netstack3_base/tcp/
base.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
// Copyright 2024 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! The Transmission Control Protocol (TCP).

use core::iter::FromIterator;
use core::num::NonZeroU16;
use core::ops::Range;

use alloc::vec::Vec;
use core::mem::MaybeUninit;
use net_types::ip::{Ip, IpVersion};
use packet::InnerPacketBuilder;
use packet_formats::ip::IpExt;

use crate::ip::Mms;
use crate::tcp::segment::{Payload, PayloadLen};

/// Control flags that can alter the state of a TCP control block.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum Control {
    /// Corresponds to the SYN bit in a TCP segment.
    SYN,
    /// Corresponds to the FIN bit in a TCP segment.
    FIN,
    /// Corresponds to the RST bit in a TCP segment.
    RST,
}

impl Control {
    /// Returns whether the control flag consumes one byte from the sequence
    /// number space.
    pub fn has_sequence_no(self) -> bool {
        match self {
            Control::SYN | Control::FIN => true,
            Control::RST => false,
        }
    }
}

const TCP_HEADER_LEN: u32 = packet_formats::tcp::HDR_PREFIX_LEN as u32;

/// Maximum segment size, that is the maximum TCP payload one segment can carry.
#[derive(Clone, Copy, PartialEq, Eq, Debug, PartialOrd, Ord)]
pub struct Mss(pub NonZeroU16);

impl Mss {
    /// Creates MSS from the maximum message size of the IP layer.
    pub fn from_mms<I: IpExt>(mms: Mms) -> Option<Self> {
        NonZeroU16::new(
            u16::try_from(mms.get().get().saturating_sub(TCP_HEADER_LEN)).unwrap_or(u16::MAX),
        )
        .map(Self)
    }

    /// Create a new [`Mss`] with the IP-version default value, as defined by RFC 9293.
    pub const fn default<I: Ip>() -> Self {
        // Per RFC 9293 Section 3.7.1:
        //  If an MSS Option is not received at connection setup, TCP
        //  implementations MUST assume a default send MSS of 536 (576 - 40) for
        //  IPv4 or 1220 (1280 - 60) for IPv6 (MUST-15).
        match I::VERSION {
            IpVersion::V4 => Mss(NonZeroU16::new(536).unwrap()),
            IpVersion::V6 => Mss(NonZeroU16::new(1220).unwrap()),
        }
    }

    /// Gets the numeric value of the MSS.
    pub const fn get(&self) -> NonZeroU16 {
        let Self(mss) = *self;
        mss
    }
}

impl From<Mss> for u32 {
    fn from(Mss(mss): Mss) -> Self {
        u32::from(mss.get())
    }
}

/// An implementation of [`Payload`] backed by up to `N` byte slices.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct FragmentedPayload<'a, const N: usize> {
    storage: [&'a [u8]; N],
    // NB: Not using `Range` because it is not `Copy`.
    //
    // Start is inclusive, end is exclusive; so this is equivalent to
    // `start..end` ranges.
    start: usize,
    end: usize,
}

/// Creates a new `FragmentedPayload` possibly without using the entire
/// storage capacity `N`.
///
/// # Panics
///
/// Panics if the iterator contains more than `N` items.
impl<'a, const N: usize> FromIterator<&'a [u8]> for FragmentedPayload<'a, N> {
    fn from_iter<T>(iter: T) -> Self
    where
        T: IntoIterator<Item = &'a [u8]>,
    {
        let Self { storage, start, end } = Self::new_empty();
        let (storage, end) = iter.into_iter().fold((storage, end), |(mut storage, end), sl| {
            storage[end] = sl;
            (storage, end + 1)
        });
        Self { storage, start, end }
    }
}

impl<'a, const N: usize> FragmentedPayload<'a, N> {
    /// Creates a new `FragmentedPayload` with the slices in `values`.
    pub fn new(values: [&'a [u8]; N]) -> Self {
        Self { storage: values, start: 0, end: N }
    }

    /// Creates a new `FragmentedPayload` with a single contiguous slice.
    pub fn new_contiguous(value: &'a [u8]) -> Self {
        core::iter::once(value).collect()
    }

    /// Converts this [`FragmentedPayload`] into an owned `Vec`.
    pub fn to_vec(self) -> Vec<u8> {
        self.slices().concat()
    }

    fn slices(&self) -> &[&'a [u8]] {
        let Self { storage, start, end } = self;
        &storage[*start..*end]
    }

