crossbeam_epoch/sync/
queue.rs

1//! Michael-Scott lock-free queue.
2//!
3//! Usable with any number of producers and consumers.
4//!
5//! Michael and Scott.  Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue
6//! Algorithms.  PODC 1996.  <http://dl.acm.org/citation.cfm?id=248106>
7//!
8//! Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. 2004b. Formal Verification of a
9//! Practical Lock-Free Queue Algorithm. <https://doi.org/10.1007/978-3-540-30232-2_7>
10
11use core::mem::MaybeUninit;
12use core::sync::atomic::Ordering::{Acquire, Relaxed, Release};
13
14use crossbeam_utils::CachePadded;
15
16use crate::{unprotected, Atomic, Guard, Owned, Shared};
17
18// The representation here is a singly-linked list, with a sentinel node at the front. In general
19// the `tail` pointer may lag behind the actual tail. Non-sentinel nodes are either all `Data` or
20// all `Blocked` (requests for data from blocked threads).
21#[derive(Debug)]
22pub(crate) struct Queue<T> {
23    head: CachePadded<Atomic<Node<T>>>,
24    tail: CachePadded<Atomic<Node<T>>>,
25}
26
27struct Node<T> {
28    /// The slot in which a value of type `T` can be stored.
29    ///
30    /// The type of `data` is `MaybeUninit<T>` because a `Node<T>` doesn't always contain a `T`.
31    /// For example, the sentinel node in a queue never contains a value: its slot is always empty.
32    /// Other nodes start their life with a push operation and contain a value until it gets popped
33    /// out. After that such empty nodes get added to the collector for destruction.
34    data: MaybeUninit<T>,
35
36    next: Atomic<Node<T>>,
37}
38
39// Any particular `T` should never be accessed concurrently, so no need for `Sync`.
40unsafe impl<T: Send> Sync for Queue<T> {}
41unsafe impl<T: Send> Send for Queue<T> {}
42
43impl<T> Queue<T> {
44    /// Create a new, empty queue.
45    pub(crate) fn new() -> Queue<T> {
46        let q = Queue {
47            head: CachePadded::new(Atomic::null()),
48            tail: CachePadded::new(Atomic::null()),
49        };
50        let sentinel = Owned::new(Node {
51            data: MaybeUninit::uninit(),
52            next: Atomic::null(),
53        });
54        unsafe {
55            let guard = unprotected();
56            let sentinel = sentinel.into_shared(guard);
57            q.head.store(sentinel, Relaxed);
58            q.tail.store(sentinel, Relaxed);
59            q
60        }
61    }
62
63    /// Attempts to atomically place `n` into the `next` pointer of `onto`, and returns `true` on
64    /// success. The queue's `tail` pointer may be updated.
65    #[inline(always)]
66    fn push_internal(
67        &self,
68        onto: Shared<'_, Node<T>>,
69        new: Shared<'_, Node<T>>,
70        guard: &Guard,
71    ) -> bool {
72        // is `onto` the actual tail?
73        let o = unsafe { onto.deref() };
74        let next = o.next.load(Acquire, guard);
75        if unsafe { next.as_ref().is_some() } {
76            // if not, try to "help" by moving the tail pointer forward
77            let _ = self
78                .tail
79                .compare_exchange(onto, next, Release, Relaxed, guard);
80            false
81        } else {
82            // looks like the actual tail; attempt to link in `n`
83            let result = o
84                .next
85                .compare_exchange(Shared::null(), new, Release, Relaxed, guard)
86                .is_ok();
87            if result {
88                // try to move the tail pointer forward
89                let _ = self
90                    .tail
91                    .compare_exchange(onto, new, Release, Relaxed, guard);
92            }
93            result
94        }
95    }
96
97    /// Adds `t` to the back of the queue, possibly waking up threads blocked on `pop`.
98    pub(crate) fn push(&self, t: T, guard: &Guard) {
99        let new = Owned::new(Node {
100            data: MaybeUninit::new(t),
101            next: Atomic::null(),
102        });
103        let new = Owned::into_shared(new, guard);
104
105        loop {
106            // We push onto the tail, so we'll start optimistically by looking there first.
107            let tail = self.tail.load(Acquire, guard);
108
109            // Attempt to push onto the `tail` snapshot; fails if `tail.next` has changed.
110            if self.push_internal(tail, new, guard) {
111                break;
112            }
113        }
114    }
115
116    /// Attempts to pop a data node. `Ok(None)` if queue is empty; `Err(())` if lost race to pop.
117    #[inline(always)]
118    fn pop_internal(&self, guard: &Guard) -> Result<Option<T>, ()> {
119        let head = self.head.load(Acquire, guard);
120        let h = unsafe { head.deref() };
121        let next = h.next.load(Acquire, guard);
122        match unsafe { next.as_ref() } {
123            Some(n) => unsafe {
124                self.head
125                    .compare_exchange(head, next, Release, Relaxed, guard)
126                    .map(|_| {
127                        let tail = self.tail.load(Relaxed, guard);
128                        // Advance the tail so that we don't retire a pointer to a reachable node.
