wlan_mlme/
minstrel.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
// Copyright 2021 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

use crate::common::mac::WlanGi;
use crate::probe_sequence::{ProbeEntry, ProbeSequence};
use ieee80211::{MacAddr, MacAddrBytes};
use log::{debug, error};
use std::collections::{hash_map, HashMap, HashSet};
use std::time::Duration;
use wlan_common::ie::{HtCapabilities, RxMcsBitmask, SupportedRate};
use wlan_common::mac::FrameControl;
use wlan_common::tx_vector::{
    TxVecIdx, TxVector, ERP_NUM_TX_VECTOR, ERP_START_IDX, HT_NUM_MCS, HT_NUM_UNIQUE_MCS,
};
use {
    fidl_fuchsia_wlan_common as fidl_common, fidl_fuchsia_wlan_minstrel as fidl_minstrel,
    fidl_fuchsia_wlan_softmac as fidl_softmac,
};

// TODO(https://fxbug.dev/42103418): Enable CBW40 support once its information is available from AssocCtx.
const ASSOC_CHAN_WIDTH: fidl_common::ChannelBandwidth = fidl_common::ChannelBandwidth::Cbw20;

const MCS_MASK_0_31: u128 = 0xFFFFFFFF;
const MINSTREL_FRAME_LENGTH: u32 = 1400; // bytes
const MINSTREL_EXP_WEIGHT: f32 = 0.75; // Used to calculate moving average throughput

// TODO(https://fxbug.dev/42163096): Determine if we should use a separate variable for (1.0 - MINSTREL_PROABILITY_THRESHOLD).
const MINSTREL_PROBABILITY_THRESHOLD: f32 = 0.9; // If probability is past this level,
                                                 // only consider throughput
const PROBE_INTERVAL: u8 = 16; // Number of normal packets to send between two probe packets.
const MAX_SLOW_PROBE: u64 = 2; // If the data rate is low, don't probe more than twice per update interval.
const DEAD_PROBE_CYCLE_COUNT: u8 = 32; // If the success rate is under (1 - MINSTREL_PROBABILITY_THRESHOLD)
                                       // only probe once every DEAD_PROBE_CYCLE_COUNT cycles.

type TxStatsMap = HashMap<TxVecIdx, TxStats>;

struct TxStats {
    tx_vector_idx: TxVecIdx,
    perfect_tx_time: Duration, // Minimum possible time to transmit a MINSTREL_FRAME_LENGTH frame at this rate.
    success_cur: u64,          // Successful transmissions since last update.
    attempts_cur: u64,         // Transmission attempts since last update.
    moving_avg_probability: f32, // Exponentially weighted moving average probability of success.
    expected_throughput: f32,  // Expected average throughput.
    success_total: u64,        // Cumulative success counts. u64 to avoid overflow issues.
    attempts_total: u64,       // Cumulative attempts. u64 to avoid overflow issues.
    probe_cycles_skipped: u8, // Reduce probe frequency if probability < (1 - MINSTREL_PROBABILITY_THRESHOLD)
    probes_total: u64,
}

impl TxStats {
    fn new(tx_vector_idx: TxVecIdx) -> Self {
        Self {
            tx_vector_idx,
            perfect_tx_time: Duration::ZERO,
            success_cur: 0,
            attempts_cur: 0,
            // A low initial probability of success, but high enough to avoid marking the rate dead.
            moving_avg_probability: 1.0 - MINSTREL_PROBABILITY_THRESHOLD,
            expected_throughput: 0.0,
            success_total: 0,
            attempts_total: 0,
            probe_cycles_skipped: 0,
            probes_total: 0,
        }
    }

    fn phy_type_strictly_preferred_over(&self, other: &TxStats) -> bool {
        // Based on experiments, if HT is supported, it is better not to use ERP for
        // data frames. With ralink RT5592 and Netgear Nighthawk X10, approximately 80
        // feet away, HT/ERP tx throughput < 1 Mbps, HT only tx 4-8 Mbps
        // TODO(https://fxbug.dev/42104244): Revisit with VHT support.
        self.tx_vector_idx.is_ht() && !other.tx_vector_idx.is_ht()
    }

    fn better_for_expected_throughput_than(&self, other: &TxStats) -> bool {
        (self.expected_throughput, self.moving_avg_probability)
            > (other.expected_throughput, other.moving_avg_probability)
    }

    fn better_for_reliable_transmission_than(&self, other: &TxStats) -> bool {
        if self.moving_avg_probability > MINSTREL_PROBABILITY_THRESHOLD
            && other.moving_avg_probability > MINSTREL_PROBABILITY_THRESHOLD
        {
            // When probability is high enough, consider throughput instead.
            self.expected_throughput > other.expected_throughput
        } else {
            self.moving_avg_probability > other.moving_avg_probability
        }
    }
}

impl From<&TxStats> for fidl_minstrel::StatsEntry {
    fn from(stats: &TxStats) -> fidl_minstrel::StatsEntry {
        fidl_minstrel::StatsEntry {
            tx_vector_idx: *stats.tx_vector_idx,
            tx_vec_desc: format!("{}", stats.tx_vector_idx),
            success_cur: stats.success_cur,
            attempts_cur: stats.attempts_cur,
            probability: stats.moving_avg_probability,
            cur_tp: stats.expected_throughput,
            success_total: stats.success_total,
            attempts_total: stats.attempts_total,
            probes_total: stats.probes_total,
            probe_cycles_skipped: stats.probe_cycles_skipped,
        }
    }
}

struct Peer {
    addr: MacAddr,
    tx_stats_map: TxStatsMap,
    erp_rates: HashSet<TxVecIdx>,
    highest_erp_rate: Option<TxVecIdx>,         // Set by AssocCtx
    best_erp_for_reliability: Option<TxVecIdx>, // Based on transmission sucess probability for erp rates
    best_expected_throughput: Option<TxVecIdx>, // Based on expected throughput
    best_for_reliability: Option<TxVecIdx>,     // Based on transmission success probability

    // Probe parameters
    num_probe_cycles_done: u64,
    num_pkt_until_next_probe: u8,
    probes_total: u64,
    probe_entry: ProbeEntry,
}

impl Peer {
    fn from_assoc_cfg(assoc_cfg: &fidl_softmac::WlanAssociationConfig) -> Result<Self, zx::Status> {
        let mut peer = Self {
            addr: match assoc_cfg.bssid {
                None => {
                    error!("Cannot create Peer without a BSSID.");
                    return Err(zx::Status::INTERNAL);
                }
                Some(bssid) => bssid.into(),
            },
            num_pkt_until_next_probe: PROBE_INTERVAL - 1,
            tx_stats_map: Default::default(),
            erp_rates: Default::default(),
            highest_erp_rate: Default::default(),
            best_erp_for_reliability: Default::default(),
            best_expected_throughput: Default::default(),
            best_for_reliability: Default::default(),
            num_probe_cycles_done: Default::default(),
            probes_total: Default::default(),
            probe_entry: Default::default(),
        };

        if let Some(ht_cap) = assoc_cfg.ht_cap {
            let mut ht_cap = HtCapabilities::from(ht_cap.clone());

