half/
binary16.rs

1#[cfg(all(feature = "serde", feature = "alloc"))]
2#[allow(unused_imports)]
3use alloc::string::ToString;
4#[cfg(feature = "bytemuck")]
5use bytemuck::{Pod, Zeroable};
6use core::{
7    cmp::Ordering,
8    iter::{Product, Sum},
9    num::FpCategory,
10    ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
11};
12#[cfg(not(target_arch = "spirv"))]
13use core::{
14    fmt::{
15        Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex,
16    },
17    num::ParseFloatError,
18    str::FromStr,
19};
20#[cfg(feature = "serde")]
21use serde::{Deserialize, Serialize};
22#[cfg(feature = "zerocopy")]
23use zerocopy::{AsBytes, FromBytes};
24
25pub(crate) mod arch;
26
27/// A 16-bit floating point type implementing the IEEE 754-2008 standard [`binary16`] a.k.a "half"
28/// format.
29///
30/// This 16-bit floating point type is intended for efficient storage where the full range and
31/// precision of a larger floating point value is not required.
32///
33/// [`binary16`]: https://en.wikipedia.org/wiki/Half-precision_floating-point_format
34#[allow(non_camel_case_types)]
35#[derive(Clone, Copy, Default)]
36#[repr(transparent)]
37#[cfg_attr(feature = "serde", derive(Serialize))]
38#[cfg_attr(
39    feature = "rkyv",
40    derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
41)]
42#[cfg_attr(feature = "rkyv", archive(resolver = "F16Resolver"))]
43#[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))]
44#[cfg_attr(feature = "zerocopy", derive(AsBytes, FromBytes))]
45#[cfg_attr(kani, derive(kani::Arbitrary))]
46pub struct f16(u16);
47
48impl f16 {
49    /// Constructs a 16-bit floating point value from the raw bits.
50    #[inline]
51    #[must_use]
52    pub const fn from_bits(bits: u16) -> f16 {
53        f16(bits)
54    }
55
56    /// Constructs a 16-bit floating point value from a 32-bit floating point value.
57    ///
58    /// This operation is lossy. If the 32-bit value is to large to fit in 16-bits, ±∞ will result.
59    /// NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits
60    /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
61    /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
62    /// 16-bit value.
63    #[inline]
64    #[must_use]
65    pub fn from_f32(value: f32) -> f16 {
66        f16(arch::f32_to_f16(value))
67    }
68
69    /// Constructs a 16-bit floating point value from a 32-bit floating point value.
70    ///
71    /// This function is identical to [`from_f32`][Self::from_f32] except it never uses hardware
72    /// intrinsics, which allows it to be `const`. [`from_f32`][Self::from_f32] should be preferred
73    /// in any non-`const` context.
74    ///
75    /// This operation is lossy. If the 32-bit value is to large to fit in 16-bits, ±∞ will result.
76    /// NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits
77    /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
78    /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
79    /// 16-bit value.
80    #[inline]
81    #[must_use]
82    pub const fn from_f32_const(value: f32) -> f16 {
83        f16(arch::f32_to_f16_fallback(value))
84    }
85
86    /// Constructs a 16-bit floating point value from a 64-bit floating point value.
87    ///
88    /// This operation is lossy. If the 64-bit value is to large to fit in 16-bits, ±∞ will result.
89    /// NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits
90    /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
91    /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
92    /// 16-bit value.
93    #[inline]
94    #[must_use]
95    pub fn from_f64(value: f64) -> f16 {
96        f16(arch::f64_to_f16(value))
97    }
98
99    /// Constructs a 16-bit floating point value from a 64-bit floating point value.
100    ///
101    /// This function is identical to [`from_f64`][Self::from_f64] except it never uses hardware
102    /// intrinsics, which allows it to be `const`. [`from_f64`][Self::from_f64] should be preferred
103    /// in any non-`const` context.
104    ///
105    /// This operation is lossy. If the 64-bit value is to large to fit in 16-bits, ±∞ will result.
106    /// NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits
107    /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit
108    /// subnormals or ±0. All other values are truncated and rounded to the nearest representable
109    /// 16-bit value.
110    #[inline]
111    #[must_use]
112    pub const fn from_f64_const(value: f64) -> f16 {
113        f16(arch::f64_to_f16_fallback(value))
114    }
115
116    /// Converts a [`f16`] into the underlying bit representation.
117    #[inline]
118    #[must_use]
119    pub const fn to_bits(self) -> u16 {
120        self.0
121    }
122
123    /// Returns the memory representation of the underlying bit representation as a byte array in
124    /// little-endian byte order.
125    ///
126    /// # Examples
127    ///
128    /// ```rust
129    /// # use half::prelude::*;
130    /// let bytes = f16::from_f32(12.5).to_le_bytes();
131    /// assert_eq!(bytes, [0x40, 0x4A]);
132    /// ```
133    #[inline]
134    #[must_use]
135    pub const fn to_le_bytes(self) -> [u8; 2] {
136        self.0.to_le_bytes()
137    }
138
139    /// Returns the memory representation of the underlying bit representation as a byte array in
140    /// big-endian (network) byte order.
141    ///
142    /// # Examples
143    ///
144    /// ```rust
145    /// # use half::prelude::*;
146    /// let bytes = f16::from_f32(12.5).to_be_bytes();
147    /// assert_eq!(bytes, [0x4A, 0x40]);
148    /// ```
149    #[inline]
150    #[must_use]
151    pub const fn to_be_bytes(self) -> [u8; 2] {
152        self.0.to_be_bytes()
153    }
154
155    /// Returns the memory representation of the underlying bit representation as a byte array in
156    /// native byte order.
157    ///
158    /// As the target platform's native endianness is used, portable code should use
159    /// [`to_be_bytes`][Self::to_be_bytes] or [`to_le_bytes`][Self::to_le_bytes], as appropriate,
160    /// instead.
161    ///
162    /// # Examples
163    ///
164    /// ```rust
165    /// # use half::prelude::*;
166    /// let bytes = f16::from_f32(12.5).to_ne_bytes();
167    /// assert_eq!(bytes, if cfg!(target_endian = "big") {
168    ///     [0x4A, 0x40]
169    /// } else {
170    ///     [0x40, 0x4A]
171    /// });
172    /// ```
173    #[inline]
174    #[must_use]
175    pub const fn to_ne_bytes(self) -> [u8; 2] {
176        self.0.to_ne_bytes()
177    }
178
179    /// Creates a floating point value from its representation as a byte array in little endian.
180    ///
181    /// # Examples
182    ///
183    /// ```rust
184    /// # use half::prelude::*;
185    /// let value = f16::from_le_bytes([0x40, 0x4A]);
186    /// assert_eq!(value, f16::from_f32(12.5));
187    /// ```
188    #[inline]
189    #[must_use]
190    pub const fn from_le_bytes(bytes: [u8; 2]) -> f16 {
191        f16::from_bits(u16::from_le_bytes(bytes))
192    }
193
194    /// Creates a floating point value from its representation as a byte array in big endian.
195    ///
196    /// # Examples
197    ///
198    /// ```rust
199    /// # use half::prelude::*;
200    /// let value = f16::from_be_bytes([0x4A, 0x40]);
201    /// assert_eq!(value, f16::from_f32(12.5));
202    /// ```
203    #[inline]
204    #[must_use]
205    pub const fn from_be_bytes(bytes: [u8; 2]) -> f16 {
206        f16::from_bits(u16::from_be_bytes(bytes))
207    }
208
209    /// Creates a floating point value from its representation as a byte array in native endian.
210    ///
211    /// As the target platform's native endianness is used, portable code likely wants to use
212    /// [`from_be_bytes`][Self::from_be_bytes] or [`from_le_bytes`][Self::from_le_bytes], as
213    /// appropriate instead.
214    ///
215    /// # Examples
216    ///
217    /// ```rust
218    /// # use half::prelude::*;
219    /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big") {
220    ///     [0x4A, 0x40]
221    /// } else {
222    ///     [0x40, 0x4A]
223    /// });
224    /// assert_eq!(value, f16::from_f32(12.5));
225    /// ```
226    #[inline]
227    #[must_use]
228    pub const fn from_ne_bytes(bytes: [u8; 2]) -> f16 {
229        f16::from_bits(u16::from_ne_bytes(bytes))
230    }
231
232    /// Converts a [`f16`] value into a `f32` value.
233    ///
234    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
235    /// in 32-bit floating point.
236    #[inline]
237    #[must_use]
238    pub fn to_f32(self) -> f32 {
239        arch::f16_to_f32(self.0)
240    }
241
242    /// Converts a [`f16`] value into a `f32` value.
243    ///
244    /// This function is identical to [`to_f32`][Self::to_f32] except it never uses hardware
245    /// intrinsics, which allows it to be `const`. [`to_f32`][Self::to_f32] should be preferred
246    /// in any non-`const` context.
247    ///
248    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
249    /// in 32-bit floating point.
250    #[inline]
251    #[must_use]
252    pub const fn to_f32_const(self) -> f32 {
253        arch::f16_to_f32_fallback(self.0)
254    }
255
256    /// Converts a [`f16`] value into a `f64` value.
257    ///
258    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
259    /// in 64-bit floating point.
