sparse/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
// Copyright 2022 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#[cfg(target_endian = "big")]
assert!(false, "This library assumes little-endian!");

pub mod builder;
mod format;
pub mod reader;

use crate::format::{ChunkHeader, SparseHeader};
use anyhow::{bail, ensure, Context, Result};
use core::fmt;
use serde::de::DeserializeOwned;
use std::fs::File;
use std::io::{Cursor, Read, Seek, SeekFrom, Write};
use std::path::Path;
use tempfile::{NamedTempFile, TempPath};

// Size of blocks to write.  Note that the format supports varied block sizes; this is the preferred
// size by this library.
const BLK_SIZE: usize = 0x1000;

fn deserialize_from<'a, T: DeserializeOwned, R: Read + ?Sized>(source: &mut R) -> Result<T> {
    let mut buf = vec![0u8; std::mem::size_of::<T>()];
    source.read_exact(&mut buf[..]).context("Failed to read bytes")?;
    Ok(bincode::deserialize(&buf[..])?)
}

/// A union trait for `Read` and `Seek`.
pub trait Reader: Read + Seek {}

impl<T: Read + Seek> Reader for T {}

/// A union trait for `Write` and `Seek` that also allows truncation.
pub trait Writer: Write + Seek {
    /// Sets the length of the output stream.
    fn set_len(&mut self, size: u64) -> Result<()>;
}

impl Writer for File {
    fn set_len(&mut self, size: u64) -> Result<()> {
        Ok(File::set_len(self, size)?)
    }
}

impl Writer for Cursor<Vec<u8>> {
    fn set_len(&mut self, size: u64) -> Result<()> {
        Vec::resize(self.get_mut(), size as usize, 0u8);
        Ok(())
    }
}

// A wrapper around a Reader, which makes it seem like the underlying stream is only self.1 bytes
// long.  The underlying reader is still advanced upon reading.
// This is distinct from `std::io::Take` in that it does not modify the seek offset of the
// underlying reader.  In other words, `LimitedReader` can be used to read a window within the
// reader (by setting seek offset to the start, and the size limit to the end).
struct LimitedReader<'a>(pub &'a mut dyn Reader, pub usize);

impl<'a> Read for LimitedReader<'a> {
    fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
        let offset = self.0.stream_position()?;
        let avail = self.1.saturating_sub(offset as usize);
        let to_read = std::cmp::min(avail, buf.len());
        self.0.read(&mut buf[..to_read])
    }
}

impl<'a> Seek for LimitedReader<'a> {
    fn seek(&mut self, pos: SeekFrom) -> std::io::Result<u64> {
        self.0.seek(pos)
    }
}

/// Returns whether the image in `reader` appears to be in the sparse format.
pub fn is_sparse_image<R: Reader>(reader: &mut R) -> bool {
    || -> Option<bool> {
        let header: SparseHeader = deserialize_from(reader).ok()?;
        let is_sparse = header.magic == format::SPARSE_HEADER_MAGIC;
        reader.seek(SeekFrom::Start(0)).ok()?;
        Some(is_sparse)
    }()
    .unwrap_or(false)
}

#[derive(Clone, PartialEq, Debug)]
enum Chunk {
    /// `Raw` represents a set of blocks to be written to disk as-is.
    /// `start` is the offset in the expanded image at which the Raw section starts.
    /// `start` and `size` are in bytes, but must be block-aligned.
    Raw { start: u64, size: usize },
    /// `Fill` represents a Chunk that has the `value` repeated enough to fill `size` bytes.
    /// `start` is the offset in the expanded image at which the Fill section starts.
    /// `start` and `size` are in bytes, but must be block-aligned.
    Fill { start: u64, size: usize, value: u32 },
    /// `DontCare` represents a set of blocks that need to be "offset" by the
    /// image recipient.  If an image needs to be broken up into two sparse images, and we flash n
    /// bytes for Sparse Image 1, Sparse Image 2 needs to start with a DontCareChunk with
    /// (n/blocksize) blocks as its "size" property.
    /// `start` is the offset in the expanded image at which the DontCare section starts.
    /// `start` and `size` are in bytes, but must be block-aligned.
    DontCare { start: u64, size: usize },
    /// `Crc32Chunk` is used as a checksum of a given set of Chunks for a SparseImage.  This is not
    /// required and unused in most implementations of the Sparse Image format. The type is included
    /// for completeness. It has 4 bytes of CRC32 checksum as describable in a u32.
    #[allow(dead_code)]
    Crc32 { checksum: u32 },
}