    /// Extracted function to implement [`Payload::partial_copy`] and
    /// [`Payload::partial_copy_uninit`].
    fn apply_copy<T, F: Fn(&[u8], &mut [T])>(
        &self,
        mut offset: usize,
        mut dst: &mut [T],
        apply: F,
    ) {
        let mut slices = self.slices().into_iter();
        while let Some(sl) = slices.next() {
            let l = sl.len();
            if offset >= l {
                offset -= l;
                continue;
            }
            let sl = &sl[offset..];
            let cp = sl.len().min(dst.len());
            let (target, new_dst) = dst.split_at_mut(cp);
            apply(&sl[..cp], target);

            // We're done.
            if new_dst.len() == 0 {
                return;
            }

            dst = new_dst;
            offset = 0;
        }
        assert_eq!(dst.len(), 0, "failed to fill dst");
    }
}

impl<'a, const N: usize> PayloadLen for FragmentedPayload<'a, N> {
    fn len(&self) -> usize {
        self.slices().into_iter().map(|s| s.len()).sum()
    }
}

impl<'a, const N: usize> Payload for FragmentedPayload<'a, N> {
    fn slice(self, byte_range: Range<u32>) -> Self {
        let Self { mut storage, start: mut self_start, end: mut self_end } = self;
        let Range { start: byte_start, end: byte_end } = byte_range;
        let byte_start =
            usize::try_from(byte_start).expect("range start index out of range for usize");
        let byte_end = usize::try_from(byte_end).expect("range end index out of range for usize");
        assert!(byte_end >= byte_start);
        let mut storage_iter =
            (&mut storage[self_start..self_end]).into_iter().scan(0, |total_len, slice| {
                let slice_len = slice.len();
                let item = Some((*total_len, slice));
                *total_len += slice_len;
                item
            });

        // Keep track of whether the start was inside the range, we should panic
        // even on an empty range out of start bounds.
        let mut start_offset = None;
        let mut final_len = 0;
        while let Some((sl_offset, sl)) = storage_iter.next() {
            let orig_len = sl.len();

            // Advance until the start of the specified range, discarding unused
            // slices.
            if sl_offset + orig_len < byte_start {
                *sl = &[];
                self_start += 1;
                continue;
            }
            // Discard any empty slices at the end.
            if sl_offset >= byte_end {
                *sl = &[];
                self_end -= 1;
                continue;
            }

            let sl_start = byte_start.saturating_sub(sl_offset);
            let sl_end = sl.len().min(byte_end - sl_offset);
            *sl = &sl[sl_start..sl_end];

            match start_offset {
                Some(_) => (),
                None => {
                    // Keep track of the start offset of the first slice.
                    start_offset = Some(sl_offset + sl_start);
                    // Avoid producing an empty slice if we haven't added
                    // anything yet.
                    if sl.len() == 0 {
                        self_start += 1;
                    }
                }
            }
            final_len += sl.len();
        }
        // Verify that the entire range was consumed.
        assert_eq!(
            // If we didn't use start_offset the only valid value for
            // `byte_start` is zero.
            start_offset.unwrap_or(0),
            byte_start,
            "range start index out of range {byte_range:?}"
        );
        assert_eq!(byte_start + final_len, byte_end, "range end index out of range {byte_range:?}");

        // Canonicalize an empty payload.
        if self_start == self_end {
            self_start = 0;
            self_end = 0;
        }
        Self { storage, start: self_start, end: self_end }
    }

    fn new_empty() -> Self {
        Self { storage: [&[]; N], start: 0, end: 0 }
    }

    fn partial_copy(&self, offset: usize, dst: &mut [u8]) {
        self.apply_copy(offset, dst, |src, dst| {
            dst.copy_from_slice(src);
        });
    }

    fn partial_copy_uninit(&self, offset: usize, dst: &mut [MaybeUninit<u8>]) {
        self.apply_copy(offset, dst, |src, dst| {
            // TODO(https://github.com/rust-lang/rust/issues/79995): Replace unsafe
            // with copy_from_slice when stabiliized.
            // SAFETY: &[T] and &[MaybeUninit<T>] have the same layout.
            let uninit_src: &[MaybeUninit<u8>] = unsafe { core::mem::transmute(src) };
            dst.copy_from_slice(&uninit_src);
        });
    }
}

impl<'a, const N: usize> InnerPacketBuilder for FragmentedPayload<'a, N> {
    fn bytes_len(&self) -> usize {
        self.len()
    }

    fn serialize(&self, buffer: &mut [u8]) {
        self.partial_copy(0, buffer);
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use alloc::format;

    use packet::Serializer as _;
    use proptest::test_runner::Config;
    use proptest::{prop_assert_eq, proptest};
    use proptest_support::failed_seeds_no_std;
    use test_case::test_case;