129                        if head == tail {
130                            let _ = self
131                                .tail
132                                .compare_exchange(tail, next, Release, Relaxed, guard);
133                        }
134                        guard.defer_destroy(head);
135                        // TODO: Replace with MaybeUninit::read when api is stable
136                        Some(n.data.as_ptr().read())
137                    })
138                    .map_err(|_| ())
139            },
140            None => Ok(None),
141        }
142    }
143
144    /// Attempts to pop a data node, if the data satisfies the given condition. `Ok(None)` if queue
145    /// is empty or the data does not satisfy the condition; `Err(())` if lost race to pop.
146    #[inline(always)]
147    fn pop_if_internal<F>(&self, condition: F, guard: &Guard) -> Result<Option<T>, ()>
148    where
149        T: Sync,
150        F: Fn(&T) -> bool,
151    {
152        let head = self.head.load(Acquire, guard);
153        let h = unsafe { head.deref() };
154        let next = h.next.load(Acquire, guard);
155        match unsafe { next.as_ref() } {
156            Some(n) if condition(unsafe { &*n.data.as_ptr() }) => unsafe {
157                self.head
158                    .compare_exchange(head, next, Release, Relaxed, guard)
159                    .map(|_| {
160                        let tail = self.tail.load(Relaxed, guard);
161                        // Advance the tail so that we don't retire a pointer to a reachable node.
162                        if head == tail {
163                            let _ = self
164                                .tail
165                                .compare_exchange(tail, next, Release, Relaxed, guard);
166                        }
167                        guard.defer_destroy(head);
168                        Some(n.data.as_ptr().read())
169                    })
170                    .map_err(|_| ())
171            },
172            None | Some(_) => Ok(None),
173        }
174    }
175
176    /// Attempts to dequeue from the front.
177    ///
178    /// Returns `None` if the queue is observed to be empty.
179    pub(crate) fn try_pop(&self, guard: &Guard) -> Option<T> {
180        loop {
181            if let Ok(head) = self.pop_internal(guard) {
182                return head;
183            }
184        }
185    }
186
187    /// Attempts to dequeue from the front, if the item satisfies the given condition.
188    ///
189    /// Returns `None` if the queue is observed to be empty, or the head does not satisfy the given
190    /// condition.
191    pub(crate) fn try_pop_if<F>(&self, condition: F, guard: &Guard) -> Option<T>
192    where
193        T: Sync,
194        F: Fn(&T) -> bool,
195    {
196        loop {
197            if let Ok(head) = self.pop_if_internal(&condition, guard) {
198                return head;
199            }
200        }
201    }
202}
203
204impl<T> Drop for Queue<T> {
205    fn drop(&mut self) {
206        unsafe {
207            let guard = unprotected();
208
209            while self.try_pop(guard).is_some() {}
210
211            // Destroy the remaining sentinel node.
212            let sentinel = self.head.load(Relaxed, guard);
213            drop(sentinel.into_owned());
214        }
215    }
216}
217
218#[cfg(all(test, not(crossbeam_loom)))]
219mod test {
220    use super::*;
221    use crate::pin;
222    use crossbeam_utils::thread;
223
224    struct Queue<T> {
225        queue: super::Queue<T>,
226    }
227
228    impl<T> Queue<T> {
229        pub(crate) fn new() -> Queue<T> {
230            Queue {
231                queue: super::Queue::new(),
232            }
233        }
234
235        pub(crate) fn push(&self, t: T) {
236            let guard = &pin();
237            self.queue.push(t, guard);
238        }
239
240        pub(crate) fn is_empty(&self) -> bool {
241            let guard = &pin();
242            let head = self.queue.head.load(Acquire, guard);
243            let h = unsafe { head.deref() };
244            h.next.load(Acquire, guard).is_null()
245        }
246
247        pub(crate) fn try_pop(&self) -> Option<T> {
248            let guard = &pin();
249            self.queue.try_pop(guard)
250        }
251
252        pub(crate) fn pop(&self) -> T {
253            loop {
254                match self.try_pop() {
255                    None => continue,
256                    Some(t) => return t,
257                }
258            }
259        }
260    }
261
262    const CONC_COUNT: i64 = 1000000;
263
264    #[test]
265    fn push_try_pop_1() {
266        let q: Queue<i64> = Queue::new();
267        assert!(q.is_empty());
268        q.push(37);
269        assert!(!q.is_empty());
270        assert_eq!(q.try_pop(), Some(37));
271        assert!(q.is_empty());
272    }
273
274    #[test]
275    fn push_try_pop_2() {
276        let q: Queue<i64> = Queue::new();
277        assert!(q.is_empty());
278        q.push(37);
279        q.push(48);
280        assert_eq!(q.try_pop(), Some(37));
281        assert!(!q.is_empty());
