netstack3_ip/
socket.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
// Copyright 2019 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

//! IPv4 and IPv6 sockets.

use core::cmp::Ordering;
use core::convert::Infallible;
use core::num::NonZeroU8;

use log::error;
use net_types::ip::{Ip, IpVersionMarker, Ipv6Addr, Mtu};
use net_types::{MulticastAddress, ScopeableAddress, SpecifiedAddr};
use netstack3_base::socket::{SocketIpAddr, SocketIpAddrExt as _};
use netstack3_base::{
    trace_duration, AnyDevice, CounterContext, DeviceIdContext, DeviceIdentifier, EitherDeviceId,
    InstantContext, IpDeviceAddr, IpExt, Mms, SendFrameErrorReason, StrongDeviceIdentifier,
    TracingContext, WeakDeviceIdentifier,
};
use netstack3_filter::{
    self as filter, FilterBindingsContext, FilterHandler as _, InterfaceProperties, RawIpBody,
    TransportPacketSerializer,
};
use packet::{BufferMut, PacketConstraints, SerializeError};
use packet_formats::ip::DscpAndEcn;
use thiserror::Error;

use crate::internal::base::{
    FilterHandlerProvider, IpCounters, IpDeviceMtuContext, IpLayerIpExt, IpLayerPacketMetadata,
    IpPacketDestination, IpSendFrameError, IpSendFrameErrorReason, ResolveRouteError,
    SendIpPacketMeta,
};
use crate::internal::device::state::IpDeviceStateIpExt;
use crate::internal::routing::rules::{Marks, RuleInput};
use crate::internal::routing::PacketOrigin;
use crate::internal::types::{InternalForwarding, ResolvedRoute, RoutableIpAddr};
use crate::{HopLimits, NextHop};

/// An execution context defining a type of IP socket.
pub trait IpSocketHandler<I: IpExt, BC>: DeviceIdContext<AnyDevice> {
    /// Constructs a new [`IpSock`].
    ///
    /// `new_ip_socket` constructs a new `IpSock` to the given remote IP
    /// address from the given local IP address with the given IP protocol. If
    /// no local IP address is given, one will be chosen automatically. If
    /// `device` is `Some`, the socket will be bound to the given device - only
    /// routes which egress over the device will be used. If no route is
    /// available which egresses over the device - even if routes are available
    /// which egress over other devices - the socket will be considered
    /// unroutable.
    ///
    /// `new_ip_socket` returns an error if no route to the remote was found in
    /// the forwarding table or if the given local IP address is not valid for
    /// the found route.
    fn new_ip_socket<O>(
        &mut self,
        bindings_ctx: &mut BC,
        device: Option<EitherDeviceId<&Self::DeviceId, &Self::WeakDeviceId>>,
        local_ip: Option<IpDeviceAddr<I::Addr>>,
        remote_ip: SocketIpAddr<I::Addr>,
        proto: I::Proto,
        options: &O,
    ) -> Result<IpSock<I, Self::WeakDeviceId>, IpSockCreationError>
    where
        O: RouteResolutionOptions<I>;

    /// Sends an IP packet on a socket.
    ///
    /// The generated packet has its metadata initialized from `socket`,
    /// including the source and destination addresses, the Time To Live/Hop
    /// Limit, and the Protocol/Next Header. The outbound device is also chosen
    /// based on information stored in the socket.
    ///
    /// `mtu` may be used to optionally impose an MTU on the outgoing packet.
    /// Note that the device's MTU will still be imposed on the packet. That is,
    /// the smaller of `mtu` and the device's MTU will be imposed on the packet.
    ///
    /// If the socket is currently unroutable, an error is returned.
    fn send_ip_packet<S, O>(
        &mut self,
        bindings_ctx: &mut BC,
        socket: &IpSock<I, Self::WeakDeviceId>,
        body: S,
        options: &O,
    ) -> Result<(), IpSockSendError>
    where
        S: TransportPacketSerializer<I>,
        S::Buffer: BufferMut,
        O: SendOptions<I> + RouteResolutionOptions<I>;

    /// Confirms the provided IP socket destination is reachable.
    ///
    /// Implementations must retrieve the next hop given the provided
    /// IP socket and confirm neighbor reachability for the resolved target
    /// device.
    fn confirm_reachable<O>(
        &mut self,
        bindings_ctx: &mut BC,
        socket: &IpSock<I, Self::WeakDeviceId>,
        options: &O,
    ) where
        O: RouteResolutionOptions<I>;

