wlan_hw_sim/event/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Event handling and composition for interacting with the WLAN tap driver.
//!
//! This module provides APIs for writing tests that must handle and interact with events from the
//! WLAN tap driver. The primary mechanism for this are event handlers, which can be composed in
//! sophisticated ways to route and act upon events. The hardware simulator test harness forwards
//! events into these handlers.
//!
//! Event handlers are described by the [`Handler`] trait. Much like the standard [`Iterator`]
//! trait, [`Handler`] is composable. Event handlers are constructed by composing [`Handler`]s
//! together via combinators. [`Handler`] has many associated functions that are analogous to those
//! found in [`Iterator`], [`Option`], and [`Result`] and follows many of the same patterns. The
//! execution of handlers and routing of events is largely controlled by whether or not handlers
//! match an event: see [`Handled`], which resembles [`Option`].
//!
//! The primary method of the [`Handler`] trait is [`call`][`Handler::call`], which accepts an
//! exclusive reference to state and a shared reference to an event and must react to this event
//! and return a [`Handled`] that describes whether or not the event was matched and, if so, what
//! the output is.
//!
//! # Examples
//!
//! [`Handler`] combinators can be used to construct complex event handlers in a declarative way.
//! The following non-trivial example constructs an event handler that examines the status code of
//! an association response frame. The handler also enforces ordering: action frames may arrive at
//! any time, but any other management frame must follow the association response frame.
//!
//! ```rust,ignore
//! let mut handler = event::on_transmit(branch::or(( // Only handle transmit events.
//! event::extract(|_: Buffered<ActionFrame<false>>| {}), // Allow (ignore) action frames...
//! event::until_first_match(branch::or(( // ...or match only once.
//! event::extract(|frame: Buffered<AssocRespFrame>| { // Examine response frames...
//! let frame = frame.get();
//! assert_eq!(
//! { frame.assoc_resp_hdr.status_code },
//! fidl_ieee80211::StatusCode::Success.into(),
//! );
//! })
//! .and(event::once(|_, _| sender.send(()).unwrap())), // ...and send a completion signal...
//! event::extract(|_: Buffered<MgmtFrame>| {
//! panic!("unexpected management frame"); // ...or panic if a management frame arrives instead.
//! }),
//! ))),
//! )));
//! ```
//!
//! See existing tests for more examples of constructing event handlers.
//!
//! [`Handled`]: crate::event::Handled
//! [`Handler`]: crate::event::Handler
//! [`Handler::call`]: crate::event::Handler::call
//! [`Iterator`]: core::iter::Iterator
//! [`Option`]: core::option::Option
mod convert;
mod extract;
mod filter;
pub mod action;
pub mod branch;
pub mod buffered;
use anyhow::Context as _;
use std::convert::Infallible;
use std::fmt::{Debug, Display};
use std::marker::PhantomData;
use std::ops::{ControlFlow, RangeBounds};
use std::thread;
pub use crate::event::convert::Try;
pub use crate::event::extract::{extract, extract_and_match, Stateful};
pub use crate::event::filter::{
on_join_bss, on_scan, on_set_channel, on_set_country, on_start_mac, on_transmit,
};
pub use crate::event::Handled::{Matched, Unmatched};
// The WLAN tap `WlanSoftmacStart` function has no parameters and so, unlike other events, there is
// no corresponding FIDL type to import. This zero-sized type represents this event. For example,
// the bound `Handler<(), StartMacArgs>` represents a handler type that reacts to this event.
#[derive(Clone, Copy, Debug)]
pub struct StartMacArgs;
/// A composable event handler.
///
/// This trait describes types that react to WLAN tap driver events. Such types can be composed in
/// a similar manner to the standard [`Iterator`] trait using adapter and combinator functions.
/// Most `Handler` functions resemble those found in [`Iterator`], [`Option`], and [`Result`].
///
/// The primary method implemented by event handlers is [`call`][`Handler::call`], which receives
/// an exclusive reference to some state (of the input type `S`) and a shared reference to some
/// event (of the input type `E`) and returns a [`Handled`] that indicates whether or not the
/// handler matched the event and, if so, provides some output (of the type
/// [`Output`][`Handler::Output`]).
