();
            let pair = Arc::new((Mutex::new(false), Condvar::new()));
            let pair2 = pair.clone();

            let _task = Task::spawn(async move {
                // Send a notification to the other task.
                tx.send(()).unwrap();
                // Now block the thread waiting for the result.
                let (lock, cvar) = &*pair;
                let mut done = lock.lock().unwrap();
                while !*done {
                    done = cvar.wait(done).unwrap();
                }
            });

            rx.await.unwrap();
            let (lock, cvar) = &*pair2;
            *lock.lock().unwrap() = true;
            cvar.notify_one();
        });
    }
}