1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
// Copyright 2020 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use fidl::client::QueryResponseFut;
use fidl::endpoints::Proxy as _;
use futures::io::AsyncRead;
use std::cmp::min;
use std::convert::TryInto as _;
use std::future::Future as _;
use std::pin::Pin;
use std::task::{Context, Poll};
use {fidl_fuchsia_io as fio, zx_status};
/// Wraps a `fidl_fuchsia_io::FileProxy` and implements `futures::io::AsyncRead`, which allows one
/// to perform asynchronous file reads that don't block the current thread while waiting for data.
#[derive(Debug)]
pub struct AsyncReader {
file: fio::FileProxy,
state: State,
}
#[derive(Debug)]
enum State {
Empty,
Forwarding { fut: QueryResponseFut<Result<Vec<u8>, i32>>, zero_byte_request: bool },
Bytes { bytes: Vec<u8>, offset: usize },
}
impl AsyncReader {
/// Errors if the provided `FileProxy` does not exclusively own the wrapped channel.
///
/// Exclusive ownership avoids surprising behavior arising from the mismatch between the
/// semantics for `AsyncRead` and `fuchsia.io/File.Read`. On e.g. Linux, if two `AsyncRead`
/// objects were wrapping the same file descriptor and a call to `poll_read` on one of the
/// `AsyncRead` objects returned `Pending`, a client would generally not expect the offset of
/// the underlying file descriptor to advance. Meaning that a client could then call `poll_read`
/// on the other `AsyncRead` object and expect not to miss any file contents. However, with an
/// `AsyncRead` implementation that wraps `fuchsia.io/File.Read`, a `poll_read` call that
/// returns `Pending` would advance the file offset, meaning that interleaving usage of
/// `AsyncRead` objects that share a channel would return file contents in surprising order.
pub fn from_proxy(file: fio::FileProxy) -> Result<Self, AsyncReaderError> {
let file = match file.into_channel() {
Ok(channel) => fio::FileProxy::new(channel),
Err(file) => {
return Err(AsyncReaderError::NonExclusiveChannelOwnership(file));
}
};
Ok(Self { file, state: State::Empty })
}
}
impl AsyncRead for AsyncReader {
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<std::io::Result<usize>> {
loop {
match self.state {
State::Empty => {
let len = if let Ok(len) = buf.len().try_into() {
min(len, fio::MAX_BUF)
} else {
fio::MAX_BUF
};
self.state =
State::Forwarding { fut: self.file.read(len), zero_byte_request: len == 0 };
}
State::Forwarding { ref mut fut, ref zero_byte_request } => {
match futures::ready!(Pin::new(fut).poll(cx)) {
Ok(result) => {
match result {
Err(s) => {
self.state = State::Empty;
return Poll::Ready(Err(
zx_status::Status::from_raw(s).into_io_error()
));
}
Ok(bytes) => {
// If the File.Read request was for zero bytes, but the current
// poll_read is not (because the File.Read request was made by an
// earlier call to poll_read with a zero length buffer) then we should
// not advance to State::Bytes because that would return Ready(Ok(0)),
// which would indicate EOF to the client.
// This handling is done here instead of short-circuiting at the
// beginning of the function so that zero-length poll_reads still
// trigger the validation performed by File.Read.
