machina_virtio_device/
bell.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use fuchsia_async::{self as fasync, PacketReceiver, ReceiverRegistration};

use futures::channel::mpsc;
use futures::{Stream, StreamExt, TryStreamExt};
use std::pin::Pin;
use std::task::{Context, Poll};
use thiserror::Error;

// Virtio 1.0 Section 4.1.4.4: notify_off_multiplier is combined with the
// queue_notify_off to derive the Queue Notify address within a BAR for a
// virtqueue:
//
//      cap.offset + queue_notify_off * notify_off_multiplier
//
// Virtio 1.0 Section 4.1.4.4.1: The device MUST either present
// notify_off_multiplier as an even power of 2, or present
// notify_off_multiplier as 0.
//
// By using a multiplier of 4, we use sequential 4b words to notify, ex:
//
//      cap.offset + 0  -> Notify Queue 0
//      cap.offset + 4  -> Notify Queue 1
//      ...
//      cap.offset + 4n -> Notify Queue n
const QUEUE_NOTIFY_MULTIPLIER: usize = 4;

#[derive(Error, Debug, PartialEq, Eq)]
pub enum BellError {
    #[error("Received unexpected packet {0:?}")]
    UnexpectedPacket(zx::Packet),
    #[error("Trap address {0:?} did not map to a queue")]
    BadAddress(zx::GPAddr),
}

#[derive(Debug, Eq, PartialEq)]
enum Packet {
    Bell(zx::GPAddr),
    Other(zx::Packet),
}

// Forwards incoming port packets into a channel.
#[derive(Debug)]
pub struct PortForwarder {
    channel: mpsc::UnboundedSender<Packet>,
}

impl PacketReceiver for PortForwarder {
    fn receive_packet(&self, packet: zx::Packet) {
        let packet = if let zx::PacketContents::GuestBell(bell) = packet.contents() {
            Packet::Bell(bell.addr())
        } else {
            Packet::Other(packet)
        };
        // An unbounded channel should never be full and this PacketReceiver should have been
        // de-registered if the receiver side of this channel were to have gone away, and so no
        // errors should be possible. Even if an error does occur we have no mechanism to return it,
        // so we just unwrap.
        self.channel.unbounded_send(packet).unwrap();
    }
}

/// Wrapper for receiving bell traps from the guest.
///
/// A bell trap from the guest is a signal that a particular virtqueue needs to be processed. Bell
/// traps are delivered by the kernel as packets on a port. This wrapper registers itself on the
/// current executors port and provides an asynchronous [`Stream`] of queues that have been
/// notified.
#[derive(Debug)]
pub struct GuestBellTrap<T = ReceiverRegistration<PortForwarder>> {
    _registration: T,
    channel: mpsc::UnboundedReceiver<Packet>,
    base: zx::GPAddr,
    num_queues: u16,
}

impl GuestBellTrap {
    /// Construct a [`GuestBellTrap`] for the provided guest range.
    ///
    /// If a device is using bell traps then the trap information is in the [`StartInfo`]
    /// (fidl_fuchsia_virtualization_hardware::StartInfo). A reference to the [`zx::Guest`] is only
    /// needed temporarily to register the trap range.
    ///
    /// Note that traps cannot be unregistered and creating a second [`GuestBellTrap`] for the same
    /// range, even after dropping the first one, will fail.
    pub fn new(guest: &zx::Guest, base: zx::GPAddr, len: usize) -> Result<Self, zx::Status> {
        let (tx, rx) = mpsc::unbounded();
        let registration = fasync::EHandle::local()
            .register_receiver(std::sync::Arc::new(PortForwarder { channel: tx }));
        guest.set_trap_bell(base, len, registration.port(), registration.key())?;
        Self::with_registration(base, len, rx, registration)
    }
}

impl<T> GuestBellTrap<T> {
    fn with_registration(
        base: zx::GPAddr,
        len: usize,
        rx: mpsc::UnboundedReceiver<Packet>,
        registration: T,
    ) -> Result<Self, zx::Status> {
        // Ensure base is aligned to the queue multiplier.
        if (base.0 % QUEUE_NOTIFY_MULTIPLIER) != 0 {
            return Err(zx::Status::INVALID_ARGS);
        }
        let num_queues = (len / QUEUE_NOTIFY_MULTIPLIER) as u16;
        if num_queues as usize * QUEUE_NOTIFY_MULTIPLIER != len {
            return Err(zx::Status::INVALID_ARGS);
        }
        // Needs to be at least one queue.
        if num_queues == 0 {
            return Err(zx::Status::INVALID_ARGS);
        }
        Ok(GuestBellTrap { _registration: registration, channel: rx, base, num_queues })
    }

    /// Convert a guest address to a queue.
    ///
    /// Returns a none if the provided `addr` is not within the trap range. Otherwise if a queue is
    /// returned the caller still needs to validate that it is for a queue that was actually
    /// configured and exists.
    pub fn queue_for_addr(&self, addr: zx::GPAddr) -> Option<u16> {
        let queue =
            ((addr.0.checked_sub(self.base.0)?) / QUEUE_NOTIFY_MULTIPLIER).try_into().ok()?;
        if queue >= self.num_queues {
            None
        } else {
            Some(queue)
        }
    }
}

impl<T: Unpin> GuestBellTrap<T> {
    /// Consume all traps by notifying the provided [`Device`](crate::Device).
    ///
    /// This method will only yield a value if there is an error, either due to the stream ending or
    /// an invalid queue.
    pub async fn complete<'a, N>(
        self,
        device: &crate::Device<'a, N>,
    ) -> Result<(), crate::DeviceError> {
        self.err_into()
            .try_for_each(|queue| futures::future::ready(device.notify_queue(queue as u16)))
            .await
    }