impl Chunk {
    /// Attempts to read a `Chunk` from `reader`.  The reader will be positioned at the first byte
    /// following the chunk header and any extra data; for a Raw chunk this means it will point at
    /// the data payload, and for other chunks it will point at the next chunk header (or EOF).
    /// `offset` is the current offset in the logical volume.
    pub fn read_metadata<R: Reader>(reader: &mut R, offset: u64, block_size: u32) -> Result<Self> {
        let header: ChunkHeader =
            deserialize_from(reader).context("Failed to read chunk header")?;
        ensure!(header.valid(), "Invalid chunk header");

        let size = (header.chunk_sz * block_size) as usize;
        match header.chunk_type {
            format::CHUNK_TYPE_RAW => Ok(Self::Raw { start: offset, size }),
            format::CHUNK_TYPE_FILL => {
                let value: u32 =
                    deserialize_from(reader).context("Failed to deserialize fill value")?;
                Ok(Self::Fill { start: offset, size, value })
            }
            format::CHUNK_TYPE_DONT_CARE => Ok(Self::DontCare { start: offset, size }),
            format::CHUNK_TYPE_CRC32 => {
                let checksum: u32 =
                    deserialize_from(reader).context("Failed to deserialize checksum")?;
                Ok(Self::Crc32 { checksum })
            }
            // We already validated the chunk_type in `ChunkHeader::is_valid`.
            _ => unreachable!(),
        }
    }

    fn valid(&self, block_size: usize) -> bool {
        self.output_size() % block_size == 0
    }

    /// Returns the offset into the logical image the chunk refers to, or None if the chunk has no
    /// output data.
    fn output_offset(&self) -> Option<u64> {
        match self {
            Self::Raw { start, .. } => Some(*start),
            Self::Fill { start, .. } => Some(*start),
            Self::DontCare { start, .. } => Some(*start),
            Self::Crc32 { .. } => None,
        }
    }

    /// Return number of bytes the chunk expands to when written to the partition.
    fn output_size(&self) -> usize {
        match self {
            Self::Raw { size, .. } => *size,
            Self::Fill { size, .. } => *size,
            Self::DontCare { size, .. } => *size,
            Self::Crc32 { .. } => 0,
        }
    }

    /// Return number of blocks the chunk expands to when written to the partition.
    fn output_blocks(&self, block_size: usize) -> u32 {
        let size_bytes = self.output_size();
        ((size_bytes + block_size - 1) / block_size) as u32
    }

    /// `chunk_type` returns the integer flag to represent the type of chunk
    /// to use in the ChunkHeader
    fn chunk_type(&self) -> u16 {
        match self {
            Self::Raw { .. } => format::CHUNK_TYPE_RAW,
            Self::Fill { .. } => format::CHUNK_TYPE_FILL,
            Self::DontCare { .. } => format::CHUNK_TYPE_DONT_CARE,
            Self::Crc32 { .. } => format::CHUNK_TYPE_CRC32,
        }
    }

    /// `chunk_data_len` returns the length of the chunk's header plus the
    /// length of the data when serialized
    fn chunk_data_len(&self) -> usize {
        let header_size = format::CHUNK_HEADER_SIZE;
        let data_size = match self {
            Self::Raw { size, .. } => *size,
            Self::Fill { .. } => std::mem::size_of::<u32>(),
            Self::DontCare { .. } => 0,
            Self::Crc32 { .. } => std::mem::size_of::<u32>(),
        };
        header_size + data_size
    }

    /// Writes the chunk to the given Writer.  `source` is a Reader containing the data payload for
    /// a Raw type chunk, with the seek offset pointing to the first byte of the data payload, and
    /// with exactly enough bytes available for the rest of the data payload.
    fn write<W: Write + Seek, R: Read + Seek>(
        &self,
        source: Option<&mut R>,
        dest: &mut W,
    ) -> Result<()> {
        ensure!(self.valid(BLK_SIZE), "Not writing invalid chunk");
        let header = ChunkHeader::new(
            self.chunk_type(),
            0x0,
            self.output_blocks(BLK_SIZE),
            self.chunk_data_len() as u32,
        );

        let header_bytes: Vec<u8> = bincode::serialize(&header)?;
        std::io::copy(&mut Cursor::new(header_bytes), dest)?;