260    #[inline]
261    #[must_use]
262    pub fn to_f64(self) -> f64 {
263        arch::f16_to_f64(self.0)
264    }
265
266    /// Converts a [`f16`] value into a `f64` value.
267    ///
268    /// This function is identical to [`to_f64`][Self::to_f64] except it never uses hardware
269    /// intrinsics, which allows it to be `const`. [`to_f64`][Self::to_f64] should be preferred
270    /// in any non-`const` context.
271    ///
272    /// This conversion is lossless as all 16-bit floating point values can be represented exactly
273    /// in 64-bit floating point.
274    #[inline]
275    #[must_use]
276    pub const fn to_f64_const(self) -> f64 {
277        arch::f16_to_f64_fallback(self.0)
278    }
279
280    /// Returns `true` if this value is `NaN` and `false` otherwise.
281    ///
282    /// # Examples
283    ///
284    /// ```rust
285    /// # use half::prelude::*;
286    ///
287    /// let nan = f16::NAN;
288    /// let f = f16::from_f32(7.0_f32);
289    ///
290    /// assert!(nan.is_nan());
291    /// assert!(!f.is_nan());
292    /// ```
293    #[inline]
294    #[must_use]
295    pub const fn is_nan(self) -> bool {
296        self.0 & 0x7FFFu16 > 0x7C00u16
297    }
298
299    /// Returns `true` if this value is ±∞ and `false`.
300    /// otherwise.
301    ///
302    /// # Examples
303    ///
304    /// ```rust
305    /// # use half::prelude::*;
306    ///
307    /// let f = f16::from_f32(7.0f32);
308    /// let inf = f16::INFINITY;
309    /// let neg_inf = f16::NEG_INFINITY;
310    /// let nan = f16::NAN;
311    ///
312    /// assert!(!f.is_infinite());
313    /// assert!(!nan.is_infinite());
314    ///
315    /// assert!(inf.is_infinite());
316    /// assert!(neg_inf.is_infinite());
317    /// ```
318    #[inline]
319    #[must_use]
320    pub const fn is_infinite(self) -> bool {
321        self.0 & 0x7FFFu16 == 0x7C00u16
322    }
323
324    /// Returns `true` if this number is neither infinite nor `NaN`.
325    ///
326    /// # Examples
327    ///
328    /// ```rust
329    /// # use half::prelude::*;
330    ///
331    /// let f = f16::from_f32(7.0f32);
332    /// let inf = f16::INFINITY;
333    /// let neg_inf = f16::NEG_INFINITY;
334    /// let nan = f16::NAN;
335    ///
336    /// assert!(f.is_finite());
337    ///
338    /// assert!(!nan.is_finite());
339    /// assert!(!inf.is_finite());
340    /// assert!(!neg_inf.is_finite());
341    /// ```
342    #[inline]
343    #[must_use]
344    pub const fn is_finite(self) -> bool {
345        self.0 & 0x7C00u16 != 0x7C00u16
346    }
347
348    /// Returns `true` if the number is neither zero, infinite, subnormal, or `NaN`.
349    ///
350    /// # Examples
351    ///
352    /// ```rust
353    /// # use half::prelude::*;
354    ///
355    /// let min = f16::MIN_POSITIVE;
356    /// let max = f16::MAX;
357    /// let lower_than_min = f16::from_f32(1.0e-10_f32);
358    /// let zero = f16::from_f32(0.0_f32);
359    ///
360    /// assert!(min.is_normal());
361    /// assert!(max.is_normal());
362    ///
363    /// assert!(!zero.is_normal());
364    /// assert!(!f16::NAN.is_normal());
365    /// assert!(!f16::INFINITY.is_normal());
366    /// // Values between `0` and `min` are Subnormal.
367    /// assert!(!lower_than_min.is_normal());
368    /// ```
369    #[inline]
370    #[must_use]
371    pub const fn is_normal(self) -> bool {
372        let exp = self.0 & 0x7C00u16;
373        exp != 0x7C00u16 && exp != 0
374    }
375
376    /// Returns the floating point category of the number.
377    ///
378    /// If only one property is going to be tested, it is generally faster to use the specific
379    /// predicate instead.
380    ///
381    /// # Examples
382    ///
383    /// ```rust
384    /// use std::num::FpCategory;
385    /// # use half::prelude::*;
386    ///
387    /// let num = f16::from_f32(12.4_f32);
388    /// let inf = f16::INFINITY;
389    ///
390    /// assert_eq!(num.classify(), FpCategory::Normal);
391    /// assert_eq!(inf.classify(), FpCategory::Infinite);
392    /// ```
393    #[must_use]
394    pub const fn classify(self) -> FpCategory {
395        let exp = self.0 & 0x7C00u16;
396        let man = self.0 & 0x03FFu16;
397        match (exp, man) {
398            (0, 0) => FpCategory::Zero,
399            (0, _) => FpCategory::Subnormal,
400            (0x7C00u16, 0) => FpCategory::Infinite,
401            (0x7C00u16, _) => FpCategory::Nan,
402            _ => FpCategory::Normal,
403        }
404    }
405
406    /// Returns a number that represents the sign of `self`.
407    ///
408    /// * `1.0` if the number is positive, `+0.0` or [`INFINITY`][f16::INFINITY]
409    /// * `-1.0` if the number is negative, `-0.0` or [`NEG_INFINITY`][f16::NEG_INFINITY]
410    /// * [`NAN`][f16::NAN] if the number is `NaN`
411    ///
412    /// # Examples
413    ///
414    /// ```rust
415    /// # use half::prelude::*;
416    ///
417    /// let f = f16::from_f32(3.5_f32);
418    ///
419    /// assert_eq!(f.signum(), f16::from_f32(1.0));
420    /// assert_eq!(f16::NEG_INFINITY.signum(), f16::from_f32(-1.0));
421    ///
422    /// assert!(f16::NAN.signum().is_nan());
423    /// ```
424    #[must_use]
425    pub const fn signum(self) -> f16 {
426        if self.is_nan() {
427            self
428        } else if self.0 & 0x8000u16 != 0 {
429            Self::NEG_ONE
430        } else {
431            Self::ONE
432        }
433    }
434
435    /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaNs` with a
436    /// positive sign bit and +∞.
437    ///
438    /// # Examples
439    ///
440    /// ```rust
441    /// # use half::prelude::*;
442    ///
443    /// let nan = f16::NAN;
444    /// let f = f16::from_f32(7.0_f32);
445    /// let g = f16::from_f32(-7.0_f32);
446    ///
447    /// assert!(f.is_sign_positive());
448    /// assert!(!g.is_sign_positive());
449    /// // `NaN` can be either positive or negative
450    /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
451    /// ```
452    #[inline]
453    #[must_use]
454    pub const fn is_sign_positive(self) -> bool {
455        self.0 & 0x8000u16 == 0
456    }
457
458    /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaNs` with a
459    /// negative sign bit and −∞.
460    ///
461    /// # Examples
462    ///
463    /// ```rust
464    /// # use half::prelude::*;
465    ///
466    /// let nan = f16::NAN;
467    /// let f = f16::from_f32(7.0f32);
468    /// let g = f16::from_f32(-7.0f32);
469    ///
470    /// assert!(!f.is_sign_negative());
471    /// assert!(g.is_sign_negative());
472    /// // `NaN` can be either positive or negative
473    /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
474    /// ```
475    #[inline]
476    #[must_use]
477    pub const fn is_sign_negative(self) -> bool {
478        self.0 & 0x8000u16 != 0
479    }
480
481    /// Returns a number composed of the magnitude of `self` and the sign of `sign`.
482    ///
483    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
484    /// If `self` is NaN, then NaN with the sign of `sign` is returned.
485    ///
486    /// # Examples
487    ///
488    /// ```
489    /// # use half::prelude::*;
490    /// let f = f16::from_f32(3.5);
491    ///
492    /// assert_eq!(f.copysign(f16::from_f32(0.42)), f16::from_f32(3.5));
493    /// assert_eq!(f.copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5));
494    /// assert_eq!((-f).copysign(f16::from_f32(0.42)), f16::from_f32(3.5));
495    /// assert_eq!((-f).copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5));
496    ///
497    /// assert!(f16::NAN.copysign(f16::from_f32(1.0)).is_nan());
498    /// ```
499    #[inline]
500    #[must_use]
501    pub const fn copysign(self, sign: f16) -> f16 {
502        f16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16))
503    }
504
505    /// Returns the maximum of the two numbers.
506    ///
507    /// If one of the arguments is NaN, then the other argument is returned.
508    ///
509    /// # Examples
510    ///
511    /// ```
512    /// # use half::prelude::*;
513    /// let x = f16::from_f32(1.0);
514    /// let y = f16::from_f32(2.0);
515    ///
516    /// assert_eq!(x.max(y), y);
517    /// ```
518    #[inline]
519    #[must_use]
520    pub fn max(self, other: f16) -> f16 {
521        if other > self && !other.is_nan() {
522            other
523        } else {
524            self
525        }
526    }
527
528    /// Returns the minimum of the two numbers.
529    ///
530    /// If one of the arguments is NaN, then the other argument is returned.