    /// [`complete`] a [`GuestBellTrap`] or block forever.
    ///
    /// Bell traps are not always provided to a device and this provides a unified way of
    /// interacting with them. It will either run [`complete`] on the provided bell trap, or block
    /// permanently. In this way it is similar to [`complete`] in that it only resolves to a value
    /// on error, and the absence of a bell trap is not considered an error.
    pub async fn complete_or_pending<'a, N>(
        maybe_trap: Option<Self>,
        device: &crate::Device<'a, N>,
    ) -> Result<(), crate::DeviceError> {
        match maybe_trap {
            Some(bell) => bell.complete(device).await,
            None => futures::future::pending().await,
        }
    }
}

impl<T: Unpin> Stream for GuestBellTrap<T> {
    type Item = Result<u16, BellError>;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        self.channel.poll_next_unpin(cx).map(|maybe_packet| {
            // We do not expect our channel to get closed and for this to be a None, but if it is
            // there is no choice but to propagate it up to have this stream get closed.
            let packet = maybe_packet?;
            match packet {
                Packet::Bell(addr) => {
                    Some(self.queue_for_addr(addr).ok_or(BellError::BadAddress(addr)))
                }
                Packet::Other(packet) => Some(Err(BellError::UnexpectedPacket(packet))),
            }
        })
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use futures::FutureExt;
    #[test]
    fn trap_size() {
        // Base must be aligned.
        assert_eq!(
            GuestBellTrap::with_registration(zx::GPAddr(3), 4, mpsc::unbounded().1, ()).err(),
            Some(zx::Status::INVALID_ARGS)
        );
        assert_eq!(
            GuestBellTrap::with_registration(zx::GPAddr(1), 4, mpsc::unbounded().1, ()).err(),
            Some(zx::Status::INVALID_ARGS)
        );

        // Length may not be zero.
        assert_eq!(
            GuestBellTrap::with_registration(zx::GPAddr(8), 0, mpsc::unbounded().1, ()).err(),
            Some(zx::Status::INVALID_ARGS)
        );

        // Length must be a multiple.
        assert_eq!(
            GuestBellTrap::with_registration(zx::GPAddr(8), 1, mpsc::unbounded().1, ()).err(),
            Some(zx::Status::INVALID_ARGS)
        );
        assert_eq!(
            GuestBellTrap::with_registration(zx::GPAddr(8), 3, mpsc::unbounded().1, ()).err(),
            Some(zx::Status::INVALID_ARGS)
        );
        assert_eq!(
            GuestBellTrap::with_registration(zx::GPAddr(8), 9, mpsc::unbounded().1, ()).err(),
            Some(zx::Status::INVALID_ARGS)
        );
        assert_eq!(
            GuestBellTrap::with_registration(zx::GPAddr(8), 42, mpsc::unbounded().1, ()).err(),
            Some(zx::Status::INVALID_ARGS)
        );

        assert!(
            GuestBellTrap::with_registration(zx::GPAddr(64), 12, mpsc::unbounded().1, ()).is_ok()
        );
    }

    #[test]
    fn queue_conversion() {
        let bell =
            GuestBellTrap::with_registration(zx::GPAddr(80), 12, mpsc::unbounded().1, ()).unwrap();

        // Too low to be in the range.
        assert_eq!(bell.queue_for_addr(zx::GPAddr(79)), None);
        assert_eq!(bell.queue_for_addr(zx::GPAddr(76)), None);

        // Any access in the range should map to the queue.
        assert_eq!(bell.queue_for_addr(zx::GPAddr(80)), Some(0));
        assert_eq!(bell.queue_for_addr(zx::GPAddr(81)), Some(0));
        assert_eq!(bell.queue_for_addr(zx::GPAddr(83)), Some(0));

        // All queues should map.
        assert_eq!(bell.queue_for_addr(zx::GPAddr(84)), Some(1));
        assert_eq!(bell.queue_for_addr(zx::GPAddr(88)), Some(2));
        assert_eq!(bell.queue_for_addr(zx::GPAddr(91)), Some(2));

        // Too high to be in the range.
        assert_eq!(bell.queue_for_addr(zx::GPAddr(92)), None);
        assert_eq!(bell.queue_for_addr(zx::GPAddr(94)), None);
        assert_eq!(bell.queue_for_addr(zx::GPAddr(128)), None);
    }

    #[fasync::run_until_stalled(test)]
    async fn packet_stream() {
        let (tx, rx) = mpsc::unbounded();

        let bell = GuestBellTrap::with_registration(zx::GPAddr(64), 12, rx, ()).unwrap();

        // Put some valid and invalid packets in.
        tx.unbounded_send(Packet::Bell(zx::GPAddr(64))).unwrap();
        tx.unbounded_send(Packet::Bell(zx::GPAddr(68))).unwrap();
        tx.unbounded_send(Packet::Bell(zx::GPAddr(100))).unwrap();

        let mut stream = bell.peekable();
        // There should be items waiting.
        assert!(Pin::new(&mut stream).peek().now_or_never().is_some());

        // Read off the valid and invalid items.
        assert_eq!(stream.next().await, Some(Ok(0)));
        assert_eq!(stream.next().await, Some(Ok(1)));
        assert_eq!(stream.next().await, Some(Err(BellError::BadAddress(zx::GPAddr(100)))));

        // Should be nothing else waiting.
        assert!(Pin::new(&mut stream).peek().now_or_never().is_none());
    }
}