        match self {
            Self::Raw { size, .. } => {
                ensure!(source.is_some(), "No source for Raw chunk");
                let n = std::io::copy(source.unwrap(), dest)? as usize;
                if n < *size {
                    let zeroes = vec![0u8; *size - n];
                    std::io::copy(&mut Cursor::new(zeroes), dest)?;
                }
            }
            Self::Fill { value, .. } => {
                // Serliaze the value,
                bincode::serialize_into(dest, value)?;
            }
            Self::DontCare { .. } => {
                // DontCare has no data to write
            }
            Self::Crc32 { checksum } => {
                bincode::serialize_into(dest, checksum)?;
            }
        }
        Ok(())
    }
}

impl fmt::Display for Chunk {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let message = match self {
            Self::Raw { start, size } => {
                format!("RawChunk: start: {}, total bytes: {}", start, size)
            }
            Self::Fill { start, size, value } => {
                format!("FillChunk: start: {}, value: {}, n_blocks: {}", start, value, size)
            }
            Self::DontCare { start, size } => {
                format!("DontCareChunk: start: {}, bytes: {}", start, size)
            }
            Self::Crc32 { checksum } => format!("Crc32Chunk: checksum: {:?}", checksum),
        };
        write!(f, "{}", message)
    }
}

#[derive(Clone, Debug, PartialEq)]
struct SparseFileWriter {
    chunks: Vec<Chunk>,
}

impl SparseFileWriter {
    fn new(chunks: Vec<Chunk>) -> SparseFileWriter {
        SparseFileWriter { chunks }
    }

    fn total_blocks(&self) -> u32 {
        self.chunks.iter().map(|c| c.output_blocks(BLK_SIZE)).sum()
    }

    fn total_bytes(&self) -> usize {
        self.chunks.iter().map(|c| c.output_size()).sum()
    }

    #[tracing::instrument(skip(self, reader, writer))]
    fn write<W: Write + Seek, R: Read + Seek>(&self, reader: &mut R, writer: &mut W) -> Result<()> {
        let header = SparseHeader::new(
            BLK_SIZE.try_into().unwrap(),          // Size of the blocks
            self.total_blocks(),                   // Total blocks in this image
            self.chunks.len().try_into().unwrap(), // Total chunks in this image
        );

        let header_bytes: Vec<u8> = bincode::serialize(&header)?;
        std::io::copy(&mut Cursor::new(header_bytes), writer)?;

        for chunk in &self.chunks {
            let mut reader = if let &Chunk::Raw { start, size } = chunk {
                reader.seek(SeekFrom::Start(start))?;
                Some(LimitedReader(reader, start as usize + size))
            } else {
                None
            };
            chunk.write(reader.as_mut(), writer)?;
        }

        Ok(())
    }
}

impl fmt::Display for SparseFileWriter {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, r"SparseFileWriter: {} Chunks:", self.chunks.len())
    }
}

/// `add_sparse_chunk` takes the input vec, v and given `Chunk`, chunk, and
/// attempts to add the chunk to the end of the vec. If the current last chunk
/// is the same kind of Chunk as the `chunk`, then it will merge the two chunks
/// into one chunk.
///
/// Example: A `FillChunk` with value 0 and size 1 is the last chunk
/// in `v`, and `chunk` is a FillChunk with value 0 and size 1, after this,
/// `v`'s last element will be a FillChunk with value 0 and size 2.
fn add_sparse_chunk(r: &mut Vec<Chunk>, chunk: Chunk) -> Result<()> {
    match r.last_mut() {
        // We've got something in the Vec... if they are both the same type,
        // merge them, otherwise, just push the new one
        Some(last) => match (&last, &chunk) {
            (Chunk::Raw { start, size }, Chunk::Raw { size: new_length, .. }) => {
                *last = Chunk::Raw { start: *start, size: size + new_length };
                return Ok(());
            }
            (
                Chunk::Fill { start, size, value },
                Chunk::Fill { size: new_size, value: new_value, .. },
            ) if value == new_value => {
                *last = Chunk::Fill { start: *start, size: size + new_size, value: *value };
                return Ok(());
            }
            (Chunk::DontCare { start, size }, Chunk::DontCare { size: new_size, .. }) => {
                *last = Chunk::DontCare { start: *start, size: size + new_size };
                return Ok(());
            }
            _ => {}
        },
        None => {}
    }

    // If the chunk types differ they cannot be merged.
    // If they are both Fill but have different values, they cannot be merged.
    // Crc32 cannot be merged.
    // If we dont have any chunks then we add it
    r.push(chunk);
    Ok(())
}