///
/// The matching of a handler with an event controls the routing and behavior of that handler. In
/// particular, branching combinators like [`and`], [`or`], [`try_and_then`], etc. execute handlers
/// based on whether or not the composed handlers have matched a given event.
///
/// [`and`]: crate::event::Handler::and
/// [`Handled`]: crate::event::Handled
/// [`Handler::call`]: crate::event::Handler::call
/// [`Handler::Output`]: crate::event::Handler::Output
/// [`Iterator`]: core::iter::Iterator
/// [`Option`]: core::option::Option
/// [`or`]: crate::event::Handler::or
/// [`Result`]: core::option::Result
/// [`try_and_then`]: crate::event::Handler::try_and_then
pub trait Handler<S, E> {
/// The output of the event handler when it is matched.
type Output;
/// Reacts to an event with some state.
///
/// Returns a [`Handled`] that indicates whether or not the handler matched the given event.
///
/// [`Handled`]: crate::event::Handled
fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output>;
/// Maps the output of the event handler using the given function.
fn map<U, F>(self, f: F) -> Map<Self, F>
where
Self: Sized,
F: FnMut(Self::Output) -> U,
{
Map { handler: self, f }
}
/// Executes the handler followed by the given handler if and only if the event is matched by
/// the first.
fn and<H2>(self, handler: H2) -> And<Self, H2>
where
Self: Sized,
H2: Handler<S, E>,
{
And { handler: self, and: handler }
}
/// Executes the handler followed by the given handler if and only if the event is matched by
/// the first and the output is not an error.
///
/// As with other `try` functions, this function considers whether or not the handler matched
/// the event (`Handled::Matched` vs. `Handled::Unmatched`) **and** the output when matched
/// (output vs. error in `Handled::Matched`). Both `Handled::Unmatched` and `Handled::Matched`
/// **with an error** value are considered failures to handle an event.
fn try_and<H2>(self, handler: H2) -> TryAnd<Self, H2>
where
Self: Sized,
Self::Output: Try,
H2: Handler<S, E>,
H2::Output: Try<Residual = <Self::Output as Try>::Residual>,
{
TryAnd { handler: self, and: handler }
}
/// Executes the handler followed by the given function if and only if the event is matched by
/// the first. The function is given the output of the handler and must return a compatible
/// handler to execute next.
fn and_then<H2, F>(self, f: F) -> AndThen<Self, F>
where
Self: Sized,
H2: Handler<S, E>,
F: FnMut(Self::Output) -> H2,
{
AndThen { handler: self, f }
}
/// Executes the handler followed by the given function if and only if the event is matched by
/// the first and the output is not an error. The function is given the output of the handler
/// and must return a compatible handler to execute next.
///
/// As with other `try` functions, this function considers whether or not the handler matched
/// the event (`Handled::Matched` vs. `Handled::Unmatched`) **and** the output when matched
/// (output vs. error in `Handled::Matched`). Both `Handled::Unmatched` and `Handled::Matched`
/// **with an error** value are considered failures to handle an event.
fn try_and_then<H2, F>(self, f: F) -> TryAndThen<Self, F>
where
Self: Sized,
Self::Output: Try,
H2: Handler<S, E>,
H2::Output: Try<Residual = <Self::Output as Try>::Residual>,
F: FnMut(<Self::Output as Try>::Output) -> H2,
{
TryAndThen { handler: self, f }
}
/// Executes the handler followed by the given handler if and only if the event is **not**
/// matched by the first.
fn or<H2>(self, handler: H2) -> Or<Self, H2>
where
Self: Sized,
H2: Handler<S, E, Output = Self::Output>,
{
Or { handler: self, or: handler }
}
/// Executes the handler followed by the given handler if the event is **not** matched by the
/// first or the output is an error. That is, the given handler is executed only if the first
/// fails: it does not match the event or it matches **but returns an error**.
///
/// As with other `try` functions, this function considers whether or not the handler matched
/// the event (`Handled::Matched` vs. `Handled::Unmatched`) **and** the output when matched
/// (output vs. error in `Handled::Matched`). Both `Handled::Unmatched` and `Handled::Matched`
/// **with an error** value are considered failures to handle an event.
fn try_or<H2>(self, handler: H2) -> TryOr<Self, H2>
where
Self: Sized,
Self::Output: Try,
H2: Handler<S, E, Output = Self::Output>,
{
TryOr { handler: self, or: handler }
}
/// Combines the handler's output with [`try_or`] over `Unmatched`.
