1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Streams always signal exhaustion with `None` return values. A stream epitaph can be used when
//! a specific value is desired as the last item returned by a stream before it is exhausted.
//!
//! Example usecase: often streams will be used without having direct access to the stream itself
//! such as from a `streammap::StreamMap` or a `futures::stream::FuturesUnordered`. Occasionally,
//! it is necessary to perform some cleanup procedure outside of a stream when it is exhausted. An
//! `epitaph` can be used to uniquely identify which stream has ended within a collection of
//! streams.
use core::pin::Pin;
use core::task::{Context, Poll};
use futures::stream::{FusedStream, Stream};
use futures::Future;
use pin_project::pin_project;
mod future_map;
mod one_or_many;
mod short_circuit;
mod stream_map;
pub use future_map::FutureMap;
pub use one_or_many::OneOrMany;
pub use short_circuit::ShortCircuit;
pub use stream_map::StreamMap;
/// Values returned from a stream with an epitaph are of type `StreamItem`.
#[derive(Debug, PartialEq)]
pub enum StreamItem<T, E> {
/// Item polled from the underlying `Stream`
Item(T),
/// Epitaph value returned after the underlying `Stream` is exhausted.
Epitaph(E),
}
/// A `Stream` that returns the values of the wrapped stream until the wrapped stream is exhausted.
/// Then it returns a single epitaph value before being exhausted
#[cfg_attr(test, derive(Debug))]
pub struct StreamWithEpitaph<S, E> {
inner: S,
epitaph: Option<E>,
}
impl<S, E> StreamWithEpitaph<S, E> {
/// Provide immutable access to the inner stream.
/// This is safe as if the stream were being polled, we would not be able to access a
/// reference to self to pass to this method.
pub fn inner(&self) -> &S {
&self.inner
}
/// Provide mutable access to the inner stream.
/// This is safe as if the stream were being polled, we would not be able to access a mutable
/// reference to self to pass to this method.
pub fn inner_mut(&mut self) -> &mut S {
&mut self.inner
}
}
// The `Unpin` bounds are not strictly necessary, but make for a more convenient
// implementation. The bounds can be relaxed if !Unpin support is desired.
impl<S, T, E> Stream for StreamWithEpitaph<S, E>
where
S: Stream<Item = T> + Unpin,
E: Unpin,
T: Unpin,
{
type Item = StreamItem<T, E>;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
if self.epitaph.is_none() {
return Poll::Ready(None);
}
match Pin::new(&mut self.inner).poll_next(cx) {
Poll::Ready(None) => {
let this = self.get_mut();
let ep = this.epitaph.take().map(StreamItem::Epitaph);
assert!(ep.is_some(), "epitaph must be present if stream is not terminated");
Poll::Ready(ep)
}
Poll::Ready(item) => Poll::Ready(item.map(StreamItem::Item)),
Poll::Pending => Poll::Pending,
}
}
}
impl<S, T, E> FusedStream for StreamWithEpitaph<S, E>
where
S: Stream<Item = T> + FusedStream + Unpin,
E: Unpin,
T: Unpin,
{
fn is_terminated(&self) -> bool {
self.epitaph.is_none()
}
}
/// Extension trait to allow for easy creation of a `StreamWithEpitaph` from a `Stream`.
pub trait WithEpitaph: Sized {
/// Map this stream to one producing a `StreamItem::Item` value for each item of the stream
/// followed by a single `StreamItem::Epitaph` value with the provided `epitaph`.
fn with_epitaph<E>(self, epitaph: E) -> StreamWithEpitaph<Self, E>;
}
impl<T> WithEpitaph for T
where
T: Stream,
{
fn with_epitaph<E>(self, epitaph: E) -> StreamWithEpitaph<T, E> {
StreamWithEpitaph { inner: self, epitaph: Some(epitaph) }
}
}
/// A Stream where each yielded item is tagged with a uniform key
/// Items yielded are (K, St::Item)
///
/// Tagged streams can be easily created by using the `.tagged()` function on the `WithTag` trait.
/// The stream produced by:
/// stream.tagged(k)
/// is equivalent to that created by
/// stream.map(move |v|, (k.clone(), v)
/// BUT the Tagged type combinator provides a statically nameable type that can easily be expressed
/// in type signatures such as `IndexedStreams` below.