if *zero_byte_request && buf.len() != 0 {
self.state = State::Empty;
} else {
self.state = State::Bytes { bytes, offset: 0 };
}
}
}
}
Err(e) => {
self.state = State::Empty;
return Poll::Ready(Err(std::io::Error::new(
std::io::ErrorKind::Other,
e,
)));
}
}
}
State::Bytes { ref bytes, ref mut offset } => {
let n = min(buf.len(), bytes.len() - *offset);
let next_offset = *offset + n;
let () = buf[..n].copy_from_slice(&bytes[*offset..next_offset]);
if next_offset == bytes.len() {
self.state = State::Empty;
} else {
*offset = next_offset;
}
return Poll::Ready(Ok(n));
}
}
}
}
}
#[derive(Debug, thiserror::Error)]
pub enum AsyncReaderError {
#[error("Supplied FileProxy did not have exclusive ownership of the underlying channel")]
NonExclusiveChannelOwnership(fio::FileProxy),
}
#[cfg(test)]
mod tests {
use super::*;
use crate::file;
use assert_matches::assert_matches;
use fidl::endpoints;
use fuchsia_async as fasync;
use futures::future::poll_fn;
use futures::io::AsyncReadExt as _;
use futures::{join, StreamExt as _, TryStreamExt as _};
use std::convert::TryFrom as _;
use tempfile::TempDir;
#[fasync::run_singlethreaded(test)]
async fn exclusive_ownership() {
let (proxy, _) = endpoints::create_proxy::<fio::FileMarker>().unwrap();
let _stream = proxy.take_event_stream();
assert_matches!(AsyncReader::from_proxy(proxy), Err(_));
}
async fn read_to_end_file_with_expected_contents(expected_contents: &[u8]) {
let dir = TempDir::new().unwrap();
let path =
dir.path().join("read_to_end_with_expected_contents").to_str().unwrap().to_owned();
let () = file::write_in_namespace(&path, expected_contents).await.unwrap();
let file = file::open_in_namespace(&path, fio::PERM_READABLE).unwrap();
let mut reader = AsyncReader::from_proxy(file).unwrap();
let mut actual_contents = vec![];
reader.read_to_end(&mut actual_contents).await.unwrap();
assert_eq!(actual_contents, expected_contents);
}
#[fasync::run_singlethreaded(test)]
async fn read_to_end_empty() {
read_to_end_file_with_expected_contents(&[]).await;
}
#[fasync::run_singlethreaded(test)]
async fn read_to_end_large() {
let expected_contents = vec![7u8; (fio::MAX_BUF * 3).try_into().unwrap()];
read_to_end_file_with_expected_contents(&expected_contents[..]).await;
}
async fn poll_read_with_specific_buf_size(poll_read_size: u64, expected_file_read_size: u64) {
let (proxy, mut stream) = endpoints::create_proxy_and_stream::<fio::FileMarker>().unwrap();
let mut reader = AsyncReader::from_proxy(proxy).unwrap();
let () = poll_fn(|cx| {
let mut buf = vec![0u8; poll_read_size.try_into().unwrap()];
assert_matches!(Pin::new(&mut reader).poll_read(cx, buf.as_mut_slice()), Poll::Pending);
Poll::Ready(())
})
.await;
match stream.next().await.unwrap().unwrap() {
fio::FileRequest::Read { count, .. } => {
assert_eq!(count, expected_file_read_size);
}
req => panic!("unhandled request {:?}", req),
}
}
#[fasync::run_singlethreaded(test)]
async fn poll_read_empty_buf() {
poll_read_with_specific_buf_size(0, 0).await;
}
#[fasync::run_singlethreaded(test)]
async fn poll_read_caps_buf_size() {
poll_read_with_specific_buf_size(fio::MAX_BUF * 2, fio::MAX_BUF).await;
}
#[fasync::run_singlethreaded(test)]
async fn poll_read_pending_saves_future() {
let (proxy, mut stream) = endpoints::create_proxy_and_stream::<fio::FileMarker>().unwrap();
let mut reader = AsyncReader::from_proxy(proxy).unwrap();
// This poll_read call will create a File.Read future and poll it. The poll of the File.Read
// future will return Pending because nothing is handling the FileRequestStream yet. The
// reader should save this File.Read future for handling subsequent poll_read calls.
let () = poll_fn(|cx| {
assert_matches!(Pin::new(&mut reader).poll_read(cx, &mut [0u8; 1]), Poll::Pending);
Poll::Ready(())
})
.await;
// Call poll_read until we get a byte out. This byte should be from the first and only
// File.Read request.
let poll_read = async move {
let mut buf = [0u8; 1];
assert_eq!(reader.read(&mut buf).await.unwrap(), buf.len());
assert_eq!(&buf, &[1]);
};
let mut file_read_requests = 0u8;
let handle_file_stream = async {
while let Some(req) = stream.try_next().await.unwrap() {
file_read_requests += 1;
match req {
fio::FileRequest::Read { count, responder } => {
assert_eq!(count, 1);
responder.send(Ok(&[file_read_requests])).unwrap();
}
req => panic!("unhandled request {:?}", req),
}
}
};
let ((), ()) = join!(poll_read, handle_file_stream);
assert_eq!(file_read_requests, 1);
}
#[fasync::run_singlethreaded(test)]
async fn poll_read_with_smaller_buf_after_pending() {
let (proxy, mut stream) = endpoints::create_proxy_and_stream::<fio::FileMarker>().unwrap();
let mut reader = AsyncReader::from_proxy(proxy).unwrap();
// Call poll_read with a buf of length 3. This is the first poll_read call, so the reader
// will create a File.Read future for 3 bytes. poll_read will return Pending because nothing
// is handling the FileRequestStream yet.
