machina_virtio_device/bell.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use fuchsia_async::{self as fasync, PacketReceiver, ReceiverRegistration};
use futures::channel::mpsc;
use futures::{Stream, StreamExt, TryStreamExt};
use std::pin::Pin;
use std::task::{Context, Poll};
use thiserror::Error;
// Virtio 1.0 Section 4.1.4.4: notify_off_multiplier is combined with the
// queue_notify_off to derive the Queue Notify address within a BAR for a
// virtqueue:
//
// cap.offset + queue_notify_off * notify_off_multiplier
//
// Virtio 1.0 Section 4.1.4.4.1: The device MUST either present
// notify_off_multiplier as an even power of 2, or present
// notify_off_multiplier as 0.
//
// By using a multiplier of 4, we use sequential 4b words to notify, ex:
//
// cap.offset + 0 -> Notify Queue 0
// cap.offset + 4 -> Notify Queue 1
// ...
// cap.offset + 4n -> Notify Queue n
const QUEUE_NOTIFY_MULTIPLIER: usize = 4;
#[derive(Error, Debug, PartialEq, Eq)]
pub enum BellError {
#[error("Received unexpected packet {0:?}")]
UnexpectedPacket(zx::Packet),
#[error("Trap address {0:?} did not map to a queue")]
BadAddress(zx::GPAddr),
}
#[derive(Debug, Eq, PartialEq)]
enum Packet {
Bell(zx::GPAddr),
Other(zx::Packet),
}
// Forwards incoming port packets into a channel.
#[derive(Debug)]
pub struct PortForwarder {
channel: mpsc::UnboundedSender<Packet>,
}
impl PacketReceiver for PortForwarder {
fn receive_packet(&self, packet: zx::Packet) {
let packet = if let zx::PacketContents::GuestBell(bell) = packet.contents() {
Packet::Bell(bell.addr())
} else {
Packet::Other(packet)
};
// An unbounded channel should never be full and this PacketReceiver should have been
// de-registered if the receiver side of this channel were to have gone away, and so no
// errors should be possible. Even if an error does occur we have no mechanism to return it,
// so we just unwrap.
self.channel.unbounded_send(packet).unwrap();
}
}
/// Wrapper for receiving bell traps from the guest.
///
/// A bell trap from the guest is a signal that a particular virtqueue needs to be processed. Bell
/// traps are delivered by the kernel as packets on a port. This wrapper registers itself on the
/// current executors port and provides an asynchronous [`Stream`] of queues that have been
/// notified.
#[derive(Debug)]
pub struct GuestBellTrap<T = ReceiverRegistration<PortForwarder>> {
_registration: T,
channel: mpsc::UnboundedReceiver<Packet>,
base: zx::GPAddr,
num_queues: u16,
}
impl GuestBellTrap {
/// Construct a [`GuestBellTrap`] for the provided guest range.
///
/// If a device is using bell traps then the trap information is in the [`StartInfo`]
/// (fidl_fuchsia_virtualization_hardware::StartInfo). A reference to the [`zx::Guest`] is only
/// needed temporarily to register the trap range.
///
/// Note that traps cannot be unregistered and creating a second [`GuestBellTrap`] for the same
/// range, even after dropping the first one, will fail.
pub fn new(guest: &zx::Guest, base: zx::GPAddr, len: usize) -> Result<Self, zx::Status> {
let (tx, rx) = mpsc::unbounded();
let registration = fasync::EHandle::local()
.register_receiver(std::sync::Arc::new(PortForwarder { channel: tx }));
guest.set_trap_bell(base, len, registration.port(), registration.key())?;
Self::with_registration(base, len, rx, registration)
}
}
impl<T> GuestBellTrap<T> {
fn with_registration(
base: zx::GPAddr,
len: usize,
rx: mpsc::UnboundedReceiver<Packet>,
registration: T,
) -> Result<Self, zx::Status> {
// Ensure base is aligned to the queue multiplier.
if (base.0 % QUEUE_NOTIFY_MULTIPLIER) != 0 {
return Err(zx::Status::INVALID_ARGS);
}
let num_queues = (len / QUEUE_NOTIFY_MULTIPLIER) as u16;
if num_queues as usize * QUEUE_NOTIFY_MULTIPLIER != len {
return Err(zx::Status::INVALID_ARGS);
}
// Needs to be at least one queue.
if num_queues == 0 {
return Err(zx::Status::INVALID_ARGS);
}
Ok(GuestBellTrap { _registration: registration, channel: rx, base, num_queues })
}
/// Convert a guest address to a queue.
///
/// Returns a none if the provided `addr` is not within the trap range. Otherwise if a queue is
/// returned the caller still needs to validate that it is for a queue that was actually
/// configured and exists.
pub fn queue_for_addr(&self, addr: zx::GPAddr) -> Option<u16> {
let queue =
((addr.0.checked_sub(self.base.0)?) / QUEUE_NOTIFY_MULTIPLIER).try_into().ok()?;
if queue >= self.num_queues {
None
} else {
Some(queue)
}
}
}
impl<T: Unpin> GuestBellTrap<T> {
/// Consume all traps by notifying the provided [`Device`](crate::Device).
///
/// This method will only yield a value if there is an error, either due to the stream ending or
/// an invalid queue.
pub async fn complete<'a, N>(
self,
device: &crate::Device<'a, N>,
) -> Result<(), crate::DeviceError> {
self.err_into()
.try_for_each(|queue| futures::future::ready(device.notify_queue(queue as u16)))
.await
}
/// [`complete`] a [`GuestBellTrap`] or block forever.
