circuit/stream.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use crate::error::{Error, Result};
use crate::protocol;
use std::collections::VecDeque;
use std::sync::{Arc, Mutex as SyncMutex};
use tokio::sync::oneshot;
/// We shrink our internal buffers until they are no more than this much larger
/// than the actual data we are accumulating.
///
/// The value of 1MiB was discovered experimentally to yield acceptable
/// performance on tests.
const BUFFER_TRIM_GRANULARITY: usize = 1048576;
/// BUFFER_TRIM_GRANULARITY should be a power of 2.
const _: () = assert!(BUFFER_TRIM_GRANULARITY.is_power_of_two());
/// Indicates whether a stream is open or closed, and if closed, why it closed.
#[derive(Debug, Clone)]
enum Status {
/// Stream is open.
Open,
/// Stream is closed. Argument may contain a reason for closure.
Closed(Option<String>),
}
impl Status {
fn is_closed(&self) -> bool {
match self {
Status::Open => false,
Status::Closed(_) => true,
}
}
fn reason(&self) -> Option<String> {
match self {
Status::Open => None,
Status::Closed(x) => x.clone(),
}
}
fn close(&mut self) {
if let Status::Open = self {
*self = Status::Closed(None);
}
}
}
/// Internal state of a stream. See `stream()`.
#[derive(Debug)]
struct State {
/// The ring buffer itself.
deque: VecDeque<u8>,
/// How many bytes are readable. This is different from the length of the deque, as we may allow
/// bytes to be in the deque that are "initialized but unavailable." Mostly that just
/// accommodates a quirk of Rust's memory model; we have to initialize all bytes before we show
/// them to the user, even if they're there just to be overwritten, and if we pop the bytes out
/// of the deque Rust counts them as uninitialized again, so to avoid duplicating the
/// initialization process we just leave the initialized-but-unwritten bytes in the deque.
readable: usize,
/// If the reader needs to sleep, it puts a oneshot sender here so it can be woken up again. It
/// also lists how many bytes should be available before it should be woken up.
notify_readable: Option<(oneshot::Sender<()>, usize)>,
/// Whether this stream is closed. I.e. whether either the `Reader` or `Writer` has been dropped.
closed: Status,
}
/// Read half of a stream. See `stream()`.
pub struct Reader(Arc<SyncMutex<State>>);
impl Reader {
/// Debug
pub fn inspect_shutdown(&self) -> String {
let lock = self.0.lock().unwrap();
if lock.closed.is_closed() {
lock.closed.reason().unwrap_or_else(|| "No epitaph".to_owned())
} else {
"Not closed".to_owned()
}
}
/// Read bytes from the stream.
///
/// The reader will wait until there are *at least* `size` bytes to read, Then it will call the
/// given callback with a slice containing all available bytes to read.
///
/// If the callback processes data successfully, it should return `Ok` with a tuple containing
/// a value of the user's choice, and the number of bytes used. If the number of bytes returned
/// from the callback is less than what was available in the buffer, the unused bytes will
/// appear at the start of the buffer for subsequent read calls. It is allowable to `peek` at
/// the bytes in the buffer by returning a number of bytes read that is smaller than the number
/// of bytes actually used.
///
/// If the callback returns `Error::BufferTooShort` and the expected buffer value contained in
/// the error is larger than the data that was provided, we will wait again until there are
/// enough bytes to satisfy the error and then call the callback again. If the callback returns
/// `Error::BufferTooShort` but the buffer should have been long enough according to the error,
/// `Error::CallbackRejectedBuffer` is returned. Other errors from the callback are returned
/// as-is from `read` itself.
///
/// If there are no bytes available to read and the `Writer` for this stream has already been
/// dropped, `read` returns `Error::ConnectionClosed`. If there are *not enough* bytes available
/// to be read and the `Writer` has been dropped, `read` returns `Error::BufferTooSmall`. This
/// is the only time `read` should return `Error::BufferTooSmall`.
///
/// Panics if the callback returns a number of bytes greater than the size of the buffer.