            // TODO(https://fxbug.dev/42104244): SGI support suppressed. Remove these once they are supported.
            let mut cap_info = ht_cap.ht_cap_info;
            cap_info.set_short_gi_20(false);
            cap_info.set_short_gi_40(false);
            ht_cap.ht_cap_info = cap_info;

            let mcs_set = ht_cap.mcs_set;
            if (mcs_set.rx_mcs().0 & MCS_MASK_0_31) == 0 {
                error!("Invalid AssocCtx. HT supported but no valid MCS: {:?}", mcs_set);
                return Err(zx::Status::INTERNAL);
            } else {
                peer.add_ht(&ht_cap);
            }
        }

        if let Some(rates) = &assoc_cfg.rates {
            peer.erp_rates = peer.add_supported_erp(&rates[..]);
            peer.highest_erp_rate = peer.erp_rates.iter().cloned().max();
        }
        debug!("tx_stats_map populated. size: {}", peer.tx_stats_map.len());
        if peer.tx_stats_map.is_empty() {
            error!("No usable rates for peer {}", &peer.addr);
            return Err(zx::Status::INTERNAL);
        }

        Ok(peer)
    }

    fn handle_tx_result_report(&mut self, tx_result: &fidl_common::WlanTxResult) {
        let mut last_attempted_idx = None;
        for status_entry in &tx_result.tx_result_entry[..] {
            let idx = match TxVecIdx::new(status_entry.tx_vector_idx) {
                Some(idx) => idx,
                None => break,
            };
            last_attempted_idx.replace(idx);
            // Get the stats for this rate, or attempt to add stats if none exist.
            let stats = match self.tx_stats_map.entry(idx) {
                hash_map::Entry::Occupied(val) => Some(val.into_mut()),
                hash_map::Entry::Vacant(vacant) => {
                    idx.to_erp_rate().map(|rate| vacant.insert(erp_idx_stats(idx, rate)))
                }
            };
            match stats {
                Some(stats) => stats.attempts_cur += status_entry.attempts as u64,
                None => {
                    last_attempted_idx.take();
                    debug!("error: Invalid TxVecIdx: {:?}", idx)
                }
            }
        }
        if let Some(idx) = last_attempted_idx {
            if tx_result.result_code == fidl_common::WlanTxResultCode::Success {
                // last_attempted_idx will always have a corresponding tx_stats_map entry.
                self.tx_stats_map.get_mut(&idx).unwrap().success_cur += 1;
            }
        }
    }

    fn add_ht(&mut self, ht_cap: &HtCapabilities) {
        let mut max_size = HT_NUM_MCS + ERP_NUM_TX_VECTOR; // Account for ERP rates.
        let cap_info = ht_cap.ht_cap_info;
        let sgi_20 = cap_info.short_gi_20();
        let sgi_40 = cap_info.short_gi_40();
        if sgi_20 {
            max_size += HT_NUM_MCS;
        }
        if ASSOC_CHAN_WIDTH == fidl_common::ChannelBandwidth::Cbw40 {
            max_size += HT_NUM_MCS;
            if sgi_40 {
                max_size += HT_NUM_MCS;
            }
        }

        debug!("max_size is {}", max_size);
        self.tx_stats_map.reserve(max_size as usize);
        let mcs_set = ht_cap.mcs_set;
        self.add_supported_ht(
            fidl_common::ChannelBandwidth::Cbw20,
            WlanGi::G_800NS,
            mcs_set.rx_mcs(),
        );
        if sgi_20 {
            self.add_supported_ht(
                fidl_common::ChannelBandwidth::Cbw20,
                WlanGi::G_400NS,
                mcs_set.rx_mcs(),
            );
        }
        if ASSOC_CHAN_WIDTH == fidl_common::ChannelBandwidth::Cbw40 {
            self.add_supported_ht(
                fidl_common::ChannelBandwidth::Cbw40,
                WlanGi::G_800NS,
                mcs_set.rx_mcs(),
            );
            if sgi_40 {
                self.add_supported_ht(
                    fidl_common::ChannelBandwidth::Cbw40,
                    WlanGi::G_400NS,
                    mcs_set.rx_mcs(),
                );
            }
        }

        debug!("TxStatsMap size: {}", self.tx_stats_map.len());
    }

    // SupportedMcsRx is 78 bits long in IEEE802.11-2016, Figure 9-334
    // In reality, devices implement MCS 0-31, sometimes 32, almost never beyond 32.
    fn add_supported_ht(
        &mut self,
        channel_bandwidth: fidl_common::ChannelBandwidth,
        gi: WlanGi,
        mcs_set: RxMcsBitmask,
    ) {
        let mut tx_stats_added = 0;
        for mcs_idx in 0..HT_NUM_MCS {
            if mcs_set.support(mcs_idx) {
                let tx_vector =
                    TxVector::new(fidl_common::WlanPhyType::Ht, gi, channel_bandwidth, mcs_idx)
                        .expect("Should be a valid TxVector");
                let tx_vector_idx = tx_vector.to_idx();
                let perfect_tx_time = tx_time_ht(channel_bandwidth, gi, mcs_idx);
                let tx_stats = TxStats { perfect_tx_time, ..TxStats::new(tx_vector_idx) };
                self.tx_stats_map.insert(tx_vector_idx, tx_stats);
                tx_stats_added += 1;
            }
        }
        debug!(
            "{} HTs added with channel_bandwidth={:?}, gi={:?}",
            tx_stats_added, channel_bandwidth, gi
        );
    }

    fn add_supported_erp(&mut self, rates: &[u8]) -> HashSet<TxVecIdx> {
        let mut tx_stats_added = 0;
        let basic_rates: HashSet<TxVecIdx> = rates
            .iter()
            .filter_map(|rate| {
                let rate = SupportedRate(*rate);
                let tx_vector = match TxVector::from_supported_rate(&rate) {
                    Ok(tx_vector) => Some(tx_vector),
                    Err(e) => {
                        error!("Could not create tx vector from supported rate: {}", e);
                        None
                    }
                }?;
                if tx_vector.phy() != fidl_common::WlanPhyType::Erp {
                    return None;
                }
                let tx_vector_idx = tx_vector.to_idx();
                self.tx_stats_map.insert(tx_vector_idx, erp_idx_stats(tx_vector_idx, rate));
                tx_stats_added += 1;
                if rate.basic() {
                    Some(tx_vector_idx)
                } else {
                    None
                }
            })
            .collect();
        debug!("{} ERP added.", tx_stats_added);
        if basic_rates.is_empty() {
            vec![TxVecIdx::new(ERP_START_IDX).unwrap()].into_iter().collect()
        } else {
            basic_rates
        }
    }