531    ///
532    /// # Examples
533    ///
534    /// ```
535    /// # use half::prelude::*;
536    /// let x = f16::from_f32(1.0);
537    /// let y = f16::from_f32(2.0);
538    ///
539    /// assert_eq!(x.min(y), x);
540    /// ```
541    #[inline]
542    #[must_use]
543    pub fn min(self, other: f16) -> f16 {
544        if other < self && !other.is_nan() {
545            other
546        } else {
547            self
548        }
549    }
550
551    /// Restrict a value to a certain interval unless it is NaN.
552    ///
553    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`.
554    /// Otherwise this returns `self`.
555    ///
556    /// Note that this function returns NaN if the initial value was NaN as well.
557    ///
558    /// # Panics
559    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
560    ///
561    /// # Examples
562    ///
563    /// ```
564    /// # use half::prelude::*;
565    /// assert!(f16::from_f32(-3.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(-2.0));
566    /// assert!(f16::from_f32(0.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(0.0));
567    /// assert!(f16::from_f32(2.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(1.0));
568    /// assert!(f16::NAN.clamp(f16::from_f32(-2.0), f16::from_f32(1.0)).is_nan());
569    /// ```
570    #[inline]
571    #[must_use]
572    pub fn clamp(self, min: f16, max: f16) -> f16 {
573        assert!(min <= max);
574        let mut x = self;
575        if x < min {
576            x = min;
577        }
578        if x > max {
579            x = max;
580        }
581        x
582    }
583
584    /// Returns the ordering between `self` and `other`.
585    ///
586    /// Unlike the standard partial comparison between floating point numbers,
587    /// this comparison always produces an ordering in accordance to
588    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
589    /// floating point standard. The values are ordered in the following sequence:
590    ///
591    /// - negative quiet NaN
592    /// - negative signaling NaN
593    /// - negative infinity
594    /// - negative numbers
595    /// - negative subnormal numbers
596    /// - negative zero
597    /// - positive zero
598    /// - positive subnormal numbers
599    /// - positive numbers
600    /// - positive infinity
601    /// - positive signaling NaN
602    /// - positive quiet NaN.
603    ///
604    /// The ordering established by this function does not always agree with the
605    /// [`PartialOrd`] and [`PartialEq`] implementations of `f16`. For example,
606    /// they consider negative and positive zero equal, while `total_cmp`
607    /// doesn't.
608    ///
609    /// The interpretation of the signaling NaN bit follows the definition in
610    /// the IEEE 754 standard, which may not match the interpretation by some of
611    /// the older, non-conformant (e.g. MIPS) hardware implementations.
612    ///
613    /// # Examples
614    /// ```
615    /// # use half::f16;
616    /// let mut v: Vec<f16> = vec![];
617    /// v.push(f16::ONE);
618    /// v.push(f16::INFINITY);
619    /// v.push(f16::NEG_INFINITY);
620    /// v.push(f16::NAN);
621    /// v.push(f16::MAX_SUBNORMAL);
622    /// v.push(-f16::MAX_SUBNORMAL);
623    /// v.push(f16::ZERO);
624    /// v.push(f16::NEG_ZERO);
625    /// v.push(f16::NEG_ONE);
626    /// v.push(f16::MIN_POSITIVE);
627    ///
628    /// v.sort_by(|a, b| a.total_cmp(&b));
629    ///
630    /// assert!(v
631    ///     .into_iter()
632    ///     .zip(
633    ///         [
634    ///             f16::NEG_INFINITY,
635    ///             f16::NEG_ONE,
636    ///             -f16::MAX_SUBNORMAL,
637    ///             f16::NEG_ZERO,
638    ///             f16::ZERO,
639    ///             f16::MAX_SUBNORMAL,
640    ///             f16::MIN_POSITIVE,
641    ///             f16::ONE,
642    ///             f16::INFINITY,
643    ///             f16::NAN
644    ///         ]
645    ///         .iter()
646    ///     )
647    ///     .all(|(a, b)| a.to_bits() == b.to_bits()));
648    /// ```
649    // Implementation based on: https://doc.rust-lang.org/std/primitive.f32.html#method.total_cmp
650    #[inline]
651    #[must_use]
652    pub fn total_cmp(&self, other: &Self) -> Ordering {
653        let mut left = self.to_bits() as i16;
654        let mut right = other.to_bits() as i16;
655        left ^= (((left >> 15) as u16) >> 1) as i16;
656        right ^= (((right >> 15) as u16) >> 1) as i16;
657        left.cmp(&right)
658    }
659
660    /// Alternate serialize adapter for serializing as a float.
661    ///
662    /// By default, [`f16`] serializes as a newtype of [`u16`]. This is an alternate serialize
663    /// implementation that serializes as an [`f32`] value. It is designed for use with
664    /// `serialize_with` serde attributes. Deserialization from `f32` values is already supported by
665    /// the default deserialize implementation.
666    ///
667    /// # Examples
668    ///
669    /// A demonstration on how to use this adapater:
670    ///
671    /// ```
672    /// use serde::{Serialize, Deserialize};
673    /// use half::f16;
674    ///
675    /// #[derive(Serialize, Deserialize)]
676    /// struct MyStruct {
677    ///     #[serde(serialize_with = "f16::serialize_as_f32")]
678    ///     value: f16 // Will be serialized as f32 instead of u16
679    /// }
680    /// ```
681    #[cfg(feature = "serde")]
682    pub fn serialize_as_f32<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
683        serializer.serialize_f32(self.to_f32())
684    }
685
686    /// Alternate serialize adapter for serializing as a string.
687    ///
688    /// By default, [`f16`] serializes as a newtype of [`u16`]. This is an alternate serialize
689    /// implementation that serializes as a string value. It is designed for use with
690    /// `serialize_with` serde attributes. Deserialization from string values is already supported
691    /// by the default deserialize implementation.
692    ///
693    /// # Examples
694    ///
695    /// A demonstration on how to use this adapater:
696    ///
697    /// ```
698    /// use serde::{Serialize, Deserialize};
699    /// use half::f16;
700    ///
701    /// #[derive(Serialize, Deserialize)]
702    /// struct MyStruct {
703    ///     #[serde(serialize_with = "f16::serialize_as_string")]
704    ///     value: f16 // Will be serialized as a string instead of u16
705    /// }
706    /// ```
707    #[cfg(all(feature = "serde", feature = "alloc"))]
708    pub fn serialize_as_string<S: serde::Serializer>(
709        &self,
710        serializer: S,
711    ) -> Result<S::Ok, S::Error> {
712        serializer.serialize_str(&self.to_string())
713    }
714
715    /// Approximate number of [`f16`] significant digits in base 10
716    pub const DIGITS: u32 = 3;
717    /// [`f16`]
718    /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value
719    ///
720    /// This is the difference between 1.0 and the next largest representable number.