pub async fn read<F, U>(&self, mut size: usize, mut f: F) -> Result<U>
where
F: FnMut(&[u8]) -> Result<(U, usize)>,
{
loop {
let receiver = {
let mut state = self.0.lock().unwrap();
if let Status::Closed(reason) = &state.closed {
if size == 0 {
return Err(Error::ConnectionClosed(reason.clone()));
}
}
if state.readable >= size {
let (first, _) = state.deque.as_slices();
let first = if first.len() >= size {
first
} else {
state.deque.make_contiguous();
state.deque.as_slices().0
};
debug_assert!(first.len() >= size);
let first = &first[..std::cmp::min(first.len(), state.readable)];
let (ret, consumed) = match f(first) {
Err(Error::BufferTooShort(s)) => {
if s < first.len() {
return Err(Error::CallbackRejectedBuffer(s, first.len()));
}
size = s;
continue;
}
other => other?,
};
if consumed > first.len() {
panic!("Read claimed to consume more bytes than it was given!");
}
state.readable -= consumed;
state.deque.drain(..consumed);
let target_capacity = std::cmp::max(
state.deque.len().next_multiple_of(BUFFER_TRIM_GRANULARITY),
BUFFER_TRIM_GRANULARITY,
);
if target_capacity <= state.deque.capacity() / 2 {
state.deque.shrink_to(target_capacity);
}
return Ok(ret);
}
if let Status::Closed(reason) = &state.closed {
if state.readable > 0 {
return Err(Error::BufferTooShort(size));
} else {
return Err(Error::ConnectionClosed(reason.clone()));
}
}
let (sender, receiver) = oneshot::channel();
state.notify_readable = Some((sender, size));
receiver
};
let _ = receiver.await;
}
}
/// Read a protocol message from the stream. This is just a quick way to wire
/// `ProtocolObject::try_from_bytes` in to `read`.
pub async fn read_protocol_message<P: protocol::ProtocolMessage>(&self) -> Result<P> {
self.read(P::MIN_SIZE, P::try_from_bytes).await
}
/// This writes the given protocol message to the stream at the *beginning* of the stream,
/// meaning that it will be the next thing read off the stream.
pub(crate) fn push_back_protocol_message<P: protocol::ProtocolMessage>(
&self,
message: &P,
) -> Result<()> {
let size = message.byte_size();
let mut state = self.0.lock().unwrap();
let readable = state.readable;
state.deque.resize(readable + size, 0);
state.deque.rotate_right(size);
let (first, _) = state.deque.as_mut_slices();
let mut first = if first.len() >= size {
first
} else {
state.deque.make_contiguous();
state.deque.as_mut_slices().0
};
let got = message.write_bytes(&mut first)?;
debug_assert!(got == size);
state.readable += size;
if let Some((sender, size)) = state.notify_readable.take() {
if size <= state.readable {
let _ = sender.send(());
} else {
state.notify_readable = Some((sender, size));
}
}
Ok(())
}
/// Whether this stream is closed. Returns false so long as there is unread
/// data in the buffer, even if the writer has hung up.
pub fn is_closed(&self) -> bool {
let state = self.0.lock().unwrap();
state.closed.is_closed() && state.readable == 0
}
/// Get the reason this reader is closed. If the reader is not closed, or if
/// no reason was given, return `None`.
pub fn closed_reason(&self) -> Option<String> {
let state = self.0.lock().unwrap();
state.closed.reason()
}
/// Close this stream, giving a reason for the closure.
pub fn close(self, reason: String) {
let mut state = self.0.lock().unwrap();
match &state.closed {
Status::Closed(Some(_)) => (),
_ => state.closed = Status::Closed(Some(reason)),
}
}
}
impl std::fmt::Debug for Reader {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "Reader({:?})", Arc::as_ptr(&self.0))
}
}
impl Drop for Reader {
fn drop(&mut self) {
let mut state = self.0.lock().unwrap();
state.closed.close();
}
}
/// Write half of a stream. See `stream()`.
pub struct Writer(Arc<SyncMutex<State>>);
impl Writer {
/// Write data to this stream.
///
/// Space for `size` bytes is allocated in the stream immediately, and then the callback is
/// invoked with a mutable slice to that region so that it may populate it. The slice given to
/// the callback *may* be larger than requested but will never be smaller.
///
/// The callback should return `Ok` with the number of bytes actually written, which may be less
/// than `size`. If the callback returns an error, that error is returned from `write` as-is.
/// Note that we do not specially process `Error::BufferTooSmall` as with `Reader::read`.
///
/// Panics if the callback returns a number of bytes greater than the size of the buffer.
pub fn write<F>(&self, size: usize, f: F) -> Result<()>
where
F: FnOnce(&mut [u8]) -> Result<usize>,
{
let mut state = self.0.lock().unwrap();
if let Status::Closed(reason) = &state.closed {
return Err(Error::ConnectionClosed(reason.clone()));
}
let total_size = state.readable + size;
if state.deque.len() < total_size {
let total_size = std::cmp::max(total_size, state.deque.capacity());
state.deque.resize(total_size, 0);
}
let readable = state.readable;
let (first, second) = state.deque.as_mut_slices();
let slice = if first.len() > readable {
&mut first[readable..]
} else {
&mut second[(readable - first.len())..]