///
/// This adapter terminates a chain of `try` combinators such that the last handler's output is
/// tried and, if it is unmatched or an error, `Unmatched` is returned.
fn try_or_unmatched(self) -> TryOrUnmatched<Self>
where
Self: Sized,
Self::Output: Try,
{
TryOrUnmatched { handler: self }
}
/// Provides context for fallible outputs (like `Result`s).
fn context<C, O, D>(self, context: C) -> Context<Self, C, O, D>
where
Self: Sized,
Self::Output: anyhow::Context<O, D>,
C: Clone + Display + Send + Sync + 'static,
{
Context { handler: self, context, phantom: PhantomData }
}
/// Panics with the given message if a fallible output indicates an error.
fn expect<M>(self, message: M) -> Expect<Self, M>
where
Self: Sized,
Self::Output: Try,
M: Display,
{
Expect { handler: self, message: message.into() }
}
/// Panics if the event handler does not match an event a number of times within the specified
/// range.
///
/// The panic occurs as eagerly as possible, but may be deferred until the event handler is
/// dropped if the number of matches is less than the lower bound of the range. Such a panic is
/// disabled if the thread is already panicking.
fn expect_matches_times<R>(self, expected: R) -> ExpectMatchesTimes<Self, R>
where
Self: Sized,
R: RangeBounds<usize>,
{
ExpectMatchesTimes { handler: self, n: 0, expected }
}
/// Borrows the event handler (rather than consuming it).
///
/// This function is analogous to [`Iterator::by_ref`] and can be used to apply adapters and
/// compositions to an event handler without consuming (moving) it. In particular, this is
/// useful when code cannot relinquish ownership of a handler and yet must adapt it, such as
/// methods that operate on a handler field through a reference.
///
/// [`Iterator::by_ref`]: core::iter::Iterator::by_ref
fn by_ref(&mut self) -> ByRef<'_, Self>
where
Self: Sized,
{
ByRef { handler: self }
}
}
impl<F, S, E, U> Handler<S, E> for F
where
F: FnMut(&mut S, &E) -> Handled<U>,
{
type Output = U;
fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
(self)(state, event)
}
}
impl<'h, S, E, O> Handler<S, E> for &'h mut dyn Handler<S, E, Output = O> {
type Output = O;
fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
(**self).call(state, event)
}
}
impl<'h, S, E, O> Handler<S, E> for Box<dyn Handler<S, E, Output = O> + 'h> {
type Output = O;
fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
self.as_mut().call(state, event)
}
}
#[derive(Debug)]
pub struct Map<H, F> {
handler: H,
f: F,
}
impl<H, S, E, U, F> Handler<S, E> for Map<H, F>
where
H: Handler<S, E>,
F: FnMut(H::Output) -> U,
{
type Output = U;
fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
self.handler.call(state, event).map(&mut self.f)
}
}
#[derive(Debug)]
pub struct And<H1, H2> {
handler: H1,
and: H2,
}
impl<H1, S, E, H2> Handler<S, E> for And<H1, H2>
where
H1: Handler<S, E>,
H2: Handler<S, E>,
{
type Output = H2::Output;
fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
self.handler.call(state, event).and_then(|_| self.and.call(state, event))
}
}
#[derive(Debug)]
pub struct TryAnd<H1, H2> {
handler: H1,
and: H2,
}
impl<H1, S, E, H2> Handler<S, E> for TryAnd<H1, H2>
where
H1: Handler<S, E>,
H1::Output: Try,
H2: Handler<S, E>,
H2::Output: Try<Residual = <H1::Output as Try>::Residual>,
{
type Output = H2::Output;
fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
self.handler.call(state, event).try_and_then(|_| self.and.call(state, event))
}
}
#[derive(Debug)]
pub struct AndThen<H, F> {
handler: H,
f: F,
}
impl<H1, S, E, H2, F> Handler<S, E> for AndThen<H1, F>
where
H1: Handler<S, E>,
H2: Handler<S, E>,
F: FnMut(H1::Output) -> H2,
{
type Output = H2::Output;
fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