721    pub const EPSILON: f16 = f16(0x1400u16);
722    /// [`f16`] positive Infinity (+∞)
723    pub const INFINITY: f16 = f16(0x7C00u16);
724    /// Number of [`f16`] significant digits in base 2
725    pub const MANTISSA_DIGITS: u32 = 11;
726    /// Largest finite [`f16`] value
727    pub const MAX: f16 = f16(0x7BFF);
728    /// Maximum possible [`f16`] power of 10 exponent
729    pub const MAX_10_EXP: i32 = 4;
730    /// Maximum possible [`f16`] power of 2 exponent
731    pub const MAX_EXP: i32 = 16;
732    /// Smallest finite [`f16`] value
733    pub const MIN: f16 = f16(0xFBFF);
734    /// Minimum possible normal [`f16`] power of 10 exponent
735    pub const MIN_10_EXP: i32 = -4;
736    /// One greater than the minimum possible normal [`f16`] power of 2 exponent
737    pub const MIN_EXP: i32 = -13;
738    /// Smallest positive normal [`f16`] value
739    pub const MIN_POSITIVE: f16 = f16(0x0400u16);
740    /// [`f16`] Not a Number (NaN)
741    pub const NAN: f16 = f16(0x7E00u16);
742    /// [`f16`] negative infinity (-∞)
743    pub const NEG_INFINITY: f16 = f16(0xFC00u16);
744    /// The radix or base of the internal representation of [`f16`]
745    pub const RADIX: u32 = 2;
746
747    /// Minimum positive subnormal [`f16`] value
748    pub const MIN_POSITIVE_SUBNORMAL: f16 = f16(0x0001u16);
749    /// Maximum subnormal [`f16`] value
750    pub const MAX_SUBNORMAL: f16 = f16(0x03FFu16);
751
752    /// [`f16`] 1
753    pub const ONE: f16 = f16(0x3C00u16);
754    /// [`f16`] 0
755    pub const ZERO: f16 = f16(0x0000u16);
756    /// [`f16`] -0
757    pub const NEG_ZERO: f16 = f16(0x8000u16);
758    /// [`f16`] -1
759    pub const NEG_ONE: f16 = f16(0xBC00u16);
760
761    /// [`f16`] Euler's number (ℯ)
762    pub const E: f16 = f16(0x4170u16);
763    /// [`f16`] Archimedes' constant (π)
764    pub const PI: f16 = f16(0x4248u16);
765    /// [`f16`] 1/π
766    pub const FRAC_1_PI: f16 = f16(0x3518u16);
767    /// [`f16`] 1/√2
768    pub const FRAC_1_SQRT_2: f16 = f16(0x39A8u16);
769    /// [`f16`] 2/π
770    pub const FRAC_2_PI: f16 = f16(0x3918u16);
771    /// [`f16`] 2/√π
772    pub const FRAC_2_SQRT_PI: f16 = f16(0x3C83u16);
773    /// [`f16`] π/2
774    pub const FRAC_PI_2: f16 = f16(0x3E48u16);
775    /// [`f16`] π/3
776    pub const FRAC_PI_3: f16 = f16(0x3C30u16);
777    /// [`f16`] π/4
778    pub const FRAC_PI_4: f16 = f16(0x3A48u16);
779    /// [`f16`] π/6
780    pub const FRAC_PI_6: f16 = f16(0x3830u16);
781    /// [`f16`] π/8
782    pub const FRAC_PI_8: f16 = f16(0x3648u16);
783    /// [`f16`] 𝗅𝗇 10
784    pub const LN_10: f16 = f16(0x409Bu16);
785    /// [`f16`] 𝗅𝗇 2
786    pub const LN_2: f16 = f16(0x398Cu16);
787    /// [`f16`] 𝗅𝗈𝗀₁₀ℯ
788    pub const LOG10_E: f16 = f16(0x36F3u16);
789    /// [`f16`] 𝗅𝗈𝗀₁₀2
790    pub const LOG10_2: f16 = f16(0x34D1u16);
791    /// [`f16`] 𝗅𝗈𝗀₂ℯ
792    pub const LOG2_E: f16 = f16(0x3DC5u16);
793    /// [`f16`] 𝗅𝗈𝗀₂10
794    pub const LOG2_10: f16 = f16(0x42A5u16);
795    /// [`f16`] √2
796    pub const SQRT_2: f16 = f16(0x3DA8u16);
797}
798
799impl From<f16> for f32 {
800    #[inline]
801    fn from(x: f16) -> f32 {
802        x.to_f32()
803    }
804}
805
806impl From<f16> for f64 {
807    #[inline]
808    fn from(x: f16) -> f64 {
809        x.to_f64()
810    }
811}
812
813impl From<i8> for f16 {
814    #[inline]
815    fn from(x: i8) -> f16 {
816        // Convert to f32, then to f16
817        f16::from_f32(f32::from(x))
818    }
819}
820
821impl From<u8> for f16 {
822    #[inline]
823    fn from(x: u8) -> f16 {
824        // Convert to f32, then to f16
825        f16::from_f32(f32::from(x))
826    }
827}
828
829impl PartialEq for f16 {
830    fn eq(&self, other: &f16) -> bool {
831        if self.is_nan() || other.is_nan() {
832            false
833        } else {
834            (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0)
835        }
836    }
837}
838
839impl PartialOrd for f16 {
840    fn partial_cmp(&self, other: &f16) -> Option<Ordering> {
841        if self.is_nan() || other.is_nan() {
842            None
843        } else {
844            let neg = self.0 & 0x8000u16 != 0;
845            let other_neg = other.0 & 0x8000u16 != 0;
846            match (neg, other_neg) {
847                (false, false) => Some(self.0.cmp(&other.0)),
848                (false, true) => {
849                    if (self.0 | other.0) & 0x7FFFu16 == 0 {
850                        Some(Ordering::Equal)
851                    } else {
852                        Some(Ordering::Greater)
853                    }
854                }
855                (true, false) => {
856                    if (self.0 | other.0) & 0x7FFFu16 == 0 {
857                        Some(Ordering::Equal)
858                    } else {
859                        Some(Ordering::Less)
860                    }
861                }
862                (true, true) => Some(other.0.cmp(&self.0)),
863            }
864        }
865    }
866
867    fn lt(&self, other: &f16) -> bool {
868        if self.is_nan() || other.is_nan() {
869            false
870        } else {
871            let neg = self.0 & 0x8000u16 != 0;
872            let other_neg = other.0 & 0x8000u16 != 0;
873            match (neg, other_neg) {
874                (false, false) => self.0 < other.0,
875                (false, true) => false,
876                (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0,
877                (true, true) => self.0 > other.0,
878            }
879        }
880    }
881
882    fn le(&self, other: &f16) -> bool {
883        if self.is_nan() || other.is_nan() {
884            false
885        } else {
886            let neg = self.0 & 0x8000u16 != 0;
887            let other_neg = other.0 & 0x8000u16 != 0;
888            match (neg, other_neg) {
889                (false, false) => self.0 <= other.0,
890                (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0,
891                (true, false) => true,
892                (true, true) => self.0 >= other.0,
893            }
894        }
895    }
896
897    fn gt(&self, other: &f16) -> bool {
898        if self.is_nan() || other.is_nan() {
899            false
900        } else {
901            let neg = self.0 & 0x8000u16 != 0;
902            let other_neg = other.0 & 0x8000u16 != 0;
903            match (neg, other_neg) {
904                (false, false) => self.0 > other.0,
905                (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0,
906                (true, false) => false,
907                (true, true) => self.0 < other.0,
908            }
909        }
910    }
911
912    fn ge(&self, other: &f16) -> bool {
913        if self.is_nan() || other.is_nan() {
914            false
915        } else {
916            let neg = self.0 & 0x8000u16 != 0;
917            let other_neg = other.0 & 0x8000u16 != 0;
918            match (neg, other_neg) {
919                (false, false) => self.0 >= other.0,
920                (false, true) => true,
921                (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0,
922                (true, true) => self.0 <= other.0,
923            }
924        }
925    }
926}
927
928#[cfg(not(target_arch = "spirv"))]
929impl FromStr for f16 {
930    type Err = ParseFloatError;
931    fn from_str(src: &str) -> Result<f16, ParseFloatError> {
932        f32::from_str(src).map(f16::from_f32)
933    }
934}
935
936#[cfg(not(target_arch = "spirv"))]
937impl Debug for f16 {
938    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
939        Debug::fmt(&self.to_f32(), f)
940    }
941}
942
943#[cfg(not(target_arch = "spirv"))]
944impl Display for f16 {
945    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
946        Display::fmt(&self.to_f32(), f)
947    }
948}
949
950#[cfg(not(target_arch = "spirv"))]
951impl LowerExp for f16 {
952    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
953        write!(f, "{:e}", self.to_f32())
954    }
955}
956
957#[cfg(not(target_arch = "spirv"))]
958impl UpperExp for f16 {
959    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