};
let slice = if slice.len() >= size {
slice
} else {
state.deque.make_contiguous();
&mut state.deque.as_mut_slices().0[readable..]
};
debug_assert!(slice.len() >= size);
let size = f(slice)?;
if size > slice.len() {
panic!("Write claimed to produce more bytes than buffer had space for!");
}
state.readable += size;
if let Some((sender, size)) = state.notify_readable.take() {
if size <= state.readable {
let _ = sender.send(());
} else {
state.notify_readable = Some((sender, size));
}
}
Ok(())
}
/// Write a protocol message to the stream. This is just a quick way to wire
/// `ProtocolObject::write_bytes` in to `write`.
pub fn write_protocol_message<P: protocol::ProtocolMessage>(&self, message: &P) -> Result<()> {
self.write(message.byte_size(), |mut buf| message.write_bytes(&mut buf))
}
/// Close this stream, giving a reason for the closure.
pub fn close(self, reason: String) {
self.0.lock().unwrap().closed = Status::Closed(Some(reason))
}
/// Whether this stream is closed. Returns false so long as there is unread
/// data in the buffer, even if the writer has hung up.
pub fn is_closed(&self) -> bool {
let state = self.0.lock().unwrap();
state.closed.is_closed() && state.readable == 0
}
/// Get the reason this writer is closed. If the writer is not closed, or if
/// no reason was given, return `None`.
pub fn closed_reason(&self) -> Option<String> {
let state = self.0.lock().unwrap();
state.closed.reason()
}
}
impl std::fmt::Debug for Writer {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "Writer({:?})", Arc::as_ptr(&self.0))
}
}
impl Drop for Writer {
fn drop(&mut self) {
let Some(x) = ({
let mut state = self.0.lock().unwrap();
state.closed.close();
state.notify_readable.take()
}) else {
return;
};
let _ = x.0.send(());
}
}
/// Creates a unidirectional stream of bytes.
///
/// The `Reader` and `Writer` share an expanding ring buffer. This allows sending bytes between
/// tasks with minimal extra allocations or copies.
pub fn stream() -> (Reader, Writer) {
let reader = Arc::new(SyncMutex::new(State {
deque: VecDeque::new(),
readable: 0,
notify_readable: None,
closed: Status::Open,
}));
let writer = Arc::clone(&reader);
(Reader(reader), Writer(writer))
}
#[cfg(test)]
mod test {
use futures::task::noop_waker;
use futures::FutureExt;
use std::future::Future;
use std::pin::pin;
use std::task::{Context, Poll};
use super::*;
impl protocol::ProtocolMessage for [u8; 4] {
const MIN_SIZE: usize = 4;
fn byte_size(&self) -> usize {
4
}
fn write_bytes<W: std::io::Write>(&self, out: &mut W) -> Result<usize> {
out.write_all(self)?;
Ok(4)
}
fn try_from_bytes(bytes: &[u8]) -> Result<(Self, usize)> {
if bytes.len() < 4 {
return Err(Error::BufferTooShort(4));
}
Ok((bytes[..4].try_into().unwrap(), 4))
}
}
#[fuchsia::test]
async fn stream_test() {
let (reader, writer) = stream();
writer
.write(8, |buf| {
buf[..8].copy_from_slice(&[1, 2, 3, 4, 5, 6, 7, 8]);
Ok(8)
})
.unwrap();
let got = reader.read(4, |buf| Ok((buf[..4].to_vec(), 4))).await.unwrap();
assert_eq!(vec![1, 2, 3, 4], got);
writer
.write(2, |buf| {
buf[..2].copy_from_slice(&[9, 10]);
Ok(2)
})
.unwrap();
let got = reader.read(6, |buf| Ok((buf[..6].to_vec(), 6))).await.unwrap();
assert_eq!(vec![5, 6, 7, 8, 9, 10], got);
}
#[fuchsia::test]
async fn push_back_test() {
let (reader, writer) = stream();
writer
.write(8, |buf| {
buf[..8].copy_from_slice(&[1, 2, 3, 4, 5, 6, 7, 8]);
Ok(8)
})
.unwrap();
let got = reader.read(4, |buf| Ok((buf[..4].to_vec(), 4))).await.unwrap();
assert_eq!(vec![1, 2, 3, 4], got);
reader.push_back_protocol_message(&[4, 3, 2, 1]).unwrap();
writer