    fn update_stats(&mut self) {
        // Update all TxStats for known TxVecIdx.
        for tx_stats in self.tx_stats_map.values_mut() {
            if tx_stats.attempts_cur != 0 {
                let probability = tx_stats.success_cur as f32 / tx_stats.attempts_cur as f32;
                if tx_stats.attempts_total == 0 {
                    tx_stats.moving_avg_probability = probability;
                } else {
                    tx_stats.moving_avg_probability = tx_stats.moving_avg_probability
                        * MINSTREL_EXP_WEIGHT
                        + probability * (1.0 - MINSTREL_EXP_WEIGHT);
                }
                tx_stats.attempts_total += tx_stats.attempts_cur;
                tx_stats.success_total += tx_stats.success_cur;
                tx_stats.attempts_cur = 0;
                tx_stats.success_cur = 0;
                tx_stats.probe_cycles_skipped = 0;
            } else {
                tx_stats.probe_cycles_skipped = tx_stats.probe_cycles_skipped.saturating_add(1);
            }
            const NANOS_PER_SECOND: f32 = 1e9;
            // perfect_tx_time is always non-zero as guaranteed by add_supported_ht and add_supported_erp.
            tx_stats.expected_throughput = NANOS_PER_SECOND
                / tx_stats.perfect_tx_time.as_nanos() as f32
                * tx_stats.moving_avg_probability;
        }

        // Pick a random rate to start comparisons.
        let arbitrary_rate = match self.tx_stats_map.iter().next() {
            Some((tx_vec_idx, _)) => *tx_vec_idx,
            None => return, // There are no supported rates, so everything past here is pointless.
        };

        // Determine optimal data rates for throughput and reliability based on current network conditions.
        let mut best_expected_throughput = arbitrary_rate;
        let mut best_for_reliability = arbitrary_rate;
        let mut best_erp_for_reliability = self.highest_erp_rate;
        for (tx_vector_idx, tx_stats) in &self.tx_stats_map {
            // Unwraps are safe since max_tp and max_probability are taken from
            // iterating through tx_stats_map keys.
            let best_throughput_stats = self.tx_stats_map.get(&best_expected_throughput).unwrap();
            let best_reliability_stats = self.tx_stats_map.get(&best_for_reliability).unwrap();

            // Pick the data rate with the highest throughput. Prefer a better phy type (i.e. HT > ERP),
            // unless the better phy type has extremely poor performance.
            if (!tx_unlikely(tx_stats)
                && tx_stats.phy_type_strictly_preferred_over(best_throughput_stats))
                || (tx_stats.better_for_expected_throughput_than(best_throughput_stats)
                    && !(!tx_unlikely(best_throughput_stats)
                        && best_throughput_stats.phy_type_strictly_preferred_over(tx_stats)))
            {
                best_expected_throughput = *tx_vector_idx;
            }
            // Pick the data rate with the highest probability of transmission success. Prefer a better
            // phy type (i.e. HT > ERP), unless the better phy type has extremely poor performance.
            if (!tx_unlikely(tx_stats)
                && tx_stats.phy_type_strictly_preferred_over(best_reliability_stats))
                || (tx_stats.better_for_reliable_transmission_than(best_reliability_stats)
                    && !(!tx_unlikely(best_reliability_stats)
                        && best_reliability_stats.phy_type_strictly_preferred_over(tx_stats)))
            {
                best_for_reliability = *tx_vector_idx;
            }
            if let Some(best_erp_for_reliability) = best_erp_for_reliability.as_mut() {
                let best_erp_reliability_stats =
                    self.tx_stats_map.get(best_erp_for_reliability).unwrap();
                if self.erp_rates.contains(tx_vector_idx)
                    && tx_stats.better_for_reliable_transmission_than(best_erp_reliability_stats)
                {
                    *best_erp_for_reliability = *tx_vector_idx;
                }
            }
        }
        self.best_expected_throughput = Some(best_expected_throughput);
        self.best_for_reliability = Some(best_for_reliability);
        self.best_erp_for_reliability = best_erp_for_reliability;
    }

    fn get_tx_vector_idx(
        &mut self,
        needs_reliability: bool,
        probe_sequence: &ProbeSequence,
    ) -> Option<TxVecIdx> {
        if needs_reliability {
            self.best_for_reliability
        } else if self.num_pkt_until_next_probe > 0 {
            self.num_pkt_until_next_probe -= 1;
            self.best_expected_throughput
        } else {
            self.num_pkt_until_next_probe = PROBE_INTERVAL - 1;
            self.get_next_probe(probe_sequence)
        }
    }

    fn get_next_probe(&mut self, probe_sequence: &ProbeSequence) -> Option<TxVecIdx> {
        // We generally don't have any reason to switch to a rate with a lower throughput than
        // our most reliable rate. Limit the number of probes for any rate below this threshold.
        let slow_probe_cutoff = self.tx_stats_map.get(&self.best_for_reliability?)?.perfect_tx_time;
        if self.tx_stats_map.len() == 1 {
            return self.best_expected_throughput;
        }
        // Check each entry in the map once.
        for _ in 0..self.tx_stats_map.len() {
            let probe_idx = self.next_supported_probe_idx(probe_sequence);
            let tx_stats = self.tx_stats_map.get_mut(&probe_idx).unwrap();
            // Don't bother probing our current default indices, since we get data on them with every
            // non-probe frame.
            if Some(probe_idx) == self.best_erp_for_reliability.or(self.highest_erp_rate)
                || Some(probe_idx) == self.best_expected_throughput.or(self.best_for_reliability)
                // Don't probe the most-probed index.
                || tx_stats.attempts_cur > self.num_probe_cycles_done
                // Low throughput index, probe at most MAX_SLOW_PROBE times per update interval.
                || (tx_stats.perfect_tx_time > slow_probe_cutoff
                    && tx_stats.attempts_cur >= MAX_SLOW_PROBE)
                // Low probability of success, only probe occasionally.
                || (tx_unlikely(tx_stats)
                    && (tx_stats.probe_cycles_skipped < DEAD_PROBE_CYCLE_COUNT
                        || tx_stats.attempts_cur > 0))
            {
                continue;
            }
            self.probes_total += 1;
            tx_stats.probes_total += 1;
            return Some(probe_idx);
        }
        return self.best_expected_throughput;
    }