960        write!(f, "{:E}", self.to_f32())
961    }
962}
963
964#[cfg(not(target_arch = "spirv"))]
965impl Binary for f16 {
966    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
967        write!(f, "{:b}", self.0)
968    }
969}
970
971#[cfg(not(target_arch = "spirv"))]
972impl Octal for f16 {
973    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
974        write!(f, "{:o}", self.0)
975    }
976}
977
978#[cfg(not(target_arch = "spirv"))]
979impl LowerHex for f16 {
980    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
981        write!(f, "{:x}", self.0)
982    }
983}
984
985#[cfg(not(target_arch = "spirv"))]
986impl UpperHex for f16 {
987    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
988        write!(f, "{:X}", self.0)
989    }
990}
991
992impl Neg for f16 {
993    type Output = Self;
994
995    #[inline]
996    fn neg(self) -> Self::Output {
997        Self(self.0 ^ 0x8000)
998    }
999}
1000
1001impl Neg for &f16 {
1002    type Output = <f16 as Neg>::Output;
1003
1004    #[inline]
1005    fn neg(self) -> Self::Output {
1006        Neg::neg(*self)
1007    }
1008}
1009
1010impl Add for f16 {
1011    type Output = Self;
1012
1013    #[inline]
1014    fn add(self, rhs: Self) -> Self::Output {
1015        f16(arch::add_f16(self.0, rhs.0))
1016    }
1017}
1018
1019impl Add<&f16> for f16 {
1020    type Output = <f16 as Add<f16>>::Output;
1021
1022    #[inline]
1023    fn add(self, rhs: &f16) -> Self::Output {
1024        self.add(*rhs)
1025    }
1026}
1027
1028impl Add<&f16> for &f16 {
1029    type Output = <f16 as Add<f16>>::Output;
1030
1031    #[inline]
1032    fn add(self, rhs: &f16) -> Self::Output {
1033        (*self).add(*rhs)
1034    }
1035}
1036
1037impl Add<f16> for &f16 {
1038    type Output = <f16 as Add<f16>>::Output;
1039
1040    #[inline]
1041    fn add(self, rhs: f16) -> Self::Output {
1042        (*self).add(rhs)
1043    }
1044}
1045
1046impl AddAssign for f16 {
1047    #[inline]
1048    fn add_assign(&mut self, rhs: Self) {
1049        *self = (*self).add(rhs);
1050    }
1051}
1052
1053impl AddAssign<&f16> for f16 {
1054    #[inline]
1055    fn add_assign(&mut self, rhs: &f16) {
1056        *self = (*self).add(rhs);
1057    }
1058}
1059
1060impl Sub for f16 {
1061    type Output = Self;
1062
1063    #[inline]
1064    fn sub(self, rhs: Self) -> Self::Output {
1065        f16(arch::subtract_f16(self.0, rhs.0))
1066    }
1067}
1068
1069impl Sub<&f16> for f16 {
1070    type Output = <f16 as Sub<f16>>::Output;
1071
1072    #[inline]
1073    fn sub(self, rhs: &f16) -> Self::Output {
1074        self.sub(*rhs)
1075    }
1076}
1077
1078impl Sub<&f16> for &f16 {
1079    type Output = <f16 as Sub<f16>>::Output;
1080
1081    #[inline]
1082    fn sub(self, rhs: &f16) -> Self::Output {
1083        (*self).sub(*rhs)
1084    }
1085}
1086
1087impl Sub<f16> for &f16 {
1088    type Output = <f16 as Sub<f16>>::Output;
1089
1090    #[inline]
1091    fn sub(self, rhs: f16) -> Self::Output {
1092        (*self).sub(rhs)
1093    }
1094}
1095
1096impl SubAssign for f16 {
1097    #[inline]
1098    fn sub_assign(&mut self, rhs: Self) {
1099        *self = (*self).sub(rhs);
1100    }
1101}
1102
1103impl SubAssign<&f16> for f16 {
1104    #[inline]
1105    fn sub_assign(&mut self, rhs: &f16) {
1106        *self = (*self).sub(rhs);
1107    }
1108}
1109
1110impl Mul for f16 {
1111    type Output = Self;
1112
1113    #[inline]
1114    fn mul(self, rhs: Self) -> Self::Output {
1115        f16(arch::multiply_f16(self.0, rhs.0))
1116    }
1117}
1118
1119impl Mul<&f16> for f16 {
1120    type Output = <f16 as Mul<f16>>::Output;
1121
1122    #[inline]
1123    fn mul(self, rhs: &f16) -> Self::Output {
1124        self.mul(*rhs)
1125    }
1126}
1127
1128impl Mul<&f16> for &f16 {
1129    type Output = <f16 as Mul<f16>>::Output;
1130
1131    #[inline]
1132    fn mul(self, rhs: &f16) -> Self::Output {
1133        (*self).mul(*rhs)
1134    }
1135}
1136
1137impl Mul<f16> for &f16 {
1138    type Output = <f16 as Mul<f16>>::Output;
1139
1140    #[inline]
1141    fn mul(self, rhs: f16) -> Self::Output {
1142        (*self).mul(rhs)
1143    }
1144}
1145
1146impl MulAssign for f16 {
1147    #[inline]
1148    fn mul_assign(&mut self, rhs: Self) {
1149        *self = (*self).mul(rhs);
1150    }
1151}
1152
1153impl MulAssign<&f16> for f16 {
1154    #[inline]
1155    fn mul_assign(&mut self, rhs: &f16) {
1156        *self = (*self).mul(rhs);
1157    }
1158}
1159
1160impl Div for f16 {
1161    type Output = Self;
1162
1163    #[inline]
1164    fn div(self, rhs: Self) -> Self::Output {
1165        f16(arch::divide_f16(self.0, rhs.0))
1166    }
1167}
1168
1169impl Div<&f16> for f16 {
1170    type Output = <f16 as Div<f16>>::Output;
1171
1172    #[inline]
1173    fn div(self, rhs: &f16) -> Self::Output {
1174        self.div(*rhs)
1175    }
1176}
1177
1178impl Div<&f16> for &f16 {
1179    type Output = <f16 as Div<f16>>::Output;
1180
1181    #[inline]
1182    fn div(self, rhs: &f16) -> Self::Output {
1183        (*self).div(*rhs)
1184    }
1185}
1186
1187impl Div<f16> for &f16 {
1188    type Output = <f16 as Div<f16>>::Output;
1189
1190    #[inline]
1191    fn div(self, rhs: f16) -> Self::Output {
1192        (*self).div(rhs)
1193    }
1194}
1195
1196impl DivAssign for f16 {
1197    #[inline]
1198    fn div_assign(&mut self, rhs: Self) {
1199        *self = (*self).div(rhs);
1200    }
1201}
1202
1203impl DivAssign<&f16> for f16 {
1204    #[inline]
1205    fn div_assign(&mut self, rhs: &f16) {
1206        *self = (*self).div(rhs);
1207    }
1208}
1209
1210impl Rem for f16 {
1211    type Output = Self;
1212
1213    #[inline]
1214    fn rem(self, rhs: Self) -> Self::Output {
1215        f16(arch::remainder_f16(self.0, rhs.0))
1216    }
1217}
1218
1219impl Rem<&f16> for f16 {
1220    type Output = <f16 as Rem<f16>>::Output;
1221
1222    #[inline]
1223    fn rem(self, rhs: &f16) -> Self::Output {
1224        self.rem(*rhs)
1225    }
1226}
1227
1228impl Rem<&f16> for &f16 {
1229    type Output = <f16 as Rem<f16>>::Output;
1230
1231    #[inline]
1232    fn rem(self, rhs: &f16) -> Self::Output {
1233        (*self).rem(*rhs)
1234    }
1235}
1236
1237impl Rem<f16> for &f16 {
1238    type Output = <f16 as Rem<f16>>::Output;
1239
1240    #[inline]
1241    fn rem(self, rhs: f16) -> Self::Output {
1242        (*self).rem(rhs)
1243    }
1244}
1245
1246impl RemAssign for f16 {
1247    #[inline]
1248    fn rem_assign(&mut self, rhs: Self) {
1249        *self = (*self).rem(rhs);
1250    }
1251}
1252
1253impl RemAssign<&f16> for f16 {
1254    #[inline]
1255    fn rem_assign(&mut self, rhs: &f16) {
1256        *self = (*self).rem(rhs);
1257    }
1258}
1259
1260impl Product for f16 {
1261    #[inline]
1262    fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
1263        f16(arch::product_f16(iter.map(|f| f.to_bits())))
1264    }
1265}
1266
1267impl<'a> Product<&'a f16> for f16 {
1268    #[inline]
1269    fn product<I: Iterator<Item = &'a f16>>(iter: I) -> Self {
1270        f16(arch::product_f16(iter.map(|f| f.to_bits())))
1271    }
1272}
1273
1274impl Sum for f16 {
1275    #[inline]
1276    fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
1277        f16(arch::sum_f16(iter.map(|f| f.to_bits())))
1278    }
1279}
1280
1281impl<'a> Sum<&'a f16> for f16 {
1282    #[inline]
1283    fn sum<I: Iterator<Item = &'a f16>>(iter: I) -> Self {
1284        f16(arch::sum_f16(iter.map(|f| f.to_bits())))
1285    }
1286}
1287
1288#[cfg(feature = "serde")]
1289struct Visitor;
1290
1291#[cfg(feature = "serde")]
1292impl<'de> Deserialize<'de> for f16 {
1293    fn deserialize<D>(deserializer: D) -> Result<f16, D::Error>
1294    where
1295        D: serde::de::Deserializer<'de>,
1296    {
1297        deserializer.deserialize_newtype_struct("f16", Visitor)
1298    }
1299}
1300
1301#[cfg(feature = "serde")]
1302impl<'de> serde::de::Visitor<'de> for Visitor {
1303    type Value = f16;
1304
1305    fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result {
1306        write!(formatter, "tuple struct f16")