.write(2, |buf| {
buf[..2].copy_from_slice(&[9, 10]);
Ok(2)
})
.unwrap();
let got = reader.read(10, |buf| Ok((buf[..10].to_vec(), 6))).await.unwrap();
assert_eq!(vec![4, 3, 2, 1, 5, 6, 7, 8, 9, 10], got);
}
#[fuchsia::test]
async fn writer_sees_close() {
let (reader, writer) = stream();
writer
.write(8, |buf| {
buf[..8].copy_from_slice(&[1, 2, 3, 4, 5, 6, 7, 8]);
Ok(8)
})
.unwrap();
let got = reader.read(4, |buf| Ok((buf[..4].to_vec(), 4))).await.unwrap();
assert_eq!(vec![1, 2, 3, 4], got);
std::mem::drop(reader);
assert!(matches!(
writer.write(2, |buf| {
buf[..2].copy_from_slice(&[9, 10]);
Ok(2)
}),
Err(Error::ConnectionClosed(None))
));
}
#[fuchsia::test]
async fn reader_sees_closed() {
let (reader, writer) = stream();
writer
.write(8, |buf| {
buf[..8].copy_from_slice(&[1, 2, 3, 4, 5, 6, 7, 8]);
Ok(8)
})
.unwrap();
let got = reader.read(4, |buf| Ok((buf[..4].to_vec(), 4))).await.unwrap();
assert_eq!(vec![1, 2, 3, 4], got);
writer
.write(2, |buf| {
buf[..2].copy_from_slice(&[9, 10]);
Ok(2)
})
.unwrap();
std::mem::drop(writer);
assert!(matches!(reader.read(7, |_| Ok(((), 1))).await, Err(Error::BufferTooShort(7))));
let got = reader.read(6, |buf| Ok((buf[..6].to_vec(), 6))).await.unwrap();
assert_eq!(vec![5, 6, 7, 8, 9, 10], got);
assert!(matches!(
reader.read(1, |_| Ok(((), 1))).await,
Err(Error::ConnectionClosed(None))
));
}
#[fuchsia::test]
async fn reader_sees_closed_when_polling() {
let (reader, writer) = stream();
writer
.write(8, |buf| {
buf[..8].copy_from_slice(&[1, 2, 3, 4, 5, 6, 7, 8]);
Ok(8)
})
.unwrap();
let got = reader.read(8, |buf| Ok((buf[..8].to_vec(), 8))).await.unwrap();
assert_eq!(vec![1, 2, 3, 4, 5, 6, 7, 8], got);
let fut = reader
.read(1, |_| -> Result<((), usize)> { panic!("This read should never succeed!") });
let mut fut = std::pin::pin!(fut);
assert!(fut.poll_unpin(&mut Context::from_waker(&noop_waker())).is_pending());
std::mem::drop(writer);
assert!(matches!(
fut.poll_unpin(&mut Context::from_waker(&noop_waker())),
Poll::Ready(Err(Error::ConnectionClosed(None)))
));
}
#[fuchsia::test]
async fn reader_sees_closed_separate_task() {
let (reader, writer) = stream();
writer
.write(8, |buf| {
buf[..8].copy_from_slice(&[1, 2, 3, 4, 5, 6, 7, 8]);
Ok(8)
})
.unwrap();
let got = reader.read(8, |buf| Ok((buf[..8].to_vec(), 8))).await.unwrap();
assert_eq!(vec![1, 2, 3, 4, 5, 6, 7, 8], got);
let (sender, receiver) = oneshot::channel();
let task = fuchsia_async::Task::spawn(async move {
let fut = reader.read(1, |_| Ok(((), 1)));
let mut fut = std::pin::pin!(fut);
let mut writer = Some(writer);
let fut = futures::future::poll_fn(move |cx| {
let ret = fut.as_mut().poll(cx);
if writer.take().is_some() {
assert!(matches!(ret, Poll::Pending));
}
ret
});
assert!(matches!(fut.await, Err(Error::ConnectionClosed(None))));
sender.send(()).unwrap();
});
receiver.await.unwrap();
task.await;
}
#[fuchsia::test]
async fn reader_buffer_too_short() {
let (reader, writer) = stream();
let (sender, receiver) = oneshot::channel();
let mut sender = Some(sender);
let reader_task = async move {
let got = reader
.read(1, |buf| {
if buf.len() != 4 {
sender.take().unwrap().send(buf.len()).unwrap();
Err(Error::BufferTooShort(4))
} else {
Ok((buf[..4].to_vec(), 4))
}
})
.await
.unwrap();
assert_eq!(vec![1, 2, 3, 4], got);
};
let writer_task = async move {
writer
.write(2, |buf| {
buf[..2].copy_from_slice(&[1, 2]);
Ok(2)
})
.unwrap();
assert_eq!(2, receiver.await.unwrap());
writer
.write(2, |buf| {
buf[..2].copy_from_slice(&[3, 4]);
Ok(2)
})
.unwrap();
};
futures::future::join(pin!(reader_task), pin!(writer_task)).await;
}
}