1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
// Copyright 2023 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! Event handling and composition for interacting with the WLAN tap driver.
//!
//! This module provides APIs for writing tests that must handle and interact with events from the
//! WLAN tap driver. The primary mechanism for this are event handlers, which can be composed in
//! sophisticated ways to route and act upon events. The hardware simulator test harness forwards
//! events into these handlers.
//!
//! Event handlers are described by the [`Handler`] trait. Much like the standard [`Iterator`]
//! trait, [`Handler`] is composable. Event handlers are constructed by composing [`Handler`]s
//! together via combinators. [`Handler`] has many associated functions that are analogous to those
//! found in [`Iterator`], [`Option`], and [`Result`] and follows many of the same patterns. The
//! execution of handlers and routing of events is largely controlled by whether or not handlers
//! match an event: see [`Handled`], which resembles [`Option`].
//!
//! The primary method of the [`Handler`] trait is [`call`][`Handler::call`], which accepts an
//! exclusive reference to state and a shared reference to an event and must react to this event
//! and return a [`Handled`] that describes whether or not the event was matched and, if so, what
//! the output is.
//!
//! # Examples
//!
//! [`Handler`] combinators can be used to construct complex event handlers in a declarative way.
//! The following non-trivial example constructs an event handler that examines the status code of
//! an association response frame. The handler also enforces ordering: action frames may arrive at
//! any time, but any other management frame must follow the association response frame.
//!
//! ```rust,ignore
//! let mut handler = event::on_transmit(branch::or(( // Only handle transmit events.
//!     event::extract(|_: Buffered<ActionFrame<false>>| {}), // Allow (ignore) action frames...
//!     event::until_first_match(branch::or(( // ...or match only once.
//!         event::extract(|frame: Buffered<AssocRespFrame>| { // Examine response frames...
//!             let frame = frame.get();
//!             assert_eq!(
//!                 { frame.assoc_resp_hdr.status_code },
//!                 fidl_ieee80211::StatusCode::Success.into(),
//!             );
//!         })
//!         .and(event::once(|_, _| sender.send(()).unwrap())), // ...and send a completion signal...
//!         event::extract(|_: Buffered<MgmtFrame>| {
//!             panic!("unexpected management frame"); // ...or panic if a management frame arrives instead.
//!         }),
//!     ))),
//! )));
//! ```
//!
//! See existing tests for more examples of constructing event handlers.
//!
//! [`Handled`]: crate::event::Handled
//! [`Handler`]: crate::event::Handler
//! [`Handler::call`]: crate::event::Handler::call
//! [`Iterator`]: core::iter::Iterator
//! [`Option`]: core::option::Option

mod convert;
mod extract;
mod filter;

pub mod action;
pub mod branch;
pub mod buffered;

use {
    anyhow::Context as _,
    std::{
        convert::Infallible,
        fmt::{Debug, Display},
        marker::PhantomData,
        ops::{ControlFlow, RangeBounds},
        thread,
    },
};

pub use crate::event::{
    convert::Try,
    extract::{extract, extract_and_match, Stateful},
    filter::{on_join_bss, on_scan, on_set_channel, on_set_country, on_start_mac, on_transmit},
    Handled::{Matched, Unmatched},
};

// The WLAN tap `WlanSoftmacStart` function has no parameters and so, unlike other events, there is
// no corresponding FIDL type to import. This zero-sized type represents this event. For example,
// the bound `Handler<(), StartMacArgs>` represents a handler type that reacts to this event.
#[derive(Clone, Copy, Debug)]
pub struct StartMacArgs;

/// A composable event handler.
///
/// This trait describes types that react to WLAN tap driver events. Such types can be composed in
/// a similar manner to the standard [`Iterator`] trait using adapter and combinator functions.
/// Most `Handler` functions resemble those found in [`Iterator`], [`Option`], and [`Result`].
///
/// The primary method implemented by event handlers is [`call`][`Handler::call`], which receives
/// an exclusive reference to some state (of the input type `S`) and a shared reference to some
/// event (of the input type `E`) and returns a [`Handled`] that indicates whether or not the
/// handler matched the event and, if so, provides some output (of the type
/// [`Output`][`Handler::Output`]).
///
/// The matching of a handler with an event controls the routing and behavior of that handler. In
/// particular, branching combinators like [`and`], [`or`], [`try_and_then`], etc. execute handlers
/// based on whether or not the composed handlers have matched a given event.
///
/// [`and`]: crate::event::Handler::and
/// [`Handled`]: crate::event::Handled
/// [`Handler::call`]: crate::event::Handler::call
/// [`Handler::Output`]: crate::event::Handler::Output
/// [`Iterator`]: core::iter::Iterator
/// [`Option`]: core::option::Option
/// [`or`]: crate::event::Handler::or
/// [`Result`]: core::option::Result
/// [`try_and_then`]: crate::event::Handler::try_and_then
pub trait Handler<S, E> {
    /// The output of the event handler when it is matched.
    type Output;