#[cfg_attr(test, derive(Debug))]
#[pin_project]
pub struct Tagged<K, St> {
tag: K,
#[pin]
stream: St,
}
impl<K: Clone, St> Tagged<K, St> {
/// Get a clone of the tag associated with this `Stream`.
pub fn tag(&self) -> K {
self.tag.clone()
}
}
/// Extension trait to allow for easy creation of a `Tagged` stream from a `Stream`.
pub trait WithTag: Sized {
/// Produce a new stream from this one which yields item tupled with a constant tag
fn tagged<T>(self, tag: T) -> Tagged<T, Self>;
}
impl<St: Sized> WithTag for St {
fn tagged<T>(self, tag: T) -> Tagged<T, Self> {
Tagged { tag, stream: self }
}
}
impl<K: Clone, Fut: Future> Future for Tagged<K, Fut> {
type Output = (K, Fut::Output);
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let k = self.tag.clone();
match self.project().stream.poll(cx) {
Poll::Ready(out) => Poll::Ready((k, out)),
Poll::Pending => Poll::Pending,
}
}
}
impl<K: Clone, St: Stream> Stream for Tagged<K, St> {
type Item = (K, St::Item);
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let k = self.tag.clone();
match self.project().stream.poll_next(cx) {
Poll::Ready(Some(item)) => Poll::Ready(Some((k, item))),
Poll::Ready(None) => Poll::Ready(None),
Poll::Pending => Poll::Pending,
}
}
}
/// Convenient alias for a collection of Streams indexed by key where each message is tagged and
/// stream termination is notified by key. This is especially useful for maintaining a collection
/// of fidl client request streams, and being notified when each terminates
pub type IndexedStreams<K, St> = StreamMap<K, StreamWithEpitaph<Tagged<K, St>, K>>;
#[cfg(test)]
mod test {
//! We validate the behavior of the StreamMap stream by enumerating all possible external
//! events, and then generating permutations of valid sequences of those events. These model
//! the possible executions sequences the stream could go through in program execution. We
//! then assert that:
//! a) At all points during execution, all invariants are held
//! b) The final result is as expected
//!
//! In this case, the invariants are:
//! * If the map is empty, it is pending
//! * If all streams are pending, the map is pending
//! * otherwise the map is ready
//!
//! The result is:
//! * All test messages have been injected
//! * All test messages have been yielded
//! * All test streams have terminated
//! * No event is yielded with a given key after the stream for that key has terminated
//!
//! Together these show:
//! * Progress is always eventually made - the Stream cannot be stalled
//! * All inserted elements will eventually be yielded
//! * Elements are never duplicated
use super::*;
use core::hash::Hash;
use fuchsia_async as fasync;
use futures::channel::mpsc;
use futures::future::ready;
use futures::stream::{empty, iter, once, Empty, StreamExt};
use proptest::prelude::*;
use std::collections::HashSet;
use std::fmt::Debug;
#[fasync::run_until_stalled(test)]
async fn empty_stream_returns_epitaph_only() {
let s: Empty<i32> = empty();
let s = s.with_epitaph(0i64);
let actual: Vec<_> = s.collect().await;
let expected = vec![StreamItem::Epitaph(0i64)];
assert_eq!(actual, expected);
}
#[fasync::run_until_stalled(test)]
async fn populated_stream_returns_items_and_epitaph() {
let s = iter(0i32..3).fuse().with_epitaph(3i64);
let actual: Vec<_> = StreamExt::collect::<Vec<_>>(s).await;
let expected = vec![
StreamItem::Item(0),
StreamItem::Item(1),
StreamItem::Item(2),
StreamItem::Epitaph(3i64),
];
assert_eq!(actual, expected);
}
#[fasync::run_until_stalled(test)]
async fn stream_is_terminated_after_end() {
let mut s = once(ready(0i32)).with_epitaph(3i64);
assert_eq!(s.next().await, Some(StreamItem::Item(0)));
assert_eq!(s.next().await, Some(StreamItem::Epitaph(3)));
assert!(s.is_terminated());
}
// We validate the behavior of the StreamMap stream by enumerating all possible external
// events, and then generating permutations of valid sequences of those events. These model
// the possible executions sequences the stream could go through in program execution. We
// then assert that:
// a) At all points during execution, all invariants are held
// b) The final result is as expected
//
// In this case, the invariants are:
// * If the map is empty, it is pending
// * If all streams are pending, the map is pending
// * otherwise the map is ready
//
// The result is:
// * All test messages have been injected
// * All test messages have been yielded
// * All test streams have terminated
// * No event is yielded with a given key after the stream for that key has terminated
//
// Together these show:
// * Progress is always eventually made - the Stream cannot be stalled
// * All inserted elements will eventually be yielded
// * Elements are never duplicated
/// Possible actions to take in evaluating the stream
enum Event<K> {
/// Insert a new request stream
InsertStream(K, mpsc::Receiver<Result<u64, ()>>),
/// Send a new request
SendRequest(K, mpsc::Sender<Result<u64, ()>>),
/// Close an existing request stream
CloseStream(K, mpsc::Sender<Result<u64, ()>>),