1307    }
1308
1309    fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
1310    where
1311        D: serde::Deserializer<'de>,
1312    {
1313        Ok(f16(<u16 as Deserialize>::deserialize(deserializer)?))
1314    }
1315
1316    fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
1317    where
1318        E: serde::de::Error,
1319    {
1320        v.parse().map_err(|_| {
1321            serde::de::Error::invalid_value(serde::de::Unexpected::Str(v), &"a float string")
1322        })
1323    }
1324
1325    fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>
1326    where
1327        E: serde::de::Error,
1328    {
1329        Ok(f16::from_f32(v))
1330    }
1331
1332    fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>
1333    where
1334        E: serde::de::Error,
1335    {
1336        Ok(f16::from_f64(v))
1337    }
1338}
1339
1340#[allow(
1341    clippy::cognitive_complexity,
1342    clippy::float_cmp,
1343    clippy::neg_cmp_op_on_partial_ord
1344)]
1345#[cfg(test)]
1346mod test {
1347    use super::*;
1348    #[allow(unused_imports)]
1349    use core::cmp::Ordering;
1350    #[cfg(feature = "num-traits")]
1351    use num_traits::{AsPrimitive, FromPrimitive, ToPrimitive};
1352    use quickcheck_macros::quickcheck;
1353
1354    #[cfg(feature = "num-traits")]
1355    #[test]
1356    fn as_primitive() {
1357        let two = f16::from_f32(2.0);
1358        assert_eq!(<i32 as AsPrimitive<f16>>::as_(2), two);
1359        assert_eq!(<f16 as AsPrimitive<i32>>::as_(two), 2);
1360
1361        assert_eq!(<f32 as AsPrimitive<f16>>::as_(2.0), two);
1362        assert_eq!(<f16 as AsPrimitive<f32>>::as_(two), 2.0);
1363
1364        assert_eq!(<f64 as AsPrimitive<f16>>::as_(2.0), two);
1365        assert_eq!(<f16 as AsPrimitive<f64>>::as_(two), 2.0);
1366    }
1367
1368    #[cfg(feature = "num-traits")]
1369    #[test]
1370    fn to_primitive() {
1371        let two = f16::from_f32(2.0);
1372        assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32);
1373        assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32);
1374        assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64);
1375    }
1376
1377    #[cfg(feature = "num-traits")]
1378    #[test]
1379    fn from_primitive() {
1380        let two = f16::from_f32(2.0);
1381        assert_eq!(<f16 as FromPrimitive>::from_i32(2).unwrap(), two);
1382        assert_eq!(<f16 as FromPrimitive>::from_f32(2.0).unwrap(), two);
1383        assert_eq!(<f16 as FromPrimitive>::from_f64(2.0).unwrap(), two);
1384    }
1385
1386    #[test]
1387    fn test_f16_consts() {
1388        // DIGITS
1389        let digits = ((f16::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32;
1390        assert_eq!(f16::DIGITS, digits);
1391        // sanity check to show test is good
1392        let digits32 = ((core::f32::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32;
1393        assert_eq!(core::f32::DIGITS, digits32);
1394
1395        // EPSILON
1396        let one = f16::from_f32(1.0);
1397        let one_plus_epsilon = f16::from_bits(one.to_bits() + 1);
1398        let epsilon = f16::from_f32(one_plus_epsilon.to_f32() - 1.0);
1399        assert_eq!(f16::EPSILON, epsilon);
1400        // sanity check to show test is good
1401        let one_plus_epsilon32 = f32::from_bits(1.0f32.to_bits() + 1);
1402        let epsilon32 = one_plus_epsilon32 - 1f32;
1403        assert_eq!(core::f32::EPSILON, epsilon32);
1404
1405        // MAX, MIN and MIN_POSITIVE
1406        let max = f16::from_bits(f16::INFINITY.to_bits() - 1);
1407        let min = f16::from_bits(f16::NEG_INFINITY.to_bits() - 1);
1408        let min_pos = f16::from_f32(2f32.powi(f16::MIN_EXP - 1));
1409        assert_eq!(f16::MAX, max);
1410        assert_eq!(f16::MIN, min);
1411        assert_eq!(f16::MIN_POSITIVE, min_pos);
1412        // sanity check to show test is good
1413        let max32 = f32::from_bits(core::f32::INFINITY.to_bits() - 1);
1414        let min32 = f32::from_bits(core::f32::NEG_INFINITY.to_bits() - 1);
1415        let min_pos32 = 2f32.powi(core::f32::MIN_EXP - 1);
1416        assert_eq!(core::f32::MAX, max32);
1417        assert_eq!(core::f32::MIN, min32);
1418        assert_eq!(core::f32::MIN_POSITIVE, min_pos32);
1419
1420        // MIN_10_EXP and MAX_10_EXP
1421        let ten_to_min = 10f32.powi(f16::MIN_10_EXP);
1422        assert!(ten_to_min / 10.0 < f16::MIN_POSITIVE.to_f32());
1423        assert!(ten_to_min > f16::MIN_POSITIVE.to_f32());
1424        let ten_to_max = 10f32.powi(f16::MAX_10_EXP);
1425        assert!(ten_to_max < f16::MAX.to_f32());
1426        assert!(ten_to_max * 10.0 > f16::MAX.to_f32());
1427        // sanity check to show test is good
1428        let ten_to_min32 = 10f64.powi(core::f32::MIN_10_EXP);
1429        assert!(ten_to_min32 / 10.0 < f64::from(core::f32::MIN_POSITIVE));
1430        assert!(ten_to_min32 > f64::from(core::f32::MIN_POSITIVE));
1431        let ten_to_max32 = 10f64.powi(core::f32::MAX_10_EXP);
1432        assert!(ten_to_max32 < f64::from(core::f32::MAX));
1433        assert!(ten_to_max32 * 10.0 > f64::from(core::f32::MAX));
1434    }
1435
1436    #[test]
1437    fn test_f16_consts_from_f32() {
1438        let one = f16::from_f32(1.0);
1439        let zero = f16::from_f32(0.0);
1440        let neg_zero = f16::from_f32(-0.0);
1441        let neg_one = f16::from_f32(-1.0);
1442        let inf = f16::from_f32(core::f32::INFINITY);
1443        let neg_inf = f16::from_f32(core::f32::NEG_INFINITY);
1444        let nan = f16::from_f32(core::f32::NAN);
1445
1446        assert_eq!(f16::ONE, one);
1447        assert_eq!(f16::ZERO, zero);
1448        assert!(zero.is_sign_positive());
1449        assert_eq!(f16::NEG_ZERO, neg_zero);
1450        assert!(neg_zero.is_sign_negative());
1451        assert_eq!(f16::NEG_ONE, neg_one);
1452        assert!(neg_one.is_sign_negative());
1453        assert_eq!(f16::INFINITY, inf);
1454        assert_eq!(f16::NEG_INFINITY, neg_inf);
1455        assert!(nan.is_nan());
1456        assert!(f16::NAN.is_nan());
1457
1458        let e = f16::from_f32(core::f32::consts::E);
1459        let pi = f16::from_f32(core::f32::consts::PI);
1460        let frac_1_pi = f16::from_f32(core::f32::consts::FRAC_1_PI);
1461        let frac_1_sqrt_2 = f16::from_f32(core::f32::consts::FRAC_1_SQRT_2);
1462        let frac_2_pi = f16::from_f32(core::f32::consts::FRAC_2_PI);
1463        let frac_2_sqrt_pi = f16::from_f32(core::f32::consts::FRAC_2_SQRT_PI);
1464        let frac_pi_2 = f16::from_f32(core::f32::consts::FRAC_PI_2);
1465        let frac_pi_3 = f16::from_f32(core::f32::consts::FRAC_PI_3);
1466        let frac_pi_4 = f16::from_f32(core::f32::consts::FRAC_PI_4);
1467        let frac_pi_6 = f16::from_f32(core::f32::consts::FRAC_PI_6);
1468        let frac_pi_8 = f16::from_f32(core::f32::consts::FRAC_PI_8);
1469        let ln_10 = f16::from_f32(core::f32::consts::LN_10);
1470        let ln_2 = f16::from_f32(core::f32::consts::LN_2);
1471        let log10_e = f16::from_f32(core::f32::consts::LOG10_E);
1472        // core::f32::consts::LOG10_2 requires rustc 1.43.0
1473        let log10_2 = f16::from_f32(2f32.log10());
1474        let log2_e = f16::from_f32(core::f32::consts::LOG2_E);
1475        // core::f32::consts::LOG2_10 requires rustc 1.43.0
1476        let log2_10 = f16::from_f32(10f32.log2());
1477        let sqrt_2 = f16::from_f32(core::f32::consts::SQRT_2);
1478
1479        assert_eq!(f16::E, e);
1480        assert_eq!(f16::PI, pi);
1481        assert_eq!(f16::FRAC_1_PI, frac_1_pi);
1482        assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2);
1483        assert_eq!(f16::FRAC_2_PI, frac_2_pi);
1484        assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
1485        assert_eq!(f16::FRAC_PI_2, frac_pi_2);
1486        assert_eq!(f16::FRAC_PI_3, frac_pi_3);
1487        assert_eq!(f16::FRAC_PI_4, frac_pi_4);
1488        assert_eq!(f16::FRAC_PI_6, frac_pi_6);
1489        assert_eq!(f16::FRAC_PI_8, frac_pi_8);
1490        assert_eq!(f16::LN_10, ln_10);
1491        assert_eq!(f16::LN_2, ln_2);
1492        assert_eq!(f16::LOG10_E, log10_e);
1493        assert_eq!(f16::LOG10_2, log10_2);
1494        assert_eq!(f16::LOG2_E, log2_e);
1495        assert_eq!(f16::LOG2_10, log2_10);
1496        assert_eq!(f16::SQRT_2, sqrt_2);
1497    }
1498
1499    #[test]
1500    fn test_f16_consts_from_f64() {
1501        let one = f16::from_f64(1.0);
1502        let zero = f16::from_f64(0.0);
1503        let neg_zero = f16::from_f64(-0.0);
1504        let inf = f16::from_f64(core::f64::INFINITY);
1505        let neg_inf = f16::from_f64(core::f64::NEG_INFINITY);
1506        let nan = f16::from_f64(core::f64::NAN);
1507
1508        assert_eq!(f16::ONE, one);
1509        assert_eq!(f16::ZERO, zero);
1510        assert!(zero.is_sign_positive());
1511        assert_eq!(f16::NEG_ZERO, neg_zero);
1512        assert!(neg_zero.is_sign_negative());
1513        assert_eq!(f16::INFINITY, inf);