    /// Reacts to an event with some state.
    ///
    /// Returns a [`Handled`] that indicates whether or not the handler matched the given event.
    ///
    /// [`Handled`]: crate::event::Handled
    fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output>;

    /// Maps the output of the event handler using the given function.
    fn map<U, F>(self, f: F) -> Map<Self, F>
    where
        Self: Sized,
        F: FnMut(Self::Output) -> U,
    {
        Map { handler: self, f }
    }

    /// Executes the handler followed by the given handler if and only if the event is matched by
    /// the first.
    fn and<H2>(self, handler: H2) -> And<Self, H2>
    where
        Self: Sized,
        H2: Handler<S, E>,
    {
        And { handler: self, and: handler }
    }

    /// Executes the handler followed by the given handler if and only if the event is matched by
    /// the first and the output is not an error.
    ///
    /// As with other `try` functions, this function considers whether or not the handler matched
    /// the event (`Handled::Matched` vs. `Handled::Unmatched`) **and** the output when matched
    /// (output vs. error in `Handled::Matched`). Both `Handled::Unmatched` and `Handled::Matched`
    /// **with an error** value are considered failures to handle an event.
    fn try_and<H2>(self, handler: H2) -> TryAnd<Self, H2>
    where
        Self: Sized,
        Self::Output: Try,
        H2: Handler<S, E>,
        H2::Output: Try<Residual = <Self::Output as Try>::Residual>,
    {
        TryAnd { handler: self, and: handler }
    }

    /// Executes the handler followed by the given function if and only if the event is matched by
    /// the first. The function is given the output of the handler and must return a compatible
    /// handler to execute next.
    fn and_then<H2, F>(self, f: F) -> AndThen<Self, F>
    where
        Self: Sized,
        H2: Handler<S, E>,
        F: FnMut(Self::Output) -> H2,
    {
        AndThen { handler: self, f }
    }

    /// Executes the handler followed by the given function if and only if the event is matched by
    /// the first and the output is not an error. The function is given the output of the handler
    /// and must return a compatible handler to execute next.
    ///
    /// As with other `try` functions, this function considers whether or not the handler matched
    /// the event (`Handled::Matched` vs. `Handled::Unmatched`) **and** the output when matched
    /// (output vs. error in `Handled::Matched`). Both `Handled::Unmatched` and `Handled::Matched`
    /// **with an error** value are considered failures to handle an event.
    fn try_and_then<H2, F>(self, f: F) -> TryAndThen<Self, F>
    where
        Self: Sized,
        Self::Output: Try,
        H2: Handler<S, E>,
        H2::Output: Try<Residual = <Self::Output as Try>::Residual>,
        F: FnMut(<Self::Output as Try>::Output) -> H2,
    {
        TryAndThen { handler: self, f }
    }

    /// Executes the handler followed by the given handler if and only if the event is **not**
    /// matched by the first.
    fn or<H2>(self, handler: H2) -> Or<Self, H2>
    where
        Self: Sized,
        H2: Handler<S, E, Output = Self::Output>,
    {
        Or { handler: self, or: handler }
    }

    /// Executes the handler followed by the given handler if the event is **not** matched by the
    /// first or the output is an error. That is, the given handler is executed only if the first
    /// fails: it does not match the event or it matches **but returns an error**.
    ///
    /// As with other `try` functions, this function considers whether or not the handler matched
    /// the event (`Handled::Matched` vs. `Handled::Unmatched`) **and** the output when matched
    /// (output vs. error in `Handled::Matched`). Both `Handled::Unmatched` and `Handled::Matched`
    /// **with an error** value are considered failures to handle an event.
    fn try_or<H2>(self, handler: H2) -> TryOr<Self, H2>
    where
        Self: Sized,
        Self::Output: Try,
        H2: Handler<S, E, Output = Self::Output>,
    {
        TryOr { handler: self, or: handler }
    }