    const EXAMPLE_DATA: [u8; 10] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
    #[test_case(FragmentedPayload::new([&EXAMPLE_DATA[..]]); "contiguous")]
    #[test_case(FragmentedPayload::new([&EXAMPLE_DATA[0..2], &EXAMPLE_DATA[2..]]); "split once")]
    #[test_case(FragmentedPayload::new([
        &EXAMPLE_DATA[0..2],
        &EXAMPLE_DATA[2..5],
        &EXAMPLE_DATA[5..],
    ]); "split twice")]
    #[test_case(FragmentedPayload::<4>::from_iter([
        &EXAMPLE_DATA[0..2],
        &EXAMPLE_DATA[2..5],
        &EXAMPLE_DATA[5..],
    ]); "partial twice")]
    fn fragmented_payload_serializer_data<const N: usize>(payload: FragmentedPayload<'_, N>) {
        let serialized = payload
            .into_serializer()
            .serialize_vec_outer()
            .expect("should serialize")
            .unwrap_b()
            .into_inner();
        assert_eq!(&serialized[..], EXAMPLE_DATA);
    }

    #[test]
    #[should_panic(expected = "range start index out of range")]
    fn slice_start_out_of_bounds() {
        let len = u32::try_from(EXAMPLE_DATA.len()).unwrap();
        let bad_len = len + 1;
        // Like for standard slices, this shouldn't succeed if the start length
        // is out of bounds, even if the total range is empty.
        let _ = FragmentedPayload::<2>::new_contiguous(&EXAMPLE_DATA).slice(bad_len..bad_len);
    }

    #[test]
    #[should_panic(expected = "range end index out of range")]
    fn slice_end_out_of_bounds() {
        let len = u32::try_from(EXAMPLE_DATA.len()).unwrap();
        let bad_len = len + 1;
        let _ = FragmentedPayload::<2>::new_contiguous(&EXAMPLE_DATA).slice(0..bad_len);
    }

    #[test]
    fn canon_empty_payload() {
        let len = u32::try_from(EXAMPLE_DATA.len()).unwrap();
        assert_eq!(
            FragmentedPayload::<1>::new_contiguous(&EXAMPLE_DATA).slice(len..len),
            FragmentedPayload::new_empty()
        );
        assert_eq!(
            FragmentedPayload::<2>::new_contiguous(&EXAMPLE_DATA).slice(len..len),
            FragmentedPayload::new_empty()
        );
        assert_eq!(
            FragmentedPayload::<2>::new_contiguous(&EXAMPLE_DATA).slice(2..2),
            FragmentedPayload::new_empty()
        );
    }

    const TEST_BYTES: &'static [u8] = b"Hello World!";
    proptest! {
        #![proptest_config(Config {
            // Add all failed seeds here.
            failure_persistence: failed_seeds_no_std!(),
            ..Config::default()
        })]

        #[test]
        fn fragmented_payload_to_vec(payload in fragmented_payload::with_payload()) {
            prop_assert_eq!(payload.to_vec(), &TEST_BYTES[..]);
        }

        #[test]
        fn fragmented_payload_len(payload in fragmented_payload::with_payload()) {
            prop_assert_eq!(payload.len(), TEST_BYTES.len())
        }

        #[test]
        fn fragmented_payload_slice((payload, (start, end)) in fragmented_payload::with_range()) {
            let want = &TEST_BYTES[start..end];
            let start = u32::try_from(start).unwrap();
            let end = u32::try_from(end).unwrap();
            prop_assert_eq!(payload.clone().slice(start..end).to_vec(), want);
        }

        #[test]
        fn fragmented_payload_partial_copy((payload, (start, end)) in fragmented_payload::with_range()) {
            let mut buffer = [0; TEST_BYTES.len()];
            let buffer = &mut buffer[0..(end-start)];
            payload.partial_copy(start, buffer);
            prop_assert_eq!(buffer, &TEST_BYTES[start..end]);
        }
    }

    mod fragmented_payload {
        use super::*;

        use proptest::strategy::{Just, Strategy};
        use rand::Rng as _;

        const TEST_STORAGE: usize = 5;
        type TestFragmentedPayload = FragmentedPayload<'static, TEST_STORAGE>;
        pub(super) fn with_payload() -> impl Strategy<Value = TestFragmentedPayload> {
            (1..=TEST_STORAGE).prop_perturb(|slices, mut rng| {
                (0..slices)
                    .scan(0, |st, slice| {
                        let len = if slice == slices - 1 {
                            TEST_BYTES.len() - *st
                        } else {
                            rng.gen_range(0..=(TEST_BYTES.len() - *st))
                        };
                        let start = *st;
                        *st += len;
                        Some(&TEST_BYTES[start..*st])
                    })
                    .collect()
            })
        }

        pub(super) fn with_range() -> impl Strategy<Value = (TestFragmentedPayload, (usize, usize))>
        {
            (
                with_payload(),
                (0..TEST_BYTES.len()).prop_flat_map(|start| (Just(start), start..TEST_BYTES.len())),
            )
        }
    }
}