1514        assert_eq!(f16::NEG_INFINITY, neg_inf);
1515        assert!(nan.is_nan());
1516        assert!(f16::NAN.is_nan());
1517
1518        let e = f16::from_f64(core::f64::consts::E);
1519        let pi = f16::from_f64(core::f64::consts::PI);
1520        let frac_1_pi = f16::from_f64(core::f64::consts::FRAC_1_PI);
1521        let frac_1_sqrt_2 = f16::from_f64(core::f64::consts::FRAC_1_SQRT_2);
1522        let frac_2_pi = f16::from_f64(core::f64::consts::FRAC_2_PI);
1523        let frac_2_sqrt_pi = f16::from_f64(core::f64::consts::FRAC_2_SQRT_PI);
1524        let frac_pi_2 = f16::from_f64(core::f64::consts::FRAC_PI_2);
1525        let frac_pi_3 = f16::from_f64(core::f64::consts::FRAC_PI_3);
1526        let frac_pi_4 = f16::from_f64(core::f64::consts::FRAC_PI_4);
1527        let frac_pi_6 = f16::from_f64(core::f64::consts::FRAC_PI_6);
1528        let frac_pi_8 = f16::from_f64(core::f64::consts::FRAC_PI_8);
1529        let ln_10 = f16::from_f64(core::f64::consts::LN_10);
1530        let ln_2 = f16::from_f64(core::f64::consts::LN_2);
1531        let log10_e = f16::from_f64(core::f64::consts::LOG10_E);
1532        // core::f64::consts::LOG10_2 requires rustc 1.43.0
1533        let log10_2 = f16::from_f64(2f64.log10());
1534        let log2_e = f16::from_f64(core::f64::consts::LOG2_E);
1535        // core::f64::consts::LOG2_10 requires rustc 1.43.0
1536        let log2_10 = f16::from_f64(10f64.log2());
1537        let sqrt_2 = f16::from_f64(core::f64::consts::SQRT_2);
1538
1539        assert_eq!(f16::E, e);
1540        assert_eq!(f16::PI, pi);
1541        assert_eq!(f16::FRAC_1_PI, frac_1_pi);
1542        assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2);
1543        assert_eq!(f16::FRAC_2_PI, frac_2_pi);
1544        assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
1545        assert_eq!(f16::FRAC_PI_2, frac_pi_2);
1546        assert_eq!(f16::FRAC_PI_3, frac_pi_3);
1547        assert_eq!(f16::FRAC_PI_4, frac_pi_4);
1548        assert_eq!(f16::FRAC_PI_6, frac_pi_6);
1549        assert_eq!(f16::FRAC_PI_8, frac_pi_8);
1550        assert_eq!(f16::LN_10, ln_10);
1551        assert_eq!(f16::LN_2, ln_2);
1552        assert_eq!(f16::LOG10_E, log10_e);
1553        assert_eq!(f16::LOG10_2, log10_2);
1554        assert_eq!(f16::LOG2_E, log2_e);
1555        assert_eq!(f16::LOG2_10, log2_10);
1556        assert_eq!(f16::SQRT_2, sqrt_2);
1557    }
1558
1559    #[test]
1560    fn test_nan_conversion_to_smaller() {
1561        let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64);
1562        let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64);
1563        let nan32 = f32::from_bits(0x7F80_0001u32);
1564        let neg_nan32 = f32::from_bits(0xFF80_0001u32);
1565        let nan32_from_64 = nan64 as f32;
1566        let neg_nan32_from_64 = neg_nan64 as f32;
1567        let nan16_from_64 = f16::from_f64(nan64);
1568        let neg_nan16_from_64 = f16::from_f64(neg_nan64);
1569        let nan16_from_32 = f16::from_f32(nan32);
1570        let neg_nan16_from_32 = f16::from_f32(neg_nan32);
1571
1572        assert!(nan64.is_nan() && nan64.is_sign_positive());
1573        assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative());
1574        assert!(nan32.is_nan() && nan32.is_sign_positive());
1575        assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
1576
1577        // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103
1578        assert!(nan32_from_64.is_nan());
1579        assert!(neg_nan32_from_64.is_nan());
1580        assert!(nan16_from_64.is_nan());
1581        assert!(neg_nan16_from_64.is_nan());
1582        assert!(nan16_from_32.is_nan());
1583        assert!(neg_nan16_from_32.is_nan());
1584    }
1585
1586    #[test]
1587    fn test_nan_conversion_to_larger() {
1588        let nan16 = f16::from_bits(0x7C01u16);
1589        let neg_nan16 = f16::from_bits(0xFC01u16);
1590        let nan32 = f32::from_bits(0x7F80_0001u32);
1591        let neg_nan32 = f32::from_bits(0xFF80_0001u32);
1592        let nan32_from_16 = f32::from(nan16);
1593        let neg_nan32_from_16 = f32::from(neg_nan16);
1594        let nan64_from_16 = f64::from(nan16);
1595        let neg_nan64_from_16 = f64::from(neg_nan16);
1596        let nan64_from_32 = f64::from(nan32);
1597        let neg_nan64_from_32 = f64::from(neg_nan32);
1598
1599        assert!(nan16.is_nan() && nan16.is_sign_positive());
1600        assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative());
1601        assert!(nan32.is_nan() && nan32.is_sign_positive());
1602        assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
1603
1604        // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103
1605        assert!(nan32_from_16.is_nan());
1606        assert!(neg_nan32_from_16.is_nan());
1607        assert!(nan64_from_16.is_nan());
1608        assert!(neg_nan64_from_16.is_nan());
1609        assert!(nan64_from_32.is_nan());
1610        assert!(neg_nan64_from_32.is_nan());
1611    }
1612
1613    #[test]
1614    fn test_f16_to_f32() {
1615        let f = f16::from_f32(7.0);
1616        assert_eq!(f.to_f32(), 7.0f32);
1617
1618        // 7.1 is NOT exactly representable in 16-bit, it's rounded
1619        let f = f16::from_f32(7.1);
1620        let diff = (f.to_f32() - 7.1f32).abs();
1621        // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
1622        assert!(diff <= 4.0 * f16::EPSILON.to_f32());
1623
1624        assert_eq!(f16::from_bits(0x0000_0001).to_f32(), 2.0f32.powi(-24));
1625        assert_eq!(f16::from_bits(0x0000_0005).to_f32(), 5.0 * 2.0f32.powi(-24));
1626
1627        assert_eq!(f16::from_bits(0x0000_0001), f16::from_f32(2.0f32.powi(-24)));
1628        assert_eq!(
1629            f16::from_bits(0x0000_0005),
1630            f16::from_f32(5.0 * 2.0f32.powi(-24))
1631        );
1632    }
1633
1634    #[test]
1635    fn test_f16_to_f64() {
1636        let f = f16::from_f64(7.0);
1637        assert_eq!(f.to_f64(), 7.0f64);
1638
1639        // 7.1 is NOT exactly representable in 16-bit, it's rounded
1640        let f = f16::from_f64(7.1);
1641        let diff = (f.to_f64() - 7.1f64).abs();
1642        // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
1643        assert!(diff <= 4.0 * f16::EPSILON.to_f64());
1644
1645        assert_eq!(f16::from_bits(0x0000_0001).to_f64(), 2.0f64.powi(-24));
1646        assert_eq!(f16::from_bits(0x0000_0005).to_f64(), 5.0 * 2.0f64.powi(-24));
1647
1648        assert_eq!(f16::from_bits(0x0000_0001), f16::from_f64(2.0f64.powi(-24)));
1649        assert_eq!(
1650            f16::from_bits(0x0000_0005),
1651            f16::from_f64(5.0 * 2.0f64.powi(-24))
1652        );
1653    }
1654
1655    #[test]
1656    fn test_comparisons() {
1657        let zero = f16::from_f64(0.0);
1658        let one = f16::from_f64(1.0);
1659        let neg_zero = f16::from_f64(-0.0);
1660        let neg_one = f16::from_f64(-1.0);
1661
1662        assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal));
1663        assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal));
1664        assert!(zero == neg_zero);
1665        assert!(neg_zero == zero);
1666        assert!(!(zero != neg_zero));
1667        assert!(!(neg_zero != zero));
1668        assert!(!(zero < neg_zero));
1669        assert!(!(neg_zero < zero));
1670        assert!(zero <= neg_zero);
1671        assert!(neg_zero <= zero);
1672        assert!(!(zero > neg_zero));
1673        assert!(!(neg_zero > zero));
1674        assert!(zero >= neg_zero);
1675        assert!(neg_zero >= zero);
1676
1677        assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater));
1678        assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less));
1679        assert!(!(one == neg_zero));
1680        assert!(!(neg_zero == one));
1681        assert!(one != neg_zero);
1682        assert!(neg_zero != one);
1683        assert!(!(one < neg_zero));
1684        assert!(neg_zero < one);
1685        assert!(!(one <= neg_zero));
1686        assert!(neg_zero <= one);
1687        assert!(one > neg_zero);
1688        assert!(!(neg_zero > one));
1689        assert!(one >= neg_zero);
1690        assert!(!(neg_zero >= one));
1691
1692        assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater));
1693        assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less));
1694        assert!(!(one == neg_one));
1695        assert!(!(neg_one == one));
1696        assert!(one != neg_one);
1697        assert!(neg_one != one);
1698        assert!(!(one < neg_one));
1699        assert!(neg_one < one);
1700        assert!(!(one <= neg_one));
1701        assert!(neg_one <= one);
1702        assert!(one > neg_one);
1703        assert!(!(neg_one > one));
1704        assert!(one >= neg_one);
1705        assert!(!(neg_one >= one));
1706    }
1707
1708    #[test]
1709    #[allow(clippy::erasing_op, clippy::identity_op)]
1710    fn round_to_even_f32() {
1711        // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24