    /// Combines the handler's output with [`try_or`] over `Unmatched`.
    ///
    /// This adapter terminates a chain of `try` combinators such that the last handler's output is
    /// tried and, if it is unmatched or an error, `Unmatched` is returned.
    fn try_or_unmatched(self) -> TryOrUnmatched<Self>
    where
        Self: Sized,
        Self::Output: Try,
    {
        TryOrUnmatched { handler: self }
    }

    /// Provides context for fallible outputs (like `Result`s).
    fn context<C, O, D>(self, context: C) -> Context<Self, C, O, D>
    where
        Self: Sized,
        Self::Output: anyhow::Context<O, D>,
        C: Clone + Display + Send + Sync + 'static,
    {
        Context { handler: self, context, phantom: PhantomData }
    }

    /// Panics with the given message if a fallible output indicates an error.
    fn expect<M>(self, message: M) -> Expect<Self, M>
    where
        Self: Sized,
        Self::Output: Try,
        M: Display,
    {
        Expect { handler: self, message: message.into() }
    }

    /// Panics if the event handler does not match an event a number of times within the specified
    /// range.
    ///
    /// The panic occurs as eagerly as possible, but may be deferred until the event handler is
    /// dropped if the number of matches is less than the lower bound of the range. Such a panic is
    /// disabled if the thread is already panicking.
    fn expect_matches_times<R>(self, expected: R) -> ExpectMatchesTimes<Self, R>
    where
        Self: Sized,
        R: RangeBounds<usize>,
    {
        ExpectMatchesTimes { handler: self, n: 0, expected }
    }

    /// Borrows the event handler (rather than consuming it).
    ///
    /// This function is analogous to [`Iterator::by_ref`] and can be used to apply adapters and
    /// compositions to an event handler without consuming (moving) it. In particular, this is
    /// useful when code cannot relinquish ownership of a handler and yet must adapt it, such as
    /// methods that operate on a handler field through a reference.
    ///
    /// [`Iterator::by_ref`]: core::iter::Iterator::by_ref
    fn by_ref(&mut self) -> ByRef<'_, Self>
    where
        Self: Sized,
    {
        ByRef { handler: self }
    }
}

impl<F, S, E, U> Handler<S, E> for F
where
    F: FnMut(&mut S, &E) -> Handled<U>,
{
    type Output = U;

    fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
        (self)(state, event)
    }
}

impl<'h, S, E, O> Handler<S, E> for &'h mut dyn Handler<S, E, Output = O> {
    type Output = O;

    fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
        (**self).call(state, event)
    }
}

impl<'h, S, E, O> Handler<S, E> for Box<dyn Handler<S, E, Output = O> + 'h> {
    type Output = O;

    fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
        self.as_mut().call(state, event)
    }
}

#[derive(Debug)]
pub struct Map<H, F> {
    handler: H,
    f: F,
}

impl<H, S, E, U, F> Handler<S, E> for Map<H, F>
where
    H: Handler<S, E>,
    F: FnMut(H::Output) -> U,
{
    type Output = U;

    fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
        self.handler.call(state, event).map(&mut self.f)
    }
}

#[derive(Debug)]
pub struct And<H1, H2> {
    handler: H1,
    and: H2,
}

impl<H1, S, E, H2> Handler<S, E> for And<H1, H2>
where
    H1: Handler<S, E>,
    H2: Handler<S, E>,
{
    type Output = H2::Output;

    fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
        self.handler.call(state, event).and_then(|_| self.and.call(state, event))
    }
}

#[derive(Debug)]
pub struct TryAnd<H1, H2> {
    handler: H1,
    and: H2,
}

impl<H1, S, E, H2> Handler<S, E> for TryAnd<H1, H2>
where
    H1: Handler<S, E>,
    H1::Output: Try,
    H2: Handler<S, E>,
    H2::Output: Try<Residual = <H1::Output as Try>::Residual>,
{
    type Output = H2::Output;

    fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
        self.handler.call(state, event).try_and_then(|_| self.and.call(state, event))
    }
}

#[derive(Debug)]
pub struct AndThen<H, F> {
    handler: H,
    f: F,
}

impl<H1, S, E, H2, F> Handler<S, E> for AndThen<H1, F>
where
    H1: Handler<S, E>,
    H2: Handler<S, E>,
    F: FnMut(H1::Output) -> H2,
{
    type Output = H2::Output;

    fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
        self.handler.call(state, event).and_then(|output| (self.f)(output).call(state, event))
    }
}