282        assert_eq!(q.try_pop(), Some(48));
283        assert!(q.is_empty());
284    }
285
286    #[test]
287    fn push_try_pop_many_seq() {
288        let q: Queue<i64> = Queue::new();
289        assert!(q.is_empty());
290        for i in 0..200 {
291            q.push(i)
292        }
293        assert!(!q.is_empty());
294        for i in 0..200 {
295            assert_eq!(q.try_pop(), Some(i));
296        }
297        assert!(q.is_empty());
298    }
299
300    #[test]
301    fn push_pop_1() {
302        let q: Queue<i64> = Queue::new();
303        assert!(q.is_empty());
304        q.push(37);
305        assert!(!q.is_empty());
306        assert_eq!(q.pop(), 37);
307        assert!(q.is_empty());
308    }
309
310    #[test]
311    fn push_pop_2() {
312        let q: Queue<i64> = Queue::new();
313        q.push(37);
314        q.push(48);
315        assert_eq!(q.pop(), 37);
316        assert_eq!(q.pop(), 48);
317    }
318
319    #[test]
320    fn push_pop_many_seq() {
321        let q: Queue<i64> = Queue::new();
322        assert!(q.is_empty());
323        for i in 0..200 {
324            q.push(i)
325        }
326        assert!(!q.is_empty());
327        for i in 0..200 {
328            assert_eq!(q.pop(), i);
329        }
330        assert!(q.is_empty());
331    }
332
333    #[test]
334    fn push_try_pop_many_spsc() {
335        let q: Queue<i64> = Queue::new();
336        assert!(q.is_empty());
337
338        thread::scope(|scope| {
339            scope.spawn(|_| {
340                let mut next = 0;
341
342                while next < CONC_COUNT {
343                    if let Some(elem) = q.try_pop() {
344                        assert_eq!(elem, next);
345                        next += 1;
346                    }
347                }
348            });
349
350            for i in 0..CONC_COUNT {
351                q.push(i)
352            }
353        })
354        .unwrap();
355    }
356
357    #[test]
358    fn push_try_pop_many_spmc() {
359        fn recv(_t: i32, q: &Queue<i64>) {
360            let mut cur = -1;
361            for _i in 0..CONC_COUNT {
362                if let Some(elem) = q.try_pop() {
363                    assert!(elem > cur);
364                    cur = elem;
365
366                    if cur == CONC_COUNT - 1 {
367                        break;
368                    }
369                }
370            }
371        }
372
373        let q: Queue<i64> = Queue::new();
374        assert!(q.is_empty());
375        thread::scope(|scope| {
376            for i in 0..3 {
377                let q = &q;
378                scope.spawn(move |_| recv(i, q));
379            }
380
381            scope.spawn(|_| {
382                for i in 0..CONC_COUNT {
383                    q.push(i);
384                }
385            });
386        })
387        .unwrap();
388    }
389
390    #[test]
391    fn push_try_pop_many_mpmc() {
392        enum LR {
393            Left(i64),
394            Right(i64),
395        }
396
397        let q: Queue<LR> = Queue::new();
398        assert!(q.is_empty());
399
400        thread::scope(|scope| {
401            for _t in 0..2 {
402                scope.spawn(|_| {
403                    for i in CONC_COUNT - 1..CONC_COUNT {
404                        q.push(LR::Left(i))
405                    }
406                });
407                scope.spawn(|_| {
408                    for i in CONC_COUNT - 1..CONC_COUNT {
409                        q.push(LR::Right(i))
410                    }
411                });
412                scope.spawn(|_| {
413                    let mut vl = vec![];
414                    let mut vr = vec![];
415                    for _i in 0..CONC_COUNT {
416                        match q.try_pop() {
417                            Some(LR::Left(x)) => vl.push(x),
418                            Some(LR::Right(x)) => vr.push(x),
419                            _ => {}
420                        }
421                    }
422
423                    let mut vl2 = vl.clone();
424                    let mut vr2 = vr.clone();
425                    vl2.sort();
426                    vr2.sort();
427
428                    assert_eq!(vl, vl2);
429                    assert_eq!(vr, vr2);
430                });
431            }
432        })
433        .unwrap();
434    }
435
436    #[test]
437    fn push_pop_many_spsc() {
438        let q: Queue<i64> = Queue::new();
439
440        thread::scope(|scope| {
441            scope.spawn(|_| {
442                let mut next = 0;
443                while next < CONC_COUNT {
444                    assert_eq!(q.pop(), next);
445                    next += 1;
446                }
447            });
448
449            for i in 0..CONC_COUNT {
450                q.push(i)
451            }
452        })
453        .unwrap();
454        assert!(q.is_empty());
455    }
456
457    #[test]
458    fn is_empty_dont_pop() {
459        let q: Queue<i64> = Queue::new();
460        q.push(20);
461        q.push(20);
462        assert!(!q.is_empty());
463        assert!(!q.is_empty());
464        assert!(q.try_pop().is_some());
465    }
466}