/// Reads a sparse image from `source` and expands it to its unsparsed representation in `dest`.
#[tracing::instrument(skip(source, dest))]
pub fn unsparse<W: Writer, R: Reader>(source: &mut R, dest: &mut W) -> Result<()> {
    let header: SparseHeader = deserialize_from(source).context("Failed to read header")?;
    ensure!(header.valid(), "Invalid sparse image header {:?}", header);
    let num_chunks = header.total_chunks as usize;

    for _ in 0..num_chunks {
        expand_chunk(source, dest, header.blk_sz).context("Failed to expand chunk")?;
    }
    // Truncate output to its current seek offset, in case the last chunk we wrote was DontNeed.
    let offset = dest.stream_position()?;
    dest.set_len(offset).context("Failed to truncate output")?;
    dest.flush()?;
    Ok(())
}

/// Reads a chunk from `source`, and expands it, writing the result to `dest`.
fn expand_chunk<R: Read + Seek, W: Write + Seek>(
    source: &mut R,
    dest: &mut W,
    block_size: u32,
) -> Result<()> {
    let header: ChunkHeader =
        deserialize_from(source).context("Failed to deserialize chunk header")?;
    ensure!(header.valid(), "Invalid chunk header {:x?}", header);
    let size = (header.chunk_sz * block_size) as usize;
    match header.chunk_type {
        format::CHUNK_TYPE_RAW => {
            let limit = source.stream_position()? as usize + size;
            std::io::copy(&mut LimitedReader(source, limit), dest)
                .context("Failed to copy contents")?;
        }
        format::CHUNK_TYPE_FILL => {
            let value: [u8; 4] =
                deserialize_from(source).context("Failed to deserialize fill value")?;
            assert!(size % 4 == 0);
            let repeated = value.repeat(size / 4);
            std::io::copy(&mut Cursor::new(repeated), dest).context("Failed to fill contents")?;
        }
        format::CHUNK_TYPE_DONT_CARE => {
            dest.seek(SeekFrom::Current(size as i64)).context("Failed to skip contents")?;
        }
        format::CHUNK_TYPE_CRC32 => {
            let _: u32 = deserialize_from(source).context("Failed to deserialize fill value")?;
        }
        _ => bail!("Invalid type {}", header.chunk_type),
    };
    Ok(())
}

/// `resparse` takes a SparseFile and a maximum size and will
/// break the single SparseFile into multiple SparseFiles whose
/// size will not exceed the maximum_download_size.
///
/// This will return an error if max_download_size is <= BLK_SIZE
#[tracing::instrument]
fn resparse(
    sparse_file: SparseFileWriter,
    max_download_size: u64,
) -> Result<Vec<SparseFileWriter>> {
    if max_download_size as usize <= BLK_SIZE {
        anyhow::bail!(
            "Given maximum download size ({}) is less than the block size ({})",
            max_download_size,
            BLK_SIZE
        );
    }
    let mut ret = Vec::<SparseFileWriter>::new();

    // File length already starts with a header for the SparseFile as
    // well as the size of a potential DontCare and Crc32 Chunk
    let sunk_file_length = format::SPARSE_HEADER_SIZE
        + (Chunk::DontCare { start: 0, size: BLK_SIZE }.chunk_data_len()
            + Chunk::Crc32 { checksum: 2345 }.chunk_data_len());

    let mut chunk_pos = 0;
    let mut output_offset = 0;
    while chunk_pos < sparse_file.chunks.len() {
        tracing::trace!("Starting a new file at chunk position: {}", chunk_pos);

        let mut file_len = 0;
        file_len += sunk_file_length;

        let mut chunks = Vec::<Chunk>::new();
        if chunk_pos > 0 {
            // If we already have some chunks... add a DontCare block to
            // move the pointer
            tracing::trace!("Adding a DontCare chunk offset: {}", chunk_pos);
            let dont_care = Chunk::DontCare { start: 0, size: output_offset };
            chunks.push(dont_care);
        }

        loop {
            match sparse_file.chunks.get(chunk_pos) {
                Some(chunk) => {
                    let curr_chunk_data_len = chunk.chunk_data_len();
                    if (file_len + curr_chunk_data_len) as u64 > max_download_size {
                        tracing::trace!("Current file size is: {} and adding another chunk of len: {} would put us over our max: {}", file_len, curr_chunk_data_len, max_download_size);