#[derive(Debug)]
pub struct TryAndThen<H, F> {
    handler: H,
    f: F,
}

impl<H1, S, E, H2, F> Handler<S, E> for TryAndThen<H1, F>
where
    H1: Handler<S, E>,
    H1::Output: Try,
    H2: Handler<S, E>,
    H2::Output: Try<Residual = <H1::Output as Try>::Residual>,
    F: FnMut(<H1::Output as Try>::Output) -> H2,
{
    type Output = H2::Output;

    fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
        self.handler.call(state, event).try_and_then(|output| (self.f)(output).call(state, event))
    }
}

#[derive(Debug)]
pub struct Or<H1, H2> {
    handler: H1,
    or: H2,
}

impl<H1, S, E, H2> Handler<S, E> for Or<H1, H2>
where
    H1: Handler<S, E>,
    H2: Handler<S, E, Output = H1::Output>,
{
    type Output = H2::Output;

    fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
        self.handler.call(state, event).or_else(|| self.or.call(state, event))
    }
}

#[derive(Debug)]
pub struct TryOr<H1, H2> {
    handler: H1,
    or: H2,
}

impl<H1, S, E, H2> Handler<S, E> for TryOr<H1, H2>
where
    H1: Handler<S, E>,
    H1::Output: Try,
    H2: Handler<S, E, Output = H1::Output>,
{
    type Output = H2::Output;

    fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
        self.handler.call(state, event).try_or_else(|| self.or.call(state, event))
    }
}

#[derive(Debug)]
pub struct TryOrUnmatched<H> {
    handler: H,
}

impl<H, S, E> Handler<S, E> for TryOrUnmatched<H>
where
    H: Handler<S, E>,
    H::Output: Try,
{
    type Output = H::Output;

    fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
        self.handler.call(state, event).try_or_else(|| Handled::Unmatched)
    }
}

#[derive(Debug)]
pub struct Context<H, C, O, D> {
    handler: H,
    context: C,
    phantom: PhantomData<fn() -> (O, D)>,
}

impl<H, S, E, C, O, D> Handler<S, E> for Context<H, C, O, D>
where
    H: Handler<S, E>,
    H::Output: anyhow::Context<O, D>,
    C: Clone + Display + Send + Sync + 'static,
{
    type Output = Result<O, anyhow::Error>;

    fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
        match self.handler.call(state, event) {
            Handled::Matched(output) => Handled::Matched(output.context(self.context.clone())),
            _ => Handled::Unmatched,
        }
    }
}

#[derive(Debug)]
pub struct Expect<H, M> {
    handler: H,
    message: M,
}

impl<H, S, E, M> Handler<S, E> for Expect<H, M>
where
    H: Handler<S, E>,
    H::Output: Try,
    M: Display,
{
    type Output = <H::Output as Try>::Output;

    fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
        match self.handler.call(state, event) {
            Handled::Matched(output) => Handled::Matched(output.expect(&self.message)),
            Handled::Unmatched => Handled::Unmatched,
        }
    }
}

#[derive(Debug)]
pub struct ExpectMatchesTimes<H, R>
where
    R: RangeBounds<usize>,
{
    handler: H,
    n: usize,
    expected: R,
}

impl<H, R> ExpectMatchesTimes<H, R>
where
    R: RangeBounds<usize>,
{
    fn assert(&self) {
        assert!(
            self.expected.contains(&self.n),
            "handler called {} time(s); expected {:?}-{:?} time(s)",
            self.n,
            self.expected.start_bound(),
            self.expected.end_bound(),
        );
    }
}

impl<H, R> Drop for ExpectMatchesTimes<H, R>
where
    R: RangeBounds<usize>,
{
    fn drop(&mut self) {
        if !thread::panicking() {
            self.assert();
        }
    }
}

impl<H, S, E, R> Handler<S, E> for ExpectMatchesTimes<H, R>
where
    H: Handler<S, E>,
    R: RangeBounds<usize>,
{
    type Output = H::Output;

    fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
        let output = self.handler.call(state, event);
        if output.is_matched() {
            self.n = self.n.saturating_add(1);
            self.assert();
        }
        output
    }
}

pub struct ByRef<'h, H> {
    handler: &'h mut H,
}

impl<'h, H, S, E> Handler<S, E> for ByRef<'h, H>
where
    H: Handler<S, E>,
{
    type Output = H::Output;

    fn call(&mut self, state: &mut S, event: &E) -> Handled<Self::Output> {
        self.handler.call(state, event)
    }
}