    // This is not safe to call unless tx_stats_map.len() > 0
    fn next_supported_probe_idx(&mut self, probe_sequence: &ProbeSequence) -> TxVecIdx {
        assert!(
            !self.tx_stats_map.is_empty(),
            "Cannot call next_supported_probe_idx with empty tx_stats_map"
        );

        loop {
            let idx = probe_sequence.next(&mut self.probe_entry);
            if self.probe_entry.cycle_complete() {
                self.num_probe_cycles_done += 1;
            }
            if self.tx_stats_map.contains_key(&idx) {
                return idx;
            }
        }
    }
}

fn tx_unlikely(tx_stats: &TxStats) -> bool {
    tx_stats.moving_avg_probability < 1.0 - MINSTREL_PROBABILITY_THRESHOLD
}

pub trait TimerManager {
    fn schedule(&mut self, from_now: Duration);
    fn cancel(&mut self);
}

/// MinstrelRateSelector is responsible for handling data rate selection on frame transmission for
/// SoftMAC WLAN interfaces. It stores observed behavior for various compatible data rates,
/// and uses intermittent probes to ensure that we continue to use the data rates with
/// highest throughput and transmission success rate.
///
/// Some SoftMAC devices may provide their own rate selection implementations. In these cases,
/// Minstrel may be used to collect and forward data rate statistics to upper stack layers.
pub struct MinstrelRateSelector<T: TimerManager> {
    timer_manager: T,
    update_interval: Duration,
    probe_sequence: ProbeSequence,
    peer_map: HashMap<MacAddr, Peer>,
    outdated_peers: HashSet<MacAddr>,
}

impl<T: TimerManager> MinstrelRateSelector<T> {
    pub fn new(timer_manager: T, update_interval: Duration, probe_sequence: ProbeSequence) -> Self {
        Self {
            timer_manager,
            update_interval,
            probe_sequence,
            peer_map: Default::default(),
            outdated_peers: Default::default(),
        }
    }

    pub fn add_peer(
        &mut self,
        assoc_cfg: &fidl_softmac::WlanAssociationConfig,
    ) -> Result<(), zx::Status> {
        let bssid: MacAddr = match assoc_cfg.bssid {
            None => {
                error!("Attempted to add peer with no BSSID.");
                return Err(zx::Status::INTERNAL);
            }
            Some(bssid) => bssid.into(),
        };
        if self.peer_map.contains_key(&bssid) {
            error!("Attempted to add peer {} twice.", &bssid);
        } else {
            let mut peer = Peer::from_assoc_cfg(assoc_cfg)?;
            if self.peer_map.is_empty() {
                self.timer_manager.schedule(self.update_interval);
            }
            peer.update_stats();
            self.peer_map.insert(bssid, peer);
        }
        Ok(())
    }

    pub fn remove_peer(&mut self, addr: &MacAddr) {
        self.outdated_peers.remove(addr);
        match self.peer_map.remove(addr) {
            Some(_) => debug!("Peer {} removed.", addr),
            None => debug!("Cannot remove peer {}, not found.", addr),
        }
        if self.peer_map.is_empty() {
            self.timer_manager.cancel();
        }
    }

    pub fn handle_tx_result_report(&mut self, tx_result: &fidl_common::WlanTxResult) {
        let peer_addr: MacAddr = tx_result.peer_addr.into();
        match self.peer_map.get_mut(&peer_addr) {
            Some(peer) => {
                peer.handle_tx_result_report(tx_result);
                self.outdated_peers.insert(peer_addr);
            }
            None => {
                debug!("Peer {} received tx status report after it was removed.", peer_addr);
            }
        }
    }

    fn update_stats(&mut self) {
        for outdated_peer in self.outdated_peers.drain() {
            self.peer_map.get_mut(&outdated_peer).map(|peer| peer.update_stats());
        }
    }

    pub fn handle_timeout(&mut self) {
        // Reschedule our timer so we keep updating in a loop.
        self.timer_manager.schedule(self.update_interval);
        self.update_stats();
    }

    pub fn get_tx_vector_idx(
        &mut self,
        frame_control: &FrameControl,
        peer_addr: &MacAddr,
        flags: fidl_softmac::WlanTxInfoFlags,
    ) -> Option<TxVecIdx> {
        match self.peer_map.get_mut(peer_addr) {
            None => TxVecIdx::new(ERP_START_IDX + ERP_NUM_TX_VECTOR as u16 - 1),
            Some(peer) => {
                if frame_control.is_data() {
                    let needs_reliability =
                        flags.contains(fidl_softmac::WlanTxInfoFlags::FAVOR_RELIABILITY);
                    peer.get_tx_vector_idx(needs_reliability, &self.probe_sequence)
                } else {
                    peer.best_erp_for_reliability
                }
            }
        }
    }

    pub fn get_fidl_peers(&self) -> fidl_minstrel::Peers {
        fidl_minstrel::Peers {
            addrs: self.peer_map.iter().map(|(peer, _)| peer.to_array()).collect(),
        }
    }

    pub fn get_fidl_peer_stats(
        &self,
        peer_addr: &MacAddr,
    ) -> Result<fidl_minstrel::Peer, zx::Status> {
        let peer = self.peer_map.get(peer_addr).ok_or(zx::Status::NOT_FOUND)?;
        Ok(fidl_minstrel::Peer {
            addr: peer_addr.to_array(),
            max_tp: tx_vec_idx_opt_to_u16(&peer.best_expected_throughput),
            max_probability: tx_vec_idx_opt_to_u16(&peer.best_for_reliability),
            basic_highest: tx_vec_idx_opt_to_u16(&peer.highest_erp_rate),
            basic_max_probability: tx_vec_idx_opt_to_u16(&peer.best_erp_for_reliability),
            probes: peer.probes_total,
            entries: peer.tx_stats_map.iter().map(|(_, entry)| entry.into()).collect(),
        })
    }

    pub fn is_active(&self) -> bool {
        !self.peer_map.is_empty()
    }
}

fn tx_vec_idx_opt_to_u16(tx_vec_idx: &Option<TxVecIdx>) -> u16 {
    match tx_vec_idx {
        Some(idx) => **idx,
        None => 0,
    }
}

fn tx_time_ht(
    channel_bandwidth: fidl_common::ChannelBandwidth,
    gi: WlanGi,
    relative_mcs_idx: u8,
) -> Duration {
    header_tx_time_ht() + payload_tx_time_ht(channel_bandwidth, gi, relative_mcs_idx)
}

fn header_tx_time_ht() -> Duration {
    // TODO(https://fxbug.dev/42162502): Implement Plcp preamble and header
    Duration::ZERO
}