let () = poll_fn(|cx| {
assert_matches!(Pin::new(&mut reader).poll_read(cx, &mut [0u8; 3]), Poll::Pending);
Poll::Ready(())
})
.await;
// Respond to the three byte File.Read request.
let () = async {
match stream.next().await.unwrap().unwrap() {
fio::FileRequest::Read { count, responder } => {
assert_eq!(count, 3);
responder.send(Ok(b"012")).unwrap();
}
req => panic!("unhandled request {:?}", req),
}
}
.await;
// Call poll_read with a buf of length 1. This should resolve the previously created 3 byte
// File.Read future and return the first byte from it while saving the remaining two bytes.
let mut buf = [0u8; 1];
assert_eq!(reader.read(&mut buf).await.unwrap(), buf.len());
assert_eq!(&buf, b"0");
// Call poll_read with a buf of len 1. This should return the first saved byte, which should
// be the second byte from the original File.Read request.
let mut buf = [0u8; 1];
assert_eq!(reader.read(&mut buf).await.unwrap(), buf.len());
assert_eq!(&buf, b"1");
// Call poll_read with a buf of len 2. There should only be one remaining saved byte from
// the original File.Read request, so poll_read should only return one byte.
let mut buf = [0u8; 2];
assert_eq!(reader.read(&mut buf).await.unwrap(), 1);
assert_eq!(&buf[..1], b"2");
// There should be no saved bytes remaining, so a poll_read of four bytes should cause a new
// File.Read request.
let mut buf = [0u8; 4];
let poll_read = reader.read(&mut buf);
let handle_second_file_request = async {
match stream.next().await.unwrap().unwrap() {
fio::FileRequest::Read { count, responder } => {
assert_eq!(count, 4);
responder.send(Ok(b"3456")).unwrap();
}
req => panic!("unhandled request {:?}", req),
}
};
let (read_res, ()) = join!(poll_read, handle_second_file_request);
assert_eq!(read_res.unwrap(), 4);
assert_eq!(&buf, b"3456");
}
#[fasync::run_singlethreaded(test)]
async fn transition_to_empty_on_fidl_error() {
let (proxy, _) = endpoints::create_proxy_and_stream::<fio::FileMarker>().unwrap();
let mut reader = AsyncReader::from_proxy(proxy).unwrap();
// poll_read will fail because the channel is closed because the server end was dropped.
let () = poll_fn(|cx| {
assert_matches!(
Pin::new(&mut reader).poll_read(cx, &mut [0u8; 1]),
Poll::Ready(Err(_))
);
Poll::Ready(())
})
.await;
// This test is accessing internal state because the only fidl error that is easy to inject
// is ZX_ERR_PEER_CLOSED (by closing the channel). Once the channel is closed, all new
// futures created by the AsyncReader will fail, but, if poll'ed, the old future would also
// continue to fail (not panic) because it is Fused.
assert_matches!(reader.state, State::Empty);
}
#[fasync::run_singlethreaded(test)]
async fn recover_from_file_read_error() {
let (proxy, mut stream) = endpoints::create_proxy_and_stream::<fio::FileMarker>().unwrap();
let mut reader = AsyncReader::from_proxy(proxy).unwrap();
// Call poll_read until failure.
let mut buf = [0u8; 1];
let poll_read = reader.read(&mut buf);
let failing_file_response = async {
match stream.next().await.unwrap().unwrap() {
fio::FileRequest::Read { count, responder } => {
assert_eq!(count, 1);
responder.send(Err(zx_status::Status::NO_MEMORY.into_raw())).unwrap();
}
req => panic!("unhandled request {:?}", req),
}
};
let (read_res, ()) = join!(poll_read, failing_file_response);
assert_matches!(read_res, Err(_));
// Calling poll_read again should create a new File.Read request instead of reusing the
// old future.