                        // Add a dont care chunk to cover everything to the end of the image.
                        // While this is not strictly speaking needed, other tools
                        // (simg2simg) produce this chunk, and the Sparse image inspection tool
                        // simg_dump will produce a warning if a sparse file does not have the same
                        // number of output blocks as declared in the header.
                        let remainder_size = sparse_file.total_bytes() - output_offset;
                        let dont_care =
                            Chunk::DontCare { start: output_offset as u64, size: remainder_size };
                        chunks.push(dont_care);
                        break;
                    }
                    tracing::trace!("chunk: {} curr_chunk_data_len: {} current file size: {} max_download_size: {} diff: {}", chunk_pos, curr_chunk_data_len, file_len, max_download_size, (max_download_size as usize - file_len - curr_chunk_data_len) );
                    add_sparse_chunk(&mut chunks, chunk.clone())?;
                    file_len += curr_chunk_data_len;
                    chunk_pos = chunk_pos + 1;
                    output_offset += chunk.output_size();
                }
                None => {
                    tracing::trace!("Finished iterating chunks");
                    break;
                }
            }
        }
        let resparsed = SparseFileWriter::new(chunks);
        tracing::trace!("resparse: Adding new SparseFile: {}", resparsed);
        ret.push(resparsed);
    }

    Ok(ret)
}

/// Takes the given `file_to_upload` for the `named` partition and creates a
/// set of temporary files in the given `dir` in Sparse Image Format. With the
/// provided `max_download_size` constraining file size.
///
/// # Arguments
///
/// * `name` - Name of the partition the image. Used for logs only.
/// * `file_to_upload` - Path to the file to translate to sparse image format.
/// * `dir` - Path to write the Sparse file(s).
/// * `max_download_size` - Maximum size that can be downloaded by the device.
#[tracing::instrument()]
pub fn build_sparse_files(
    name: &str,
    file_to_upload: &str,
    dir: &Path,
    max_download_size: u64,
) -> Result<Vec<TempPath>> {
    if max_download_size as usize <= BLK_SIZE {
        anyhow::bail!(
            "Given maximum download size ({}) is less than the block size ({})",
            max_download_size,
            BLK_SIZE
        );
    }
    tracing::debug!("Building sparse files for: {}. File: {}", name, file_to_upload);
    let mut in_file = File::open(file_to_upload)?;

    let mut total_read: usize = 0;
    // Preallocate vector to avoid reallocations as it grows.
    let mut chunks =
        Vec::<Chunk>::with_capacity((in_file.metadata()?.len() as usize / BLK_SIZE) + 1);
    let mut buf = [0u8; BLK_SIZE];
    loop {
        let read = in_file.read(&mut buf)?;
        if read == 0 {
            break;
        }

        let is_fill = buf.chunks(4).collect::<Vec<&[u8]>>().windows(2).all(|w| w[0] == w[1]);
        if is_fill {
            // The Android Sparse Image Format specifies that a fill block
            // is a four-byte u32 repeated to fill BLK_SIZE. Here we use
            // bincode::deserialize to get the repeated four byte pattern from
            // the buffer so that it can be serialized later when we write
            // the sparse file with bincode::serialize.
            let value: u32 = bincode::deserialize(&buf[0..4])?;
            // Add a fill chunk
            let fill = Chunk::Fill { start: total_read as u64, size: buf.len(), value };
            tracing::trace!("Sparsing file: {}. Created: {}", file_to_upload, fill);
            chunks.push(fill);
        } else {
            // Add a raw chunk
            let raw = Chunk::Raw { start: total_read as u64, size: buf.len() };
            tracing::trace!("Sparsing file: {}. Created: {}", file_to_upload, raw);
            chunks.push(raw);
        }
        total_read += read;
    }

    tracing::trace!("Creating sparse file from: {} chunks", chunks.len());

    // At this point we are making a new sparse file fom an unoptomied set of
    // Chunks. This primarliy means that adjacent Fill chunks of same value are
    // not collapsed into a single Fill chunk (with a larger size). The advantage
    // to this two pass approach is that (with some future work), we can create
    // the "unoptomized" sparse file from a given image, and then "resparse" it
    // as many times as desired with different `max_download_size` parameters.
    // This would simplify the scenario where we want to flash the same image
    // to multiple physical devices which may have slight differences in their
    // hardware (and therefore different `max_download_size`es)
    let sparse_file = SparseFileWriter::new(chunks);
    tracing::trace!("Created sparse file: {}", sparse_file);

    let mut ret = Vec::<TempPath>::new();
    tracing::trace!("Resparsing sparse file");
    for re_sparsed_file in resparse(sparse_file, max_download_size)? {
        let (file, temp_path) = NamedTempFile::new_in(dir)?.into_parts();
        let mut file_create = File::from(file);

        tracing::trace!("Writing resparsed {} to disk", re_sparsed_file);
        re_sparsed_file.write(&mut in_file, &mut file_create)?;

        ret.push(temp_path);
    }

    tracing::debug!("Finished building sparse files");

    Ok(ret)
}

////////////////////////////////////////////////////////////////////////////////
// tests