// relative_mcs_idx is the index for combination of (modulation, coding rate)
// tuple when listed in the same order as MCS Index, without nss. i.e. 0: BPSK,
// 1/2 1: QPSK, 1/2 2: QPSK, 3/4 3: 16-QAM, 1/2 4: 16-QAM, 3/4 5: 64-QAM, 2/3 6:
// 64-QAM, 3/4 7: 64-QAM, 5/6 8: 256-QAM, 3/4 (since VHT) 9: 256-QAM, 5/6 (since
// VHT)
fn payload_tx_time_ht(
    channel_bandwidth: fidl_common::ChannelBandwidth,
    gi: WlanGi,
    mcs_idx: u8,
) -> Duration {
    // N_{dbps} as defined in IEEE 802.11-2016 Table 19-26
    // Unit: Number of data bits per OFDM symbol (20 MHz channel width)
    const BITS_PER_SYMBOL_LIST: [u16; HT_NUM_UNIQUE_MCS as usize + /* since VHT */ 2] =
        [26, 52, 78, 104, 156, 208, 234, 260, /* since VHT */ 312, 347];
    // N_{sd} as defined in IEEE 802.11-2016 Table 19-26
    // Unit: Number of complex data numbers per spatial stream per OFDM symbol (20 MHz)
    const DATA_SUB_CARRIERS_20: u16 = 52;
    // Unit: Number of complex data numbers per spatial stream per OFDM symbol (40 MHz)
    const DATA_SUB_CARRIERS_40: u16 = 108;
    // TODO(https://fxbug.dev/42104244): VHT would have kDataSubCarriers80 = 234 and kDataSubCarriers160 = 468

    let nss = 1 + mcs_idx / HT_NUM_UNIQUE_MCS;
    let relative_mcs_idx = mcs_idx % HT_NUM_UNIQUE_MCS;
    let bits_per_symbol = if channel_bandwidth == fidl_common::ChannelBandwidth::Cbw40 {
        BITS_PER_SYMBOL_LIST[relative_mcs_idx as usize] * DATA_SUB_CARRIERS_40
            / DATA_SUB_CARRIERS_20
    } else {
        BITS_PER_SYMBOL_LIST[relative_mcs_idx as usize]
    };

    const TX_TIME_PER_SYMBOL_GI_800: Duration = Duration::from_nanos(4000);
    const TX_TIME_PER_SYMBOL_GI_400: Duration = Duration::from_nanos(3600);
    const TX_TIME_PADDING_GI_400: Duration = Duration::from_nanos(800);

    // Perform multiplication before division to prevent precision loss
    match gi {
        WlanGi::G_400NS => {
            TX_TIME_PADDING_GI_400
                + (TX_TIME_PER_SYMBOL_GI_400 * 8 * MINSTREL_FRAME_LENGTH)
                    / (nss as u32 * bits_per_symbol as u32)
        }
        WlanGi::G_800NS => {
            (TX_TIME_PER_SYMBOL_GI_800 * 8 * MINSTREL_FRAME_LENGTH)
                / (nss as u32 * bits_per_symbol as u32)
        }
        _ => panic!("payload_tx_time_ht is invalid for non-ht phy"),
    }
}

fn tx_time_erp(rate: &SupportedRate) -> Duration {
    header_tx_time_erp() + payload_tx_time_erp(rate)
}

fn header_tx_time_erp() -> Duration {
    // TODO(https://fxbug.dev/42162502): Implement Plcp preamble and header
    Duration::ZERO
}

fn payload_tx_time_erp(rate: &SupportedRate) -> Duration {
    // D_{bps} as defined in IEEE 802.11-2016 Table 17-4
    // Unit: Number of data bits per OFDM symbol
    let bits_per_symbol = rate.rate() * 2;
    const TX_TIME_PER_SYMBOL: Duration = Duration::from_nanos(4000);
    TX_TIME_PER_SYMBOL * 8 * MINSTREL_FRAME_LENGTH / bits_per_symbol as u32
}

fn erp_idx_stats(tx_vector_idx: TxVecIdx, rate: SupportedRate) -> TxStats {
    let perfect_tx_time = tx_time_erp(&rate);
    TxStats { perfect_tx_time, ..TxStats::new(tx_vector_idx) }
}

#[cfg(test)]
mod tests {
    use super::*;
    use fidl_fuchsia_wlan_common as fidl_common;
    use lazy_static::lazy_static;
    use std::sync::{Arc, Mutex};
    use wlan_common::ie::{ChanWidthSet, HtCapabilityInfo};
    use wlan_common::mac::FrameType;
    use wlan_common::tx_vector::HT_START_IDX;

    struct MockTimerManager {
        scheduled: Arc<Mutex<Option<Duration>>>,
    }

    impl TimerManager for MockTimerManager {
        fn schedule(&mut self, from_now: Duration) {
            let mut scheduled = self.scheduled.lock().unwrap();
            scheduled.replace(from_now);
        }
        fn cancel(&mut self) {
            let mut scheduled = self.scheduled.lock().unwrap();
            scheduled.take();
        }
    }

    fn mock_minstrel() -> (MinstrelRateSelector<MockTimerManager>, Arc<Mutex<Option<Duration>>>) {
        let timer = Arc::new(Mutex::new(None));
        let timer_manager = MockTimerManager { scheduled: timer.clone() };
        let update_interval = Duration::from_micros(100);
        let probe_sequence = ProbeSequence::sequential();
        (MinstrelRateSelector::new(timer_manager, update_interval, probe_sequence), timer)
    }

    lazy_static! {
        static ref TEST_MAC_ADDR: MacAddr = MacAddr::from([50, 53, 51, 56, 55, 52]);
    }

    const BASIC_RATE_BIT: u8 = 0b10000000;

    fn ht_assoc_cfg() -> fidl_softmac::WlanAssociationConfig {
        let mut ht_cap = wlan_common::ie::fake_ht_capabilities();
        let mut ht_cap_info = HtCapabilityInfo(0);
        ht_cap_info.set_short_gi_40(true);
        ht_cap_info.set_short_gi_20(true);
        ht_cap_info.set_chan_width_set(ChanWidthSet::TWENTY_FORTY);
        ht_cap.ht_cap_info = ht_cap_info;
        ht_cap.mcs_set.0 = 0xffff; // Enable MCS 0-15

        fidl_softmac::WlanAssociationConfig {
            bssid: Some(TEST_MAC_ADDR.to_array()),
            aid: Some(42),
            listen_interval: Some(0),
            channel: Some(fidl_common::WlanChannel {
                primary: 149,
                cbw: fidl_common::ChannelBandwidth::Cbw40,
                secondary80: 0,
            }),
            qos: Some(true),
            wmm_params: None,
            rates: Some(vec![
                2,
                4,
                11,
                22,
                12 | BASIC_RATE_BIT,
                18,
                24,
                36,
                48,
                72,
                96,
                108 | BASIC_RATE_BIT,
            ]),
            capability_info: Some(0),
            ht_cap: Some(ht_cap.into()),
            ht_op: None,
            vht_cap: None,
            vht_op: None,
            ..Default::default()
        }
    }