let mut buf = [0u8; 1];
let poll_read = reader.read(&mut buf);
let succeeding_file_response = async {
match stream.next().await.unwrap().unwrap() {
fio::FileRequest::Read { count, responder } => {
assert_eq!(count, 1);
responder.send(Ok(b"0")).unwrap();
}
req => panic!("unhandled request {:?}", req),
}
};
let (read_res, ()) = join!(poll_read, succeeding_file_response);
assert_eq!(read_res.unwrap(), 1);
assert_eq!(&buf, b"0");
}
#[fasync::run_singlethreaded(test)]
async fn poll_read_zero_then_read_nonzero() {
let (proxy, mut stream) = endpoints::create_proxy_and_stream::<fio::FileMarker>().unwrap();
let mut reader = AsyncReader::from_proxy(proxy).unwrap();
// Call poll_read with a zero-length buffer.
let () = poll_fn(|cx| {
assert_matches!(Pin::new(&mut reader).poll_read(cx, &mut []), Poll::Pending);
Poll::Ready(())
})
.await;
// Handle the zero-length File.Read request.
match stream.next().await.unwrap().unwrap() {
fio::FileRequest::Read { count, responder } => {
assert_eq!(count, 0);
responder.send(Ok(&[])).unwrap();
}
req => panic!("unhandled request {:?}", req),
}
// Call poll_read with a length 1 buffer until Ready is returned;
let mut buf = vec![0u8; 1];
let poll_read = reader.read(&mut buf);
// The AsyncReader will discard the File.Read response from the first poll_read, and create
// another request, this handles that second request. The AsyncReader discards the first
// response because the first poll_read was for zero bytes, but the current poll_read is
// not.
let handle_file_request = async {
match stream.next().await.unwrap().unwrap() {
fio::FileRequest::Read { count, responder } => {
assert_eq!(count, 1);
responder.send(Ok(&[1])).unwrap();
}
req => panic!("unhandled request {:?}", req),
}
};
let (poll_read, ()) = join!(poll_read, handle_file_request);
// poll_read should read 1 byte, even though the first poll_read request was for zero bytes
// and returned Pending.
assert_eq!(poll_read.unwrap(), 1);
assert_eq!(&buf[..], &[1]);
}
#[fasync::run_singlethreaded(test)]
async fn different_poll_read_and_file_sizes() {
for first_poll_read_len in 0..5 {
for file_size in 0..5 {
for second_poll_read_len in 0..5 {
let (proxy, mut stream) =
endpoints::create_proxy_and_stream::<fio::FileMarker>().unwrap();
let mut reader = AsyncReader::from_proxy(proxy).unwrap();
// poll_read causes the AsyncReader to create a File.Read request.
let () = poll_fn(|cx| {
let mut buf = vec![0u8; first_poll_read_len];
assert_matches!(
Pin::new(&mut reader).poll_read(cx, &mut buf),
Poll::Pending
);
Poll::Ready(())
})
.await;
// Respond to the File.Read request with at most as many bytes as the poll_read
// requested.
match stream.next().await.unwrap().unwrap() {
fio::FileRequest::Read { count, responder } => {
assert_eq!(count, u64::try_from(first_poll_read_len).unwrap());
let resp = vec![7u8; min(file_size, first_poll_read_len)];
responder.send(Ok(&resp)).unwrap();
}
req => panic!("unhandled request {:?}", req),
}
// Call poll_read until it returns Ready. If the first poll_read was for zero
// bytes and this poll_read is not, the AsyncReader will make another File.Read
// request.
let mut buf = vec![0u8; second_poll_read_len];
let poll_read = reader.read(&mut buf);
let handle_conditional_file_request = async {
if first_poll_read_len == 0 && second_poll_read_len != 0 {
match stream.next().await.unwrap().unwrap() {
fio::FileRequest::Read { count, responder } => {
assert_eq!(count, u64::try_from(second_poll_read_len).unwrap());
let resp = vec![7u8; min(file_size, second_poll_read_len)];
responder.send(Ok(&resp)).unwrap();
}
req => panic!("unhandled request {:?}", req),
}
}
};
let (read_res, ()) = join!(poll_read, handle_conditional_file_request);
let expected_len = if first_poll_read_len == 0 {
min(file_size, second_poll_read_len)
} else {
min(first_poll_read_len, min(file_size, second_poll_read_len))
};
let expected = vec![7u8; expected_len];
assert_eq!(read_res.unwrap(), expected_len);
assert_eq!(&buf[..expected_len], &expected[..]);
}
}
}
}
}