self.handler.call(state, event).and_then(|output| (self.f)(output).call(state, event))
}
}
#[derive(Debug)]
pub struct TryAndThen<H, F> {
handler: H,
f: F,
}
impl<H1, S, E, H2, F> Handler<S, E> for TryAndThen<H1, F>
where
H1: Handler<S, E>,
H1::Output: Try,
H2: Handler<S, E>,
H2::Output: Try<Residual = <H1::Output as Try>::Residual>,
F: FnMut(<H1::Output as Try>::Output) -> H2,
{
type Output = H2::Output;
fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
self.handler.call(state, event).try_and_then(|output| (self.f)(output).call(state, event))
}
}
#[derive(Debug)]
pub struct Or<H1, H2> {
handler: H1,
or: H2,
}
impl<H1, S, E, H2> Handler<S, E> for Or<H1, H2>
where
H1: Handler<S, E>,
H2: Handler<S, E, Output = H1::Output>,
{
type Output = H2::Output;
fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
self.handler.call(state, event).or_else(|| self.or.call(state, event))
}
}
#[derive(Debug)]
pub struct TryOr<H1, H2> {
handler: H1,
or: H2,
}
impl<H1, S, E, H2> Handler<S, E> for TryOr<H1, H2>
where
H1: Handler<S, E>,
H1::Output: Try,
H2: Handler<S, E, Output = H1::Output>,
{
type Output = H2::Output;
fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
self.handler.call(state, event).try_or_else(|| self.or.call(state, event))
}
}
#[derive(Debug)]
pub struct TryOrUnmatched<H> {
handler: H,
}
impl<H, S, E> Handler<S, E> for TryOrUnmatched<H>
where
H: Handler<S, E>,
H::Output: Try,
{
type Output = H::Output;
fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
self.handler.call(state, event).try_or_else(|| Handled::Unmatched)
}
}
#[derive(Debug)]
pub struct Context<H, C, O, D> {
handler: H,
context: C,
phantom: PhantomData<fn() -> (O, D)>,
}
impl<H, S, E, C, O, D> Handler<S, E> for Context<H, C, O, D>
where
H: Handler<S, E>,
H::Output: anyhow::Context<O, D>,
C: Clone + Display + Send + Sync + 'static,
{
type Output = Result<O, anyhow::Error>;
fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
match self.handler.call(state, event) {
Handled::Matched(output) => Handled::Matched(output.context(self.context.clone())),
_ => Handled::Unmatched,
}
}
}
#[derive(Debug)]
pub struct Expect<H, M> {
handler: H,
message: M,
}
impl<H, S, E, M> Handler<S, E> for Expect<H, M>
where
H: Handler<S, E>,
H::Output: Try,
M: Display,
{
type Output = <H::Output as Try>::Output;
fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
match self.handler.call(state, event) {
Handled::Matched(output) => Handled::Matched(output.expect(&self.message)),
Handled::Unmatched => Handled::Unmatched,
}
}
}
#[derive(Debug)]
pub struct ExpectMatchesTimes<H, R>
where
R: RangeBounds<usize>,
{
handler: H,
n: usize,
expected: R,
}
impl<H, R> ExpectMatchesTimes<H, R>
where
R: RangeBounds<usize>,
{
fn assert(&self) {
assert!(
self.expected.contains(&self.n),
"handler called {} time(s); expected {:?}-{:?} time(s)",
self.n,
self.expected.start_bound(),
self.expected.end_bound(),
);
}
}
impl<H, R> Drop for ExpectMatchesTimes<H, R>
where
R: RangeBounds<usize>,
{
fn drop(&mut self) {
if !thread::panicking() {
self.assert();
}
}
}
impl<H, S, E, R> Handler<S, E> for ExpectMatchesTimes<H, R>
where
H: Handler<S, E>,
R: RangeBounds<usize>,
{
type Output = H::Output;
fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
let output = self.handler.call(state, event);
if output.is_matched() {
self.n = self.n.saturating_add(1);
self.assert();
}
output
}
}
pub struct ByRef<'h, H> {
handler: &'h mut H,
}
impl<'h, H, S, E> Handler<S, E> for ByRef<'h, H>
where
H: Handler<S, E>,
{
type Output = H::Output;
fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
self.handler.call(state, event)
}
}
/// The reaction of an event handler to a particular event.