    #[test]
    fn peer_from_assoc_cfg() {
        let assoc_cfg = ht_assoc_cfg();
        let peer = Peer::from_assoc_cfg(&assoc_cfg)
            .expect("Failed to convert WlanAssociationConfig into Peer.");
        assert_eq!(peer.addr, assoc_cfg.bssid.unwrap().into());
        assert_eq!(peer.tx_stats_map.len(), 24);
        let mut peer_rates = peer
            .tx_stats_map
            .keys()
            .into_iter()
            .map(|tx_vector_idx| **tx_vector_idx)
            .collect::<Vec<u16>>();
        peer_rates.sort();
        assert_eq!(
            peer_rates,
            vec![
                1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, // HT rates
                129, 130, 131, 132, 133, 134, 135, 136, // ERP rates
            ]
        );
        let mut peer_erp_rates =
            peer.erp_rates.iter().map(|tx_vector_idx| **tx_vector_idx).collect::<Vec<u16>>();
        peer_erp_rates.sort();
        let expected_basic_rate_1 =
            TxVector::from_supported_rate(&SupportedRate(12 | BASIC_RATE_BIT)).unwrap().to_idx();
        let expected_basic_rate_2 =
            TxVector::from_supported_rate(&SupportedRate(108 | BASIC_RATE_BIT)).unwrap().to_idx();
        assert_eq!(peer_erp_rates, vec![*expected_basic_rate_1, *expected_basic_rate_2]);
        assert_eq!(peer.highest_erp_rate, TxVecIdx::new(136));
    }

    #[test]
    fn add_peer() {
        let (mut minstrel, timer) = mock_minstrel();
        assert!(timer.lock().unwrap().is_none()); // No timer is scheduled.
        minstrel.add_peer(&ht_assoc_cfg()).expect("Failed to add peer.");
        assert!(timer.lock().unwrap().is_some()); // A timer is scheduled.

        let peers = minstrel.get_fidl_peers();
        assert_eq!(peers.addrs.len(), 1);

        let peer_addr: MacAddr = {
            let mut peer_addr = [0u8; 6];
            peer_addr.copy_from_slice(&peers.addrs[0][..]);
            peer_addr.into()
        };
        let peer_stats =
            minstrel.get_fidl_peer_stats(&peer_addr).expect("Failed to get peer stats");
        assert_eq!(&peer_stats.addr, TEST_MAC_ADDR.as_array());
        // TODO(https://fxbug.dev/42103418): Size would be 40 if 40 MHz is supported and 72 if 40 MHz + SGI are supported.
        assert_eq!(peer_stats.entries.len(), 24);
        assert_eq!(peer_stats.max_tp, 16); // In the absence of data, our highest supported rate is max throughput.
        assert_eq!(peer_stats.basic_highest, ERP_START_IDX + ERP_NUM_TX_VECTOR as u16 - 1);
        assert_eq!(peer_stats.basic_max_probability, ERP_START_IDX + ERP_NUM_TX_VECTOR as u16 - 1);
    }

    #[test]
    fn remove_peer() {
        let (mut minstrel, timer) = mock_minstrel();
        minstrel.add_peer(&ht_assoc_cfg()).expect("Failed to add peer.");
        assert_eq!(minstrel.get_fidl_peers().addrs.len(), 1);
        assert!(timer.lock().unwrap().is_some()); // A timer is scheduled.

        minstrel.remove_peer(&TEST_MAC_ADDR);
        assert!(timer.lock().unwrap().is_none()); // No more peers -- timer cancelled.

        assert!(minstrel.get_fidl_peers().addrs.is_empty());
        assert_eq!(minstrel.get_fidl_peer_stats(&TEST_MAC_ADDR), Err(zx::Status::NOT_FOUND));
    }

    #[test]
    fn remove_second_peer() {
        let (mut minstrel, timer) = mock_minstrel();
        minstrel.add_peer(&ht_assoc_cfg()).expect("Failed to add peer.");
        let mut peer2 = ht_assoc_cfg();
        peer2.bssid = Some([11, 12, 13, 14, 15, 16]);
        minstrel.add_peer(&peer2).expect("Failed to add peer.");
        assert_eq!(minstrel.get_fidl_peers().addrs.len(), 2);
        assert!(timer.lock().unwrap().is_some()); // A timer is scheduled.

        minstrel.remove_peer(&TEST_MAC_ADDR);
        assert_eq!(minstrel.get_fidl_peers().addrs.len(), 1);
        assert!(timer.lock().unwrap().is_some()); // A timer is still scheduled.

        assert_eq!(minstrel.get_fidl_peer_stats(&TEST_MAC_ADDR), Err(zx::Status::NOT_FOUND));
        assert!(minstrel.get_fidl_peer_stats(&peer2.bssid.unwrap().into()).is_ok());
    }

    /// Helper fn to easily create tx result reports.
    fn make_tx_result(entries: Vec<(u16, u8)>, success: bool) -> fidl_common::WlanTxResult {
        assert!(entries.len() <= 8);
        let mut tx_result_entry =
            [fidl_common::WlanTxResultEntry { tx_vector_idx: 0, attempts: 0 }; 8];
        tx_result_entry[0..entries.len()].copy_from_slice(
            &entries
                .into_iter()
                .map(|(tx_vector_idx, attempts)| fidl_common::WlanTxResultEntry {
                    tx_vector_idx,
                    attempts,
                })
                .collect::<Vec<fidl_common::WlanTxResultEntry>>()[..],
        );
        let result_code = if success {
            fidl_common::WlanTxResultCode::Success
        } else {
            fidl_common::WlanTxResultCode::Failed
        };
        fidl_common::WlanTxResult {
            tx_result_entry,
            peer_addr: TEST_MAC_ADDR.to_array(),
            result_code,
        }
    }

    #[test]
    fn handle_tx_result_reports() {
        // Indicate that we failed to transmit on rates 16-14 and succeeded on 13.
        let tx_result = make_tx_result(vec![(16, 1), (15, 1), (14, 1), (13, 1)], true);

        let (mut minstrel, _timer) = mock_minstrel();
        minstrel.add_peer(&ht_assoc_cfg()).expect("Failed to add peer.");
        minstrel.handle_tx_result_report(&tx_result);