#[cfg(test)]
mod test {
    use super::builder::{DataSource, SparseImageBuilder};
    use super::{add_sparse_chunk, resparse, unsparse, Chunk, SparseFileWriter, BLK_SIZE};
    use rand::rngs::SmallRng;
    use rand::{RngCore, SeedableRng};
    use std::io::{Cursor, Read as _, Seek as _, SeekFrom, Write as _};
    use tempfile::{NamedTempFile, TempDir};

    #[test]
    fn test_fill_into_bytes() {
        let mut dest = Cursor::new(Vec::<u8>::new());

        let fill_chunk = Chunk::Fill { start: 0, size: 5 * BLK_SIZE, value: 365 };
        // We have to convince the compiler that there's a specific type here.
        fill_chunk.write(None::<&mut Cursor<Vec<u8>>>, &mut dest).unwrap();
        assert_eq!(dest.into_inner(), [194, 202, 0, 0, 5, 0, 0, 0, 16, 0, 0, 0, 109, 1, 0, 0]);
    }

    #[test]
    fn test_raw_into_bytes() {
        const EXPECTED_RAW_BYTES: [u8; 22] =
            [193, 202, 0, 0, 1, 0, 0, 0, 12, 16, 0, 0, 49, 50, 51, 52, 53, 0, 0, 0, 0, 0];

        let mut source = Cursor::new(Vec::<u8>::from(&b"12345"[..]));
        let mut sparse = Cursor::new(Vec::<u8>::new());
        let chunk = Chunk::Raw { start: 0, size: BLK_SIZE };

        chunk.write(Some(&mut source), &mut sparse).unwrap();
        let buf = sparse.into_inner();
        assert_eq!(buf.len(), 4108);
        assert_eq!(&buf[..EXPECTED_RAW_BYTES.len()], EXPECTED_RAW_BYTES);
        assert_eq!(&buf[EXPECTED_RAW_BYTES.len()..], &[0u8; 4108 - EXPECTED_RAW_BYTES.len()]);
    }

    #[test]
    fn test_dont_care_into_bytes() {
        let mut dest = Cursor::new(Vec::<u8>::new());
        let chunk = Chunk::DontCare { start: 0, size: 5 * BLK_SIZE };

        // We have to convince the compiler that there's a specific type here.
        chunk.write(None::<&mut Cursor<Vec<u8>>>, &mut dest).unwrap();
        assert_eq!(dest.into_inner(), [195, 202, 0, 0, 5, 0, 0, 0, 12, 0, 0, 0]);
    }

    #[test]
    fn test_sparse_file_into_bytes() {
        let mut source = Cursor::new(Vec::<u8>::from(&b"123"[..]));
        let mut sparse = Cursor::new(Vec::<u8>::new());
        let mut chunks = Vec::<Chunk>::new();
        // Add a fill chunk
        let fill = Chunk::Fill { start: 0, size: 4096, value: 5 };
        chunks.push(fill);
        // Add a raw chunk
        let raw = Chunk::Raw { start: 0, size: 12288 };
        chunks.push(raw);
        // Add a dontcare chunk
        let dontcare = Chunk::DontCare { start: 0, size: 4096 };
        chunks.push(dontcare);

        let sparsefile = SparseFileWriter::new(chunks);
        sparsefile.write(&mut source, &mut sparse).unwrap();

        sparse.seek(SeekFrom::Start(0)).unwrap();
        let mut unsparsed = Cursor::new(Vec::<u8>::new());
        unsparse(&mut sparse, &mut unsparsed).unwrap();
        let buf = unsparsed.into_inner();
        assert_eq!(buf.len(), 4096 + 12288 + 4096);
        {
            let chunks = buf[..4096].chunks(4);
            for chunk in chunks {
                assert_eq!(chunk, &[5u8, 0, 0, 0]);
            }
        }
        assert_eq!(&buf[4096..4099], b"123");
        assert_eq!(&buf[4099..16384], &[0u8; 12285]);
        assert_eq!(&buf[16384..], &[0u8; 4096]);
    }

    ////////////////////////////////////////////////////////////////////////////
    // Tests for resparse

    #[test]
    fn test_resparse_bails_on_too_small_size() {
        let sparse = SparseFileWriter::new(Vec::<Chunk>::new());
        assert!(resparse(sparse, 4095).is_err());
    }