///
/// Bell traps are not always provided to a device and this provides a unified way of
/// interacting with them. It will either run [`complete`] on the provided bell trap, or block
/// permanently. In this way it is similar to [`complete`] in that it only resolves to a value
/// on error, and the absence of a bell trap is not considered an error.
pub async fn complete_or_pending<'a, N>(
maybe_trap: Option<Self>,
device: &crate::Device<'a, N>,
) -> Result<(), crate::DeviceError> {
match maybe_trap {
Some(bell) => bell.complete(device).await,
None => futures::future::pending().await,
}
}
}
impl<T: Unpin> Stream for GuestBellTrap<T> {
type Item = Result<u16, BellError>;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
self.channel.poll_next_unpin(cx).map(|maybe_packet| {
// We do not expect our channel to get closed and for this to be a None, but if it is
// there is no choice but to propagate it up to have this stream get closed.
let packet = maybe_packet?;
match packet {
Packet::Bell(addr) => {
Some(self.queue_for_addr(addr).ok_or(BellError::BadAddress(addr)))
}
Packet::Other(packet) => Some(Err(BellError::UnexpectedPacket(packet))),
}
})
}
}
#[cfg(test)]
mod tests {
use super::*;
use futures::FutureExt;
#[test]
fn trap_size() {
// Base must be aligned.
assert_eq!(
GuestBellTrap::with_registration(zx::GPAddr(3), 4, mpsc::unbounded().1, ()).err(),
Some(zx::Status::INVALID_ARGS)
);
assert_eq!(
GuestBellTrap::with_registration(zx::GPAddr(1), 4, mpsc::unbounded().1, ()).err(),
Some(zx::Status::INVALID_ARGS)
);
// Length may not be zero.
assert_eq!(
GuestBellTrap::with_registration(zx::GPAddr(8), 0, mpsc::unbounded().1, ()).err(),
Some(zx::Status::INVALID_ARGS)
);
// Length must be a multiple.
assert_eq!(
GuestBellTrap::with_registration(zx::GPAddr(8), 1, mpsc::unbounded().1, ()).err(),
Some(zx::Status::INVALID_ARGS)
);
assert_eq!(
GuestBellTrap::with_registration(zx::GPAddr(8), 3, mpsc::unbounded().1, ()).err(),
Some(zx::Status::INVALID_ARGS)
);
assert_eq!(
GuestBellTrap::with_registration(zx::GPAddr(8), 9, mpsc::unbounded().1, ()).err(),
Some(zx::Status::INVALID_ARGS)
);
assert_eq!(
GuestBellTrap::with_registration(zx::GPAddr(8), 42, mpsc::unbounded().1, ()).err(),
Some(zx::Status::INVALID_ARGS)
);
assert!(
GuestBellTrap::with_registration(zx::GPAddr(64), 12, mpsc::unbounded().1, ()).is_ok()
);
}
#[test]
fn queue_conversion() {
let bell =
GuestBellTrap::with_registration(zx::GPAddr(80), 12, mpsc::unbounded().1, ()).unwrap();
// Too low to be in the range.
assert_eq!(bell.queue_for_addr(zx::GPAddr(79)), None);
assert_eq!(bell.queue_for_addr(zx::GPAddr(76)), None);
// Any access in the range should map to the queue.
assert_eq!(bell.queue_for_addr(zx::GPAddr(80)), Some(0));
assert_eq!(bell.queue_for_addr(zx::GPAddr(81)), Some(0));
assert_eq!(bell.queue_for_addr(zx::GPAddr(83)), Some(0));
// All queues should map.
assert_eq!(bell.queue_for_addr(zx::GPAddr(84)), Some(1));
assert_eq!(bell.queue_for_addr(zx::GPAddr(88)), Some(2));
assert_eq!(bell.queue_for_addr(zx::GPAddr(91)), Some(2));
// Too high to be in the range.
assert_eq!(bell.queue_for_addr(zx::GPAddr(92)), None);
assert_eq!(bell.queue_for_addr(zx::GPAddr(94)), None);
assert_eq!(bell.queue_for_addr(zx::GPAddr(128)), None);
}
#[fasync::run_until_stalled(test)]
async fn packet_stream() {
let (tx, rx) = mpsc::unbounded();
let bell = GuestBellTrap::with_registration(zx::GPAddr(64), 12, rx, ()).unwrap();
// Put some valid and invalid packets in.
tx.unbounded_send(Packet::Bell(zx::GPAddr(64))).unwrap();
tx.unbounded_send(Packet::Bell(zx::GPAddr(68))).unwrap();
tx.unbounded_send(Packet::Bell(zx::GPAddr(100))).unwrap();
let mut stream = bell.peekable();
// There should be items waiting.
assert!(Pin::new(&mut stream).peek().now_or_never().is_some());
// Read off the valid and invalid items.
assert_eq!(stream.next().await, Some(Ok(0)));
assert_eq!(stream.next().await, Some(Ok(1)));
assert_eq!(stream.next().await, Some(Err(BellError::BadAddress(zx::GPAddr(100)))));
// Should be nothing else waiting.
assert!(Pin::new(&mut stream).peek().now_or_never().is_none());
}
}