        // Stats are not updated until after the timer fires.
        let peer_stats =
            minstrel.get_fidl_peer_stats(&TEST_MAC_ADDR).expect("Failed to get peer stats");
        assert_eq!(peer_stats.max_tp, 16);

        minstrel.handle_timeout();
        let peer_stats =
            minstrel.get_fidl_peer_stats(&TEST_MAC_ADDR).expect("Failed to get peer stats");
        assert_eq!(peer_stats.max_tp, 13);
        assert_eq!(peer_stats.max_probability, 13);

        let tx_result = make_tx_result(vec![(13, 1), (9, 1)], true);

        for _ in 0..10 {
            minstrel.handle_tx_result_report(&tx_result);
            minstrel.handle_timeout();
            let peer_stats =
                minstrel.get_fidl_peer_stats(&TEST_MAC_ADDR).expect("Failed to get peer stats");
            assert_eq!(peer_stats.max_probability, 9);
        }
        // We switch both max_probability and max_tp to rate 9 after enough observed failures on rate 13.
        let peer_stats =
            minstrel.get_fidl_peer_stats(&TEST_MAC_ADDR).expect("Failed to get peer stats");
        assert_eq!(peer_stats.max_probability, 9);
        assert_eq!(peer_stats.max_tp, 9);
    }

    #[test]
    fn ht_rates_preferred() {
        let ht_tx_result_failed = make_tx_result(
            vec![
                (HT_START_IDX + 15, 1),
                (HT_START_IDX + 14, 1),
                (HT_START_IDX + 13, 1),
                (HT_START_IDX + 12, 1),
                (HT_START_IDX + 11, 1),
                (HT_START_IDX + 10, 1),
                (HT_START_IDX + 9, 1),
                (HT_START_IDX + 8, 1),
            ],
            false,
        );
        let ht_tx_result_success = make_tx_result(
            vec![
                (HT_START_IDX + 7, 1),
                (HT_START_IDX + 6, 1),
                (HT_START_IDX + 5, 1),
                (HT_START_IDX + 4, 1),
                (HT_START_IDX + 3, 1),
                (HT_START_IDX + 2, 1),
                (HT_START_IDX + 1, 1),
                // MCS 0 succeeds with success probability 11% (1/9).
                // This is greater than the cutoff of 1.0 - MINSTREL_PROBABILITY_THRESHOLD == 0.1.
                (HT_START_IDX + 0, 9),
            ],
            true,
        );
        // Highest ERP rate succeeds with 100% probability.
        let erp_tx_result_success =
            make_tx_result(vec![(ERP_START_IDX + ERP_NUM_TX_VECTOR as u16 - 1, 1)], true);

        let (mut minstrel, _timer) = mock_minstrel();
        minstrel.add_peer(&ht_assoc_cfg()).expect("Failed to add peer.");
        minstrel.handle_tx_result_report(&ht_tx_result_failed);
        minstrel.handle_tx_result_report(&ht_tx_result_success);
        minstrel.handle_tx_result_report(&erp_tx_result_success);
        minstrel.handle_timeout();

        let peer_stats =
            minstrel.get_fidl_peer_stats(&TEST_MAC_ADDR).expect("Failed to get peer stats");
        // HT should be selected over ERP for max_tp and max_probability despite lower performance.
        assert_eq!(peer_stats.max_probability, HT_START_IDX);
        assert_eq!(peer_stats.max_tp, HT_START_IDX);
    }

    #[test]
    fn add_missing_rates() {
        let (mut minstrel, _timer) = mock_minstrel();
        let mut assoc_cfg = ht_assoc_cfg();
        // Remove top rates 96 and 108 from the supported list.
        let reduced_supported_rates = vec![2, 4, 11, 22, 12, 18, 24, 36, 48, 72];
        assoc_cfg.rates = Some(reduced_supported_rates);
        minstrel.add_peer(&assoc_cfg).expect("Failed to add peer.");

        let rate_108 = ERP_START_IDX + ERP_NUM_TX_VECTOR as u16 - 1; // ERP, CBW20, GI 800 ns
        let rate_72 = ERP_START_IDX + ERP_NUM_TX_VECTOR as u16 - 3;

        // We should not have any stats for rate 108.
        let peer_stats =
            minstrel.get_fidl_peer_stats(&TEST_MAC_ADDR).expect("Failed to get peer stats");
        assert!(!peer_stats.entries.iter().any(|entry| entry.tx_vector_idx == rate_108));

        // Fail transmission at unsupported rate 108, then succeed at 72.
        let tx_result = make_tx_result(vec![(rate_108, 1), (rate_72, 1)], true);
        minstrel.handle_tx_result_report(&tx_result);
        // Despite failure, we should now have stats for rate 108.
        let peer_stats =
            minstrel.get_fidl_peer_stats(&TEST_MAC_ADDR).expect("Failed to get peer stats");
        assert!(peer_stats.entries.iter().any(|entry| entry.tx_vector_idx == rate_108));
    }

    #[track_caller]
    fn expect_probe_order(
        minstrel: &mut MinstrelRateSelector<MockTimerManager>,
        expected_probes: &[u16],
    ) {
        let mut probes_iter = expected_probes.iter();
        let max_tp =
            minstrel.get_fidl_peer_stats(&TEST_MAC_ADDR).expect("Failed to get peer stats").max_tp;
        let mut fc = FrameControl(0);
        fc.set_frame_type(FrameType::DATA);
        let flags = fidl_softmac::WlanTxInfoFlags::empty();

        for i in 0..(PROBE_INTERVAL as usize * expected_probes.len()) {
            let tx_vec_idx = minstrel.get_tx_vector_idx(&fc, &TEST_MAC_ADDR, flags);
            if i % PROBE_INTERVAL as usize == PROBE_INTERVAL as usize - 1 {
                // We expect a probe now.
                assert_eq!(*tx_vec_idx.unwrap(), *probes_iter.next().unwrap());
            } else {
                assert_eq!(*tx_vec_idx.unwrap(), max_tp);
            }
        }
    }

    #[test]
    fn expected_probe_order() {
        let (mut minstrel, _timer) = mock_minstrel();
        minstrel.add_peer(&ht_assoc_cfg()).expect("Failed to add peer.");

        // We do not expect to probe rate 16 since it's max throughput,
        // or probe rate 136 since it's the highest basic rate.
        const EXPECTED_PROBES: [u16; 22] = [
            1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 16 ,*/
            129, 130, 131, 132, 133, 134, 135, /* 136 */
        ];

        expect_probe_order(&mut minstrel, &EXPECTED_PROBES[..]);
    }

    #[test]
    fn skip_seen_probes() {
        let (mut minstrel, _timer) = mock_minstrel();
        minstrel.add_peer(&ht_assoc_cfg()).expect("Failed to add peer.");
        let tx_result = make_tx_result(vec![(16, 1), (15, 1), (14, 1)], true);
        minstrel.handle_tx_result_report(&tx_result);
        let tx_result = make_tx_result(vec![(13, 1)], true);
        minstrel.handle_tx_result_report(&tx_result);