1712        let min_sub = f16::from_bits(1);
1713        let min_sub_f = (-24f32).exp2();
1714        assert_eq!(f16::from_f32(min_sub_f).to_bits(), min_sub.to_bits());
1715        assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits());
1716
1717        // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding)
1718        // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even)
1719        // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up)
1720        assert_eq!(
1721            f16::from_f32(min_sub_f * 0.49).to_bits(),
1722            min_sub.to_bits() * 0
1723        );
1724        assert_eq!(
1725            f16::from_f32(min_sub_f * 0.50).to_bits(),
1726            min_sub.to_bits() * 0
1727        );
1728        assert_eq!(
1729            f16::from_f32(min_sub_f * 0.51).to_bits(),
1730            min_sub.to_bits() * 1
1731        );
1732
1733        // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding)
1734        // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even)
1735        // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up)
1736        assert_eq!(
1737            f16::from_f32(min_sub_f * 1.49).to_bits(),
1738            min_sub.to_bits() * 1
1739        );
1740        assert_eq!(
1741            f16::from_f32(min_sub_f * 1.50).to_bits(),
1742            min_sub.to_bits() * 2
1743        );
1744        assert_eq!(
1745            f16::from_f32(min_sub_f * 1.51).to_bits(),
1746            min_sub.to_bits() * 2
1747        );
1748
1749        // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding)
1750        // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even)
1751        // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up)
1752        assert_eq!(
1753            f16::from_f32(min_sub_f * 2.49).to_bits(),
1754            min_sub.to_bits() * 2
1755        );
1756        assert_eq!(
1757            f16::from_f32(min_sub_f * 2.50).to_bits(),
1758            min_sub.to_bits() * 2
1759        );
1760        assert_eq!(
1761            f16::from_f32(min_sub_f * 2.51).to_bits(),
1762            min_sub.to_bits() * 3
1763        );
1764
1765        assert_eq!(
1766            f16::from_f32(2000.49f32).to_bits(),
1767            f16::from_f32(2000.0).to_bits()
1768        );
1769        assert_eq!(
1770            f16::from_f32(2000.50f32).to_bits(),
1771            f16::from_f32(2000.0).to_bits()
1772        );
1773        assert_eq!(
1774            f16::from_f32(2000.51f32).to_bits(),
1775            f16::from_f32(2001.0).to_bits()
1776        );
1777        assert_eq!(
1778            f16::from_f32(2001.49f32).to_bits(),
1779            f16::from_f32(2001.0).to_bits()
1780        );
1781        assert_eq!(
1782            f16::from_f32(2001.50f32).to_bits(),
1783            f16::from_f32(2002.0).to_bits()
1784        );
1785        assert_eq!(
1786            f16::from_f32(2001.51f32).to_bits(),
1787            f16::from_f32(2002.0).to_bits()
1788        );
1789        assert_eq!(
1790            f16::from_f32(2002.49f32).to_bits(),
1791            f16::from_f32(2002.0).to_bits()
1792        );
1793        assert_eq!(
1794            f16::from_f32(2002.50f32).to_bits(),
1795            f16::from_f32(2002.0).to_bits()
1796        );
1797        assert_eq!(
1798            f16::from_f32(2002.51f32).to_bits(),
1799            f16::from_f32(2003.0).to_bits()
1800        );
1801    }
1802
1803    #[test]
1804    #[allow(clippy::erasing_op, clippy::identity_op)]
1805    fn round_to_even_f64() {
1806        // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24
1807        let min_sub = f16::from_bits(1);
1808        let min_sub_f = (-24f64).exp2();
1809        assert_eq!(f16::from_f64(min_sub_f).to_bits(), min_sub.to_bits());
1810        assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits());
1811
1812        // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding)
1813        // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even)
1814        // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up)
1815        assert_eq!(
1816            f16::from_f64(min_sub_f * 0.49).to_bits(),
1817            min_sub.to_bits() * 0
1818        );
1819        assert_eq!(
1820            f16::from_f64(min_sub_f * 0.50).to_bits(),
1821            min_sub.to_bits() * 0
1822        );
1823        assert_eq!(
1824            f16::from_f64(min_sub_f * 0.51).to_bits(),
1825            min_sub.to_bits() * 1
1826        );
1827
1828        // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding)
1829        // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even)
1830        // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up)
1831        assert_eq!(
1832            f16::from_f64(min_sub_f * 1.49).to_bits(),
1833            min_sub.to_bits() * 1
1834        );
1835        assert_eq!(
1836            f16::from_f64(min_sub_f * 1.50).to_bits(),
1837            min_sub.to_bits() * 2
1838        );
1839        assert_eq!(
1840            f16::from_f64(min_sub_f * 1.51).to_bits(),
1841            min_sub.to_bits() * 2
1842        );
1843
1844        // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding)
1845        // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even)
1846        // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up)
1847        assert_eq!(
1848            f16::from_f64(min_sub_f * 2.49).to_bits(),
1849            min_sub.to_bits() * 2
1850        );
1851        assert_eq!(
1852            f16::from_f64(min_sub_f * 2.50).to_bits(),
1853            min_sub.to_bits() * 2
1854        );
1855        assert_eq!(
1856            f16::from_f64(min_sub_f * 2.51).to_bits(),
1857            min_sub.to_bits() * 3
1858        );
1859
1860        assert_eq!(
1861            f16::from_f64(2000.49f64).to_bits(),
1862            f16::from_f64(2000.0).to_bits()
1863        );
1864        assert_eq!(
1865            f16::from_f64(2000.50f64).to_bits(),
1866            f16::from_f64(2000.0).to_bits()
1867        );
1868        assert_eq!(
1869            f16::from_f64(2000.51f64).to_bits(),
1870            f16::from_f64(2001.0).to_bits()
1871        );
1872        assert_eq!(
1873            f16::from_f64(2001.49f64).to_bits(),
1874            f16::from_f64(2001.0).to_bits()
1875        );
1876        assert_eq!(
1877            f16::from_f64(2001.50f64).to_bits(),
1878            f16::from_f64(2002.0).to_bits()
1879        );
1880        assert_eq!(
1881            f16::from_f64(2001.51f64).to_bits(),
1882            f16::from_f64(2002.0).to_bits()
1883        );
1884        assert_eq!(
1885            f16::from_f64(2002.49f64).to_bits(),
1886            f16::from_f64(2002.0).to_bits()
1887        );
1888        assert_eq!(
1889            f16::from_f64(2002.50f64).to_bits(),
1890            f16::from_f64(2002.0).to_bits()
1891        );
1892        assert_eq!(
1893            f16::from_f64(2002.51f64).to_bits(),
1894            f16::from_f64(2003.0).to_bits()
1895        );
1896    }
1897
1898    #[test]
1899    fn arithmetic() {
1900        assert_eq!(f16::ONE + f16::ONE, f16::from_f32(2.));
1901        assert_eq!(f16::ONE - f16::ONE, f16::ZERO);
1902        assert_eq!(f16::ONE * f16::ONE, f16::ONE);
1903        assert_eq!(f16::from_f32(2.) * f16::from_f32(2.), f16::from_f32(4.));
1904        assert_eq!(f16::ONE / f16::ONE, f16::ONE);
1905        assert_eq!(f16::from_f32(4.) / f16::from_f32(2.), f16::from_f32(2.));
1906        assert_eq!(f16::from_f32(4.) % f16::from_f32(3.), f16::from_f32(1.));
1907    }
1908
1909    #[cfg(feature = "std")]
1910    #[test]
1911    fn formatting() {
1912        let f = f16::from_f32(0.1152344);
1913
1914        assert_eq!(format!("{:.3}", f), "0.115");
1915        assert_eq!(format!("{:.4}", f), "0.1152");
1916        assert_eq!(format!("{:+.4}", f), "+0.1152");
1917        assert_eq!(format!("{:>+10.4}", f), "   +0.1152");
1918
1919        assert_eq!(format!("{:.3?}", f), "0.115");
1920        assert_eq!(format!("{:.4?}", f), "0.1152");
1921        assert_eq!(format!("{:+.4?}", f), "+0.1152");
1922        assert_eq!(format!("{:>+10.4?}", f), "   +0.1152");
1923    }
1924
1925    impl quickcheck::Arbitrary for f16 {
1926        fn arbitrary(g: &mut quickcheck::Gen) -> Self {
1927            f16(u16::arbitrary(g))
1928        }
1929    }
1930
1931    #[quickcheck]
1932    fn qc_roundtrip_f16_f32_is_identity(f: f16) -> bool {
1933        let roundtrip = f16::from_f32(f.to_f32());
1934        if f.is_nan() {
1935            roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
1936        } else {
1937            f.0 == roundtrip.0
1938        }
1939    }
1940
1941    #[quickcheck]
1942    fn qc_roundtrip_f16_f64_is_identity(f: f16) -> bool {
1943        let roundtrip = f16::from_f64(f.to_f64());
1944        if f.is_nan() {
1945            roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
1946        } else {
1947            f.0 == roundtrip.0
1948        }
1949    }
1950}