///
/// `Handled` describes whether or not a handler has matched a particular event. When matched, a
/// handler may include an arbitrary output. When unmatched, there is no further output. Whether or
/// not a handler has matched an event can affect the execution of a composite handler and the test
/// harness.
///
/// Note that matching an event has no precise definition: handlers may react arbitrarily to
/// events. In practice, there is little ambiguity, but handlers and adapters can match in
/// particular ways to enable certain handler behaviors. See the [`until_first_match`] adapter for
/// an example.
///
/// [`until_first_match`]: crate::event::until_first_match
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Handled<T> {
/// An event handler has matched and handled an event.
Matched(T),
/// An event handler has **not** matched nor handled an event.
Unmatched,
}
impl<T> Handled<T> {
pub fn map<U, F>(self, f: F) -> Handled<U>
where
F: FnOnce(T) -> U,
{
match self {
Handled::Matched(inner) => Handled::Matched(f(inner)),
Handled::Unmatched => Handled::Unmatched,
}
}
pub fn and_then<U, F>(self, f: F) -> Handled<U>
where
F: FnOnce(T) -> Handled<U>,
{
match self {
Handled::Matched(inner) => f(inner),
Handled::Unmatched => Handled::Unmatched,
}
}
pub fn and<U>(self, right: Handled<U>) -> Handled<U> {
self.and_then(|_| right)
}
pub fn try_and_then<U, F>(self, f: F) -> Handled<U>
where
T: Try,
F: FnOnce(T::Output) -> Handled<U>,
{
self.and_then(|output| match output.branch() {
ControlFlow::Continue(output) => f(output),
ControlFlow::Break(_) => Handled::Unmatched,
})
}
pub fn or_else<F>(self, f: F) -> Self
where
F: FnOnce() -> Self,
{
match self {
Handled::Matched(_) => self,
Handled::Unmatched => f(),
}
}
pub fn or(self, right: Self) -> Self {
self.or_else(move || right)
}
pub fn try_or_else<F>(self, f: F) -> Self
where
T: Try,
F: FnOnce() -> Self,
{
match self {
Handled::Matched(inner) => match inner.branch() {
ControlFlow::Continue(output) => Handled::Matched(Try::from_output(output)),
ControlFlow::Break(_) => f(),
},
Handled::Unmatched => f(),
}
}
pub fn flatten(self) -> Handled<T::Output>
where
T: Try,
{
match self {
Handled::Matched(inner) => match inner.branch() {
ControlFlow::Continue(output) => Handled::Matched(output),
ControlFlow::Break(_) => Handled::Unmatched,
},
Handled::Unmatched => Handled::Unmatched,
}
}
pub fn matched(self) -> Option<T> {
match self {
Handled::Matched(inner) => Some(inner),
Handled::Unmatched => None,
}
}
pub fn is_matched(&self) -> bool {
matches!(self, Handled::Matched(_))
}
pub fn is_unmatched(&self) -> bool {
matches!(self, Handled::Unmatched)
}
}
impl<T> From<T> for Handled<T> {
fn from(matched: T) -> Self {
Handled::Matched(matched)
}
}
impl<T> Try for Handled<T> {
type Output = T;
type Residual = Handled<Infallible>;
fn from_output(output: Self::Output) -> Self {
Handled::Matched(output)
}
fn from_residual(_: Self::Residual) -> Self {
Handled::Unmatched
}
fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
match self {
Handled::Matched(output) => ControlFlow::Continue(output),
Handled::Unmatched => ControlFlow::Break(Handled::Unmatched),
}
}
}
/// Boxes an event handler as a trait object.
///
/// This function can be used for dynamic dispatch and conditionals wherein the `Handler` type
/// parameters and associated types are the same yet the implementing handler types differ. That
/// is, with the exception of the output type, this function erases the handler's type.
pub fn boxed<'h, H, S, E>(handler: H) -> Box<dyn Handler<S, E, Output = H::Output> + 'h>
where
H: Handler<S, E> + 'h,
{
Box::new(handler)
}
/// Constructs an event handler that always matches.