    #[test]
    fn test_resparse_splits() {
        let max_download_size = 4096 * 2;

        let mut chunks = Vec::<Chunk>::new();
        chunks.push(Chunk::Raw { start: 0, size: 4096 });
        chunks.push(Chunk::Fill { start: 4096, size: 4096, value: 2 });
        // We want 2 sparse files with the second sparse file having a
        // DontCare chunk and then this chunk
        chunks.push(Chunk::Raw { start: 8192, size: 4096 });

        let input_sparse_file = SparseFileWriter::new(chunks);
        let resparsed_files = resparse(input_sparse_file, max_download_size).unwrap();
        assert_eq!(2, resparsed_files.len());

        assert_eq!(3, resparsed_files[0].chunks.len());
        assert_eq!(Chunk::Raw { start: 0, size: 4096 }, resparsed_files[0].chunks[0]);
        assert_eq!(Chunk::Fill { start: 4096, size: 4096, value: 2 }, resparsed_files[0].chunks[1]);
        assert_eq!(Chunk::DontCare { start: 8192, size: 4096 }, resparsed_files[0].chunks[2]);

        assert_eq!(2, resparsed_files[1].chunks.len());
        assert_eq!(Chunk::DontCare { start: 0, size: 8192 }, resparsed_files[1].chunks[0]);
        assert_eq!(Chunk::Raw { start: 8192, size: 4096 }, resparsed_files[1].chunks[1]);
    }

    ////////////////////////////////////////////////////////////////////////////
    // Tests for add_sparse_chunk

    #[test]
    fn test_add_sparse_chunk_adds_empty() {
        let init_vec = Vec::<Chunk>::new();
        let mut res = init_vec.clone();
        add_sparse_chunk(&mut res, Chunk::Fill { start: 0, size: 4096, value: 1 }).unwrap();
        assert_eq!(0, init_vec.len());
        assert_ne!(init_vec, res);
        assert_eq!(Chunk::Fill { start: 0, size: 4096, value: 1 }, res[0]);
    }

    #[test]
    fn test_add_sparse_chunk_fill() {
        // Test merge
        {
            let mut init_vec = Vec::<Chunk>::new();
            init_vec.push(Chunk::Fill { start: 0, size: 8192, value: 1 });
            let mut res = init_vec.clone();
            add_sparse_chunk(&mut res, Chunk::Fill { start: 0, size: 8192, value: 1 }).unwrap();
            assert_eq!(1, res.len());
            assert_eq!(Chunk::Fill { start: 0, size: 16384, value: 1 }, res[0]);
        }

        // Test dont merge on different value
        {
            let mut init_vec = Vec::<Chunk>::new();
            init_vec.push(Chunk::Fill { start: 0, size: 4096, value: 1 });
            let mut res = init_vec.clone();
            add_sparse_chunk(&mut res, Chunk::Fill { start: 0, size: 4096, value: 2 }).unwrap();
            assert_ne!(res, init_vec);
            assert_eq!(2, res.len());
            assert_eq!(
                res,
                [
                    Chunk::Fill { start: 0, size: 4096, value: 1 },
                    Chunk::Fill { start: 0, size: 4096, value: 2 }
                ]
            );
        }

        // Test dont merge on different type
        {
            let mut init_vec = Vec::<Chunk>::new();
            init_vec.push(Chunk::Fill { start: 0, size: 4096, value: 2 });
            let mut res = init_vec.clone();
            add_sparse_chunk(&mut res, Chunk::DontCare { start: 0, size: 4096 }).unwrap();
            assert_ne!(res, init_vec);
            assert_eq!(2, res.len());
            assert_eq!(
                res,
                [
                    Chunk::Fill { start: 0, size: 4096, value: 2 },
                    Chunk::DontCare { start: 0, size: 4096 }
                ]
            );
        }
    }

    #[test]
    fn test_add_sparse_chunk_dont_care() {
        // Test they merge
        {
            let mut init_vec = Vec::<Chunk>::new();
            init_vec.push(Chunk::DontCare { start: 0, size: 4096 });
            let mut res = init_vec.clone();
            add_sparse_chunk(&mut res, Chunk::DontCare { start: 0, size: 4096 }).unwrap();
            assert_eq!(1, res.len());
            assert_eq!(Chunk::DontCare { start: 0, size: 8192 }, res[0]);
        }

        // Test they dont merge on different type
        {
            let mut init_vec = Vec::<Chunk>::new();
            init_vec.push(Chunk::DontCare { start: 0, size: 4096 });
            let mut res = init_vec.clone();
            add_sparse_chunk(&mut res, Chunk::Fill { start: 0, size: 4096, value: 1 }).unwrap();
            assert_eq!(2, res.len());
            assert_eq!(
                res,
                [
                    Chunk::DontCare { start: 0, size: 4096 },
                    Chunk::Fill { start: 0, size: 4096, value: 1 }
                ]
            );
        }
    }