/// The reaction of an event handler to a particular event.
///
/// `Handled` describes whether or not a handler has matched a particular event. When matched, a
/// handler may include an arbitrary output. When unmatched, there is no further output. Whether or
/// not a handler has matched an event can affect the execution of a composite handler and the test
/// harness.
///
/// Note that matching an event has no precise definition: handlers may react arbitrarily to
/// events. In practice, there is little ambiguity, but handlers and adapters can match in
/// particular ways to enable certain handler behaviors. See the [`until_first_match`] adapter for
/// an example.
///
/// [`until_first_match`]: crate::event::until_first_match
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Handled<T> {
    /// An event handler has matched and handled an event.
    Matched(T),
    /// An event handler has **not** matched nor handled an event.
    Unmatched,
}

impl<T> Handled<T> {
    pub fn map<U, F>(self, f: F) -> Handled<U>
    where
        F: FnOnce(T) -> U,
    {
        match self {
            Handled::Matched(inner) => Handled::Matched(f(inner)),
            Handled::Unmatched => Handled::Unmatched,
        }
    }

    pub fn and_then<U, F>(self, f: F) -> Handled<U>
    where
        F: FnOnce(T) -> Handled<U>,
    {
        match self {
            Handled::Matched(inner) => f(inner),
            Handled::Unmatched => Handled::Unmatched,
        }
    }

    pub fn and<U>(self, right: Handled<U>) -> Handled<U> {
        self.and_then(|_| right)
    }

    pub fn try_and_then<U, F>(self, f: F) -> Handled<U>
    where
        T: Try,
        F: FnOnce(T::Output) -> Handled<U>,
    {
        self.and_then(|output| match output.branch() {
            ControlFlow::Continue(output) => f(output),
            ControlFlow::Break(_) => Handled::Unmatched,
        })
    }

    pub fn or_else<F>(self, f: F) -> Self
    where
        F: FnOnce() -> Self,
    {
        match self {
            Handled::Matched(_) => self,
            Handled::Unmatched => f(),
        }
    }

    pub fn or(self, right: Self) -> Self {
        self.or_else(move || right)
    }

    pub fn try_or_else<F>(self, f: F) -> Self
    where
        T: Try,
        F: FnOnce() -> Self,
    {
        match self {
            Handled::Matched(inner) => match inner.branch() {
                ControlFlow::Continue(output) => Handled::Matched(Try::from_output(output)),
                ControlFlow::Break(_) => f(),
            },
            Handled::Unmatched => f(),
        }
    }

    pub fn flatten(self) -> Handled<T::Output>
    where
        T: Try,
    {
        match self {
            Handled::Matched(inner) => match inner.branch() {
                ControlFlow::Continue(output) => Handled::Matched(output),
                ControlFlow::Break(_) => Handled::Unmatched,
            },
            Handled::Unmatched => Handled::Unmatched,
        }
    }

    pub fn matched(self) -> Option<T> {
        match self {
            Handled::Matched(inner) => Some(inner),
            Handled::Unmatched => None,
        }
    }

    pub fn is_matched(&self) -> bool {
        matches!(self, Handled::Matched(_))
    }

    pub fn is_unmatched(&self) -> bool {
        matches!(self, Handled::Unmatched)
    }
}

impl<T> From<T> for Handled<T> {
    fn from(matched: T) -> Self {
        Handled::Matched(matched)
    }
}

impl<T> Try for Handled<T> {
    type Output = T;
    type Residual = Handled<Infallible>;

    fn from_output(output: Self::Output) -> Self {
        Handled::Matched(output)
    }

    fn from_residual(_: Self::Residual) -> Self {
        Handled::Unmatched
    }

    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
        match self {
            Handled::Matched(output) => ControlFlow::Continue(output),
            Handled::Unmatched => ControlFlow::Break(Handled::Unmatched),
        }
    }
}

/// Boxes an event handler as a trait object.
///
/// This function can be used for dynamic dispatch and conditionals wherein the `Handler` type
/// parameters and associated types are the same yet the implementing handler types differ. That
/// is, with the exception of the output type, this function erases the handler's type.
pub fn boxed<'h, H, S, E>(handler: H) -> Box<dyn Handler<S, E, Output = H::Output> + 'h>
where
    H: Handler<S, E> + 'h,
{
    Box::new(handler)
}