///
/// This function can be used to adapt functions into handlers. The output of the accepted function
/// is always wrapped by [`Handled::Matched`], meaning that the framework will always interpret the
/// handler as having matched any event that it receives.
///
/// # Examples
///
/// ```rust,ignore
/// let mut handler = event::on_transmit(event::matched(|_state, _event| {
/// 0 // This handler always return `Handled::Matched(0)`.
/// }));
/// ```
///
/// [`Handled::Matched`]: crate::event::Handled::Matched
/// [`Handler`]: crate::event::Handler
pub fn matched<S, E, T, F>(mut f: F) -> impl Handler<S, E, Output = T>
where
F: FnMut(&mut S, &E) -> T,
{
move |state: &mut S, event: &E| Handled::Matched(f(state, event))
}
/// Constructs an event handler from a `FnOnce` that only executes once.
///
/// The event handler executes the given function upon receiving its first call and always matches
/// the event. After this occurs, the function has been consumed and the adapter always returns
/// [`Handled::Unmatched`].
///
/// [`Handled::Unmatched`]: crate::event::Handled::Unmatched
/// [`Handler`]: crate::event::Handler
pub fn once<S, E, T, F>(f: F) -> impl Handler<S, E, Output = T>
where
F: FnOnce(&mut S, &E) -> T,
{
let mut f = Some(f);
move |state: &mut S, event: &E| {
f.take().map_or(Handled::Unmatched, |f| Handled::Matched(f(state, event)))
}
}
/// Stops executing its composed handler after its first match.
///
/// This function constructs a handler that forwards events to the composed handler until it
/// returns [`Handled::Matched`]. After this occurs, the composed handler is no longer executed and
/// the adapter always returns [`Handled::Unmatched`].
///
/// [`Handled::Matched`]: crate::event::Handled::Matched
/// [`Handled::Unmatched`]: crate::event::Handled::Unmatched
/// [`Handler`]: crate::event::Handler
pub fn until_first_match<H, S, E>(handler: H) -> impl Handler<S, E, Output = H::Output>
where
H: Handler<S, E>,
{
let mut handler = Some(handler);
move |state: &mut S, event: &E| {
let output = handler.as_mut().map(|handler| handler.call(state, event));
match output {
Some(output) => {
if matches!(output, Handled::Matched(_)) {
let _ = handler.take();
}
output
}
_ => Handled::Unmatched,
}
}
}
/// Forwards the given state to the composed event handler.
///
/// This state overrides any state passed to the constructed event handler; only the state given to
/// this function is visible to the composed event handler.
///
/// # Examples
///
/// The following examples constructs an event handler where branches of an event handler have
/// exclusive access to an `isize`. Note that it would not be possible for the closures to capture
/// this state from the environment mutably, as the closures would need to mutably alias the data.
///
/// ```rust,ignore
/// let mut handler = event::with_state(
/// 0isize,
/// branch::or((
/// event::extract(Stateful(|count: &mut isize, _: Buffered<MgmtFrame>| {
/// *count += 1;
/// *count
/// })),
/// event::extract(Stateful(|count: &mut isize, _: Buffered<DataFrame>| {
/// *count -= 1;
/// *count
/// })),
/// )),
/// );
/// ```
pub fn with_state<H, S1, S2, E>(
mut state: S2,
mut handler: H,
) -> impl Handler<S1, E, Output = H::Output>
where
H: Handler<S2, E>,
{
move |_state: &mut S1, event: &E| handler.call(&mut state, event)
}
/// Maps the state passed to the constructed handler and forwards the mapped state to its composed
/// handler.
///
/// This function constructs a handler that maps the state it receives and passes the resulting
/// state to its composed handler. The mapping function can produce arbitrary state for the
/// composed handler.
pub fn map_state<H, S1, S2, E, F>(
mut f: F,
mut handler: H,
) -> impl Handler<S1, E, Output = H::Output>
where
H: Handler<S2, E>,
F: FnMut(&mut S1) -> S2,
{
move |s1: &mut S1, event: &E| {
let mut s2 = f(s1);
handler.call(&mut s2, event)
}
}