    #[test]
    fn test_add_sparse_chunk_raw() {
        // Test they merge
        {
            let mut init_vec = Vec::<Chunk>::new();
            init_vec.push(Chunk::Raw { start: 0, size: 12288 });
            let mut res = init_vec.clone();
            add_sparse_chunk(&mut res, Chunk::Raw { start: 0, size: 16384 }).unwrap();
            assert_eq!(1, res.len());
            assert_eq!(Chunk::Raw { start: 0, size: 28672 }, res[0]);
        }

        // Test they dont merge on different type
        {
            let mut init_vec = Vec::<Chunk>::new();
            init_vec.push(Chunk::Raw { start: 0, size: 12288 });
            let mut res = init_vec.clone();
            add_sparse_chunk(&mut res, Chunk::Fill { start: 3, size: 8192, value: 1 }).unwrap();
            assert_eq!(2, res.len());
            assert_eq!(
                res,
                [
                    Chunk::Raw { start: 0, size: 12288 },
                    Chunk::Fill { start: 3, size: 8192, value: 1 }
                ]
            );
        }
    }

    #[test]
    fn test_add_sparse_chunk_crc32() {
        // Test they dont merge on same type (Crc32 is special)
        {
            let mut init_vec = Vec::<Chunk>::new();
            init_vec.push(Chunk::Crc32 { checksum: 1234 });
            let mut res = init_vec.clone();
            add_sparse_chunk(&mut res, Chunk::Crc32 { checksum: 2345 }).unwrap();
            assert_eq!(2, res.len());
            assert_eq!(res, [Chunk::Crc32 { checksum: 1234 }, Chunk::Crc32 { checksum: 2345 }]);
        }

        // Test they dont merge on different type
        {
            let mut init_vec = Vec::<Chunk>::new();
            init_vec.push(Chunk::Crc32 { checksum: 1234 });
            let mut res = init_vec.clone();
            add_sparse_chunk(&mut res, Chunk::Fill { start: 0, size: 4096, value: 1 }).unwrap();
            assert_eq!(2, res.len());
            assert_eq!(
                res,
                [Chunk::Crc32 { checksum: 1234 }, Chunk::Fill { start: 0, size: 4096, value: 1 }]
            );
        }
    }

    ////////////////////////////////////////////////////////////////////////////
    // Integration
    //

    #[test]
    fn test_roundtrip() {
        let tmpdir = TempDir::new().unwrap();

        // Generate a large temporary file
        let (mut file, _temp_path) = NamedTempFile::new_in(&tmpdir).unwrap().into_parts();
        let mut rng = SmallRng::from_entropy();
        let mut buf = Vec::<u8>::new();
        buf.resize(1 * 4096, 0);
        rng.fill_bytes(&mut buf);
        file.write_all(&buf).unwrap();
        file.flush().unwrap();
        file.seek(SeekFrom::Start(0)).unwrap();
        let content_size = buf.len();

        // build a sparse file
        let mut sparse_file = NamedTempFile::new_in(&tmpdir).unwrap().into_file();
        SparseImageBuilder::new()
            .add_chunk(DataSource::Buffer(Box::new([0xffu8; 8192])))
            .add_chunk(DataSource::Reader(Box::new(file)))
            .add_chunk(DataSource::Fill(0xaaaa_aaaau32, 1024))
            .add_chunk(DataSource::Skip(16384))
            .build(&mut sparse_file)
            .expect("Build sparse image failed");
        sparse_file.seek(SeekFrom::Start(0)).unwrap();

        let mut orig_file = NamedTempFile::new_in(&tmpdir).unwrap().into_file();
        unsparse(&mut sparse_file, &mut orig_file).expect("unsparse failed");
        orig_file.seek(SeekFrom::Start(0)).unwrap();

        let mut unsparsed_bytes = vec![];
        orig_file.read_to_end(&mut unsparsed_bytes).expect("Failed to read unsparsed image");
        assert_eq!(unsparsed_bytes.len(), 8192 + 20480 + content_size);
        assert_eq!(&unsparsed_bytes[..8192], &[0xffu8; 8192]);
        assert_eq!(&unsparsed_bytes[8192..8192 + content_size], &buf[..]);
        assert_eq!(&unsparsed_bytes[8192 + content_size..12288 + content_size], &[0xaau8; 4096]);
        assert_eq!(&unsparsed_bytes[12288 + content_size..], &[0u8; 16384]);
    }
}