        // We skip rates 13-16 since we've recently attempted tx on them.
        const UPDATED_PROBES: [u16; 19] = [
            1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, /* 13, 14, 15, 16, */ 129, 130, 131, 132,
            133, 134, 135, /* 136 */
        ];

        expect_probe_order(&mut minstrel, &UPDATED_PROBES[..]);

        // Increment the probe cycle.
        minstrel.handle_timeout();

        // We skip 14 since it's now our max_tp and 15-16 since they're low probability.
        // We probe 13 since we haven't attempted tx in the last probe cycle.
        const UPDATED_PROBES_2: [u16; 20] = [
            1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, /* 14, 15, 16, */ 129, 130, 131, 132,
            133, 134, 135, /* 136 */
        ];

        expect_probe_order(&mut minstrel, &UPDATED_PROBES_2[..]);
    }

    #[test]
    fn dead_probe_cycle_count() {
        let (mut minstrel, _timer) = mock_minstrel();
        minstrel.add_peer(&ht_assoc_cfg()).expect("Failed to add peer.");
        let tx_result = make_tx_result(vec![(16, 1), (15, 1), (14, 1)], true);
        minstrel.handle_tx_result_report(&tx_result);
        minstrel.handle_timeout();

        // Probe rates 15 and 16 now have low probability and will not be probed.
        const EXPECTED_PROBES: [u16; 20] = [
            1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, /* 14, 15, 16, */ 129, 130, 131, 132,
            133, 134, 135, /* 136 */
        ];
        expect_probe_order(&mut minstrel, &EXPECTED_PROBES[..]);

        for _ in 0..DEAD_PROBE_CYCLE_COUNT as usize {
            // Repeatedly increment probe_cycles_skipped for all rates.
            minstrel.outdated_peers.insert(*TEST_MAC_ADDR);
            minstrel.handle_timeout();
        }

        // We've passed enough cycles to probe rates 15 and 16 despite a 0% observed success rate.
        const EXPECT_DEAD_PROBES: [u16; 22] = [
            1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, /* 14, */ 15, 16, 129, 130, 131, 132,
            133, 134, 135, /* 136 */
        ];
        expect_probe_order(&mut minstrel, &EXPECT_DEAD_PROBES[..]);
    }

    #[test]
    fn max_slow_probe() {
        let (mut minstrel, _timer) = mock_minstrel();
        minstrel.add_peer(&ht_assoc_cfg()).expect("Failed to add peer.");
        // Rate 16 is max_tp, max_probability, and 100% success rate.
        minstrel.handle_tx_result_report(&make_tx_result(vec![(16, 1)], true));
        minstrel.handle_timeout();

        const EXPECTED_PROBES: [u16; 22] = [
            1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 16, */ 129, 130, 131, 132,
            133, 134, 135, /* 136 */
        ];
        for _ in 0..MAX_SLOW_PROBE {
            // Probe rate 1 MAX_SLOW_PROBE times, incrementing num_probe_cycles_done as we go.
            expect_probe_order(&mut minstrel, &EXPECTED_PROBES[..]);
            minstrel.handle_tx_result_report(&make_tx_result(vec![(1, 1)], true));
        }

        // We should no longer probe rate 1 since it is slow compared to our selected rate 16.
        const NEW_EXPECTED_PROBES: [u16; 21] = [
            /*1, */ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, /* 16, */ 129, 130,
            131, 132, 133, 134, 135, /* 136 */
        ];
        expect_probe_order(&mut minstrel, &NEW_EXPECTED_PROBES[..]);

        // After a timeout we probe rate 1 again.
        minstrel.handle_timeout();
        expect_probe_order(&mut minstrel, &EXPECTED_PROBES[..]);
    }

    #[track_caller]
    fn assert_data_rate(
        channel_bandwidth: fidl_common::ChannelBandwidth,
        gi: WlanGi,
        relative_mcs_idx: u8,
        expected_mbit_per_second: f64,
    ) {
        let tx_time = tx_time_ht(channel_bandwidth, gi, relative_mcs_idx);
        const BYTES_PER_MBIT: f64 = 125000.0;
        let mut expected_tx_time =
            (MINSTREL_FRAME_LENGTH as f64 / BYTES_PER_MBIT) / expected_mbit_per_second;
        if gi == WlanGi::G_400NS {
            // Add 800ns test interval for short gap tx times. This becomes significant at high data rates.
            expected_tx_time += Duration::from_nanos(800).as_secs_f64();
        }
        let actual_tx_time = tx_time.as_secs_f64();
        let ratio = expected_tx_time / actual_tx_time;
        assert!(ratio < 1.01 && ratio > 0.99);
    }

    #[test]
    fn tx_time_ht_approx_values_cbw20() {
        // IEEE 802.11-2016 Tables 19-27 through 19-30 list data rates for CBW20. We test a sample here.
        assert_data_rate(fidl_common::ChannelBandwidth::Cbw20, WlanGi::G_800NS, 0, 6.5);
        assert_data_rate(fidl_common::ChannelBandwidth::Cbw20, WlanGi::G_400NS, 0, 7.2);
        assert_data_rate(fidl_common::ChannelBandwidth::Cbw20, WlanGi::G_800NS, 8, 13.0);
        assert_data_rate(fidl_common::ChannelBandwidth::Cbw20, WlanGi::G_400NS, 8, 14.4);
        assert_data_rate(fidl_common::ChannelBandwidth::Cbw20, WlanGi::G_800NS, 31, 260.0);
        assert_data_rate(fidl_common::ChannelBandwidth::Cbw20, WlanGi::G_400NS, 31, 288.9);
    }

    #[test]
    fn tx_time_ht_approx_values_cbw40() {
        // IEEE 802.11-2016 Tables 19-32 through 19-34 list data rates for CBW40. We test a sample here.
        assert_data_rate(fidl_common::ChannelBandwidth::Cbw40, WlanGi::G_800NS, 0, 13.5);
        assert_data_rate(fidl_common::ChannelBandwidth::Cbw40, WlanGi::G_400NS, 0, 15.0);
        assert_data_rate(fidl_common::ChannelBandwidth::Cbw40, WlanGi::G_800NS, 8, 27.0);
        assert_data_rate(fidl_common::ChannelBandwidth::Cbw40, WlanGi::G_400NS, 8, 30.0);
        assert_data_rate(fidl_common::ChannelBandwidth::Cbw40, WlanGi::G_800NS, 31, 540.0);
        assert_data_rate(fidl_common::ChannelBandwidth::Cbw40, WlanGi::G_400NS, 31, 600.0);
    }
}