/// Constructs an event handler that always matches.
///
/// This function can be used to adapt functions into handlers. The output of the accepted function
/// is always wrapped by [`Handled::Matched`], meaning that the framework will always interpret the
/// handler as having matched any event that it receives.
///
/// # Examples
///
/// ```rust,ignore
/// let mut handler = event::on_transmit(event::matched(|_state, _event| {
///     0 // This handler always return `Handled::Matched(0)`.
/// }));
/// ```
///
/// [`Handled::Matched`]: crate::event::Handled::Matched
/// [`Handler`]: crate::event::Handler
pub fn matched<S, E, T, F>(mut f: F) -> impl Handler<S, E, Output = T>
where
    F: FnMut(&mut S, &E) -> T,
{
    move |state: &mut S, event: &E| Handled::Matched(f(state, event))
}

/// Constructs an event handler from a `FnOnce` that only executes once.
///
/// The event handler executes the given function upon receiving its first call and always matches
/// the event. After this occurs, the function has been consumed and the adapter always returns
/// [`Handled::Unmatched`].
///
/// [`Handled::Unmatched`]: crate::event::Handled::Unmatched
/// [`Handler`]: crate::event::Handler
pub fn once<S, E, T, F>(f: F) -> impl Handler<S, E, Output = T>
where
    F: FnOnce(&mut S, &E) -> T,
{
    let mut f = Some(f);
    move |state: &mut S, event: &E| {
        f.take().map_or(Handled::Unmatched, |f| Handled::Matched(f(state, event)))
    }
}

/// Stops executing its composed handler after its first match.
///
/// This function constructs a handler that forwards events to the composed handler until it
/// returns [`Handled::Matched`]. After this occurs, the composed handler is no longer executed and
/// the adapter always returns [`Handled::Unmatched`].
///
/// [`Handled::Matched`]: crate::event::Handled::Matched
/// [`Handled::Unmatched`]: crate::event::Handled::Unmatched
/// [`Handler`]: crate::event::Handler
pub fn until_first_match<H, S, E>(handler: H) -> impl Handler<S, E, Output = H::Output>
where
    H: Handler<S, E>,
{
    let mut handler = Some(handler);
    move |state: &mut S, event: &E| {
        let output = handler.as_mut().map(|handler| handler.call(state, event));
        match output {
            Some(output) => {
                if matches!(output, Handled::Matched(_)) {
                    let _ = handler.take();
                }
                output
            }
            _ => Handled::Unmatched,
        }
    }
}

/// Forwards the given state to the composed event handler.
///
/// This state overrides any state passed to the constructed event handler; only the state given to
/// this function is visible to the composed event handler.
///
/// # Examples
///
/// The following examples constructs an event handler where branches of an event handler have
/// exclusive access to an `isize`. Note that it would not be possible for the closures to capture
/// this state from the environment mutably, as the closures would need to mutably alias the data.
///
/// ```rust,ignore
/// let mut handler = event::with_state(
///     0isize,
///     branch::or((
///         event::extract(Stateful(|count: &mut isize, _: Buffered<MgmtFrame>| {
///             *count += 1;
///             *count
///         })),
///         event::extract(Stateful(|count: &mut isize, _: Buffered<DataFrame>| {
///             *count -= 1;
///             *count
///         })),
///     )),
/// );
/// ```
pub fn with_state<H, S1, S2, E>(
    mut state: S2,
    mut handler: H,
) -> impl Handler<S1, E, Output = H::Output>
where
    H: Handler<S2, E>,
{
    move |_state: &mut S1, event: &E| handler.call(&mut state, event)
}

/// Maps the state passed to the constructed handler and forwards the mapped state to its composed
/// handler.
///
/// This function constructs a handler that maps the state it receives and passes the resulting
/// state to its composed handler. The mapping function can produce arbitrary state for the
/// composed handler.
pub fn map_state<H, S1, S2, E, F>(
    mut f: F,
    mut handler: H,
) -> impl Handler<S1, E, Output = H::Output>
where
    H: Handler<S2, E>,
    F: FnMut(&mut S1) -> S2,
{
    move |s1: &mut S1, event: &E| {
        let mut s2 = f(s1);
        handler.call(&mut s2, event)
    }
}