/// Schedule the executor. The executor will only run the task if awoken, otherwise it will
/// do nothing
Execute,
}
impl<K: Debug> Debug for Event<K> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Event::InsertStream(k, _) => write!(f, "InsertStream({:?})", k),
Event::SendRequest(k, _) => write!(f, "SendRequest({:?})", k),
Event::CloseStream(k, _) => write!(f, "CloseStream({:?})", k),
Event::Execute => write!(f, "Execute"),
}
}
}
fn stream_events<K: Clone + Eq + Hash>(key: K) -> Vec<Event<K>> {
// Ensure that the channel is big enough to always handle all the Sends we make
let (sender, receiver) = mpsc::channel::<Result<u64, ()>>(10);
vec![
Event::InsertStream(key.clone(), receiver),
Event::SendRequest(key.clone(), sender.clone()),
Event::CloseStream(key, sender),
]
}
/// Determine how many events are sent on open channels (a channel is open if it has not been
/// closed, even if it has not yet been inserted into the StreamMap)
fn expected_yield<K: Eq + Hash>(events: &Vec<Event<K>>) -> usize {
events
.iter()
.fold((HashSet::new(), 0), |(mut terminated, closed), event| match event {
Event::CloseStream(k, _) => {
let _: bool = terminated.insert(k);
(terminated, closed)
}
Event::SendRequest(k, _) if !terminated.contains(k) => (terminated, closed + 1),
_ => (terminated, closed),
})
.1
}
/// Strategy that produces random permutations of a set of events, corresponding to inserting,
/// sending and completing up to n different streams in random order, also interspersed with
/// running the executor
fn execution_sequences(n: u64) -> impl Strategy<Value = Vec<Event<u64>>> {
fn generate_events(n: u64) -> Vec<Event<u64>> {
let mut events = (0..n).flat_map(|n| stream_events(n)).collect::<Vec<_>>();
events.extend(std::iter::repeat_with(|| Event::Execute).take((n * 3) as usize));
events
}
// We want to produce random permutations of these events
(0..n).prop_map(generate_events).prop_shuffle()
}
proptest! {
#[test]
fn test_invariants(mut execution in execution_sequences(4)) {
let expected = expected_yield(&execution);
let expected_count:u64 = execution.iter()
.filter(|event| match event {
Event::CloseStream(_, _) => true,
_ => false,
}).count() as u64;
// Add enough execution events to ensure we will complete, no matter the order
execution.extend(std::iter::repeat_with(|| Event::Execute).take((expected_count * 3) as usize));
let (waker, count) = futures_test::task::new_count_waker();
let send_waker = futures_test::task::noop_waker();
let mut streams = StreamMap::empty();
let mut next_wake = 0;
let mut yielded = 0;
let mut inserted = 0;
let mut closed = 0;
let mut events = vec![];
for event in execution {
match event {
Event::InsertStream(key, stream) => {
assert_matches::assert_matches!(streams.insert(key, stream.tagged(key).with_epitaph(key)), None);
// StreamMap does *not* wake on inserting new streams, matching the
// behavior of streams::SelectAll. The client *must* arrange for it to be
// polled again after a stream is inserted; we model that here by forcing a
// wake up
next_wake = count.get();
}
Event::SendRequest(_, mut sender) => {
if let Poll::Ready(Ok(())) = sender.poll_ready(&mut Context::from_waker(&send_waker)) {
prop_assert_eq!(sender.start_send(Ok(1)), Ok(()));
inserted = inserted + 1;
}
}
Event::CloseStream(_, mut stream) => {
stream.close_channel();
}
Event::Execute if count.get() >= next_wake => {
match Pin::new(&mut streams.next()).poll(&mut Context::from_waker(&waker)) {
Poll::Ready(Some(StreamItem::Item((k, v)))) => {
events.push(StreamItem::Item((k, v)));
yielded = yielded + 1;
// Ensure that we wake up next time;
next_wake = count.get();
// Invariant: stream(k) must be in the map
prop_assert!(streams.contains_key(&k))
}
Poll::Ready(Some(StreamItem::Epitaph(k))) => {
events.push(StreamItem::Epitaph(k));
closed = closed + 1;
// Ensure that we wake up next time;
next_wake = count.get();
// stream(k) is now terminated, but until polled again (Yielding
// `None`), will still be in the map
}
Poll::Ready(None) => {
// the Stream impl for StreamMap never completes
unreachable!()
}
Poll::Pending => {
next_wake = count.get() + 1;
}
};
}
Event::Execute => (),
}
}
prop_assert_eq!(inserted, expected, "All expected requests inserted");
prop_assert_eq!((next_wake, count.get(), yielded), (next_wake, count.get(), expected), "All expected requests yielded");
prop_assert_eq!(closed, expected_count, "All streams closed");
let not_terminated =
|key: u64, e: &StreamItem<(u64, Result<u64, ()>), u64>| match e {
StreamItem::Epitaph(k) if *k == key => false,
_ => true,
};
let event_of =
|key: u64, e: &StreamItem<(u64, Result<u64, ()>), u64>| match e {
StreamItem::Item((k, _)) if *k == key => true,
_ => false,
};
let all_keys = 0..expected_count;
for k in all_keys {
prop_assert!(!streams.contains_key(&k), "All streams should now have been removed");
prop_assert!(!events.iter().skip_while(|e| not_terminated(k, e)).any(|e| event_of(k, e)), "No events should have been yielded from a stream after it terminated");
}
}
}
}