    /// Creates a temporary IP socket and sends a single packet on it.
    ///
    /// `local_ip`, `remote_ip`, `proto`, and `options` are passed directly to
    /// [`IpSocketHandler::new_ip_socket`]. `get_body_from_src_ip` is given the
    /// source IP address for the packet - which may have been chosen
    /// automatically if `local_ip` is `None` - and returns the body to be
    /// encapsulated. This is provided in case the body's contents depend on the
    /// chosen source IP address.
    ///
    /// If `device` is specified, the available routes are limited to those that
    /// egress over the device.
    ///
    /// `mtu` may be used to optionally impose an MTU on the outgoing packet.
    /// Note that the device's MTU will still be imposed on the packet. That is,
    /// the smaller of `mtu` and the device's MTU will be imposed on the packet.
    ///
    /// # Errors
    ///
    /// If an error is encountered while constructing the temporary IP socket
    /// or sending the packet, `options` will be returned along with the
    /// error. `get_body_from_src_ip` is fallible, and if there's an error,
    /// it will be returned as well.
    fn send_oneshot_ip_packet_with_fallible_serializer<S, E, F, O>(
        &mut self,
        bindings_ctx: &mut BC,
        device: Option<EitherDeviceId<&Self::DeviceId, &Self::WeakDeviceId>>,
        local_ip: Option<IpDeviceAddr<I::Addr>>,
        remote_ip: RoutableIpAddr<I::Addr>,
        proto: I::Proto,
        options: &O,
        get_body_from_src_ip: F,
    ) -> Result<(), SendOneShotIpPacketError<E>>
    where
        S: TransportPacketSerializer<I>,
        S::Buffer: BufferMut,
        F: FnOnce(IpDeviceAddr<I::Addr>) -> Result<S, E>,
        O: SendOptions<I> + RouteResolutionOptions<I>,
    {
        let tmp = self
            .new_ip_socket(bindings_ctx, device, local_ip, remote_ip, proto, options)
            .map_err(|err| SendOneShotIpPacketError::CreateAndSendError { err: err.into() })?;
        let packet = get_body_from_src_ip(*tmp.local_ip())
            .map_err(SendOneShotIpPacketError::SerializeError)?;
        self.send_ip_packet(bindings_ctx, &tmp, packet, options)
            .map_err(|err| SendOneShotIpPacketError::CreateAndSendError { err: err.into() })
    }

    /// Sends a one-shot IP packet but with a non-fallible serializer.
    fn send_oneshot_ip_packet<S, F, O>(
        &mut self,
        bindings_ctx: &mut BC,
        device: Option<EitherDeviceId<&Self::DeviceId, &Self::WeakDeviceId>>,
        local_ip: Option<IpDeviceAddr<I::Addr>>,
        remote_ip: SocketIpAddr<I::Addr>,
        proto: I::Proto,
        options: &O,
        get_body_from_src_ip: F,
    ) -> Result<(), IpSockCreateAndSendError>
    where
        S: TransportPacketSerializer<I>,
        S::Buffer: BufferMut,
        F: FnOnce(IpDeviceAddr<I::Addr>) -> S,
        O: SendOptions<I> + RouteResolutionOptions<I>,
    {
        self.send_oneshot_ip_packet_with_fallible_serializer(
            bindings_ctx,
            device,
            local_ip,
            remote_ip,
            proto,
            options,
            |ip| Ok::<_, Infallible>(get_body_from_src_ip(ip)),
        )
        .map_err(|err| match err {
            SendOneShotIpPacketError::CreateAndSendError { err } => err,
        })
    }
}

/// An error in sending a packet on an IP socket.
#[derive(Error, Copy, Clone, Debug, Eq, PartialEq)]
pub enum IpSockSendError {
    /// An MTU was exceeded.
    ///
    /// This could be caused by an MTU at any layer of the stack, including both
    /// device MTUs and packet format body size limits.
    #[error("a maximum transmission unit (MTU) was exceeded")]
    Mtu,
    /// The socket is currently unroutable.
    #[error("the socket is currently unroutable: {0}")]
    Unroutable(#[from] ResolveRouteError),
    /// The socket operation would've resulted in illegal loopback addresses on
    /// a non-loopback device.
    #[error("illegal loopback address")]
    IllegalLoopbackAddress,
    /// Broadcast send is not allowed.
    #[error("Broadcast send is not enabled for the socket")]
    BroadcastNotAllowed,
}

impl From<SerializeError<Infallible>> for IpSockSendError {
    fn from(err: SerializeError<Infallible>) -> IpSockSendError {
        match err {
            SerializeError::SizeLimitExceeded => IpSockSendError::Mtu,
        }
    }
}

impl IpSockSendError {
    /// Constructs a `Result` from an [`IpSendFrameErrorReason`] with
    /// application-visible [`IpSockSendError`]s in the `Err` variant.
    ///
    /// Errors that are not bubbled up to applications are dropped.
    fn from_ip_send_frame(e: IpSendFrameErrorReason) -> Result<(), Self> {
        match e {
            IpSendFrameErrorReason::Device(d) => Self::from_send_frame(d),
            IpSendFrameErrorReason::IllegalLoopbackAddress => Err(Self::IllegalLoopbackAddress),
        }
    }

    /// Constructs a `Result` from a [`SendFrameErrorReason`] with
    /// application-visible [`IpSockSendError`]s in the `Err` variant.
    ///
    /// Errors that are not bubbled up to applications are dropped.
    fn from_send_frame(e: SendFrameErrorReason) -> Result<(), Self> {
        match e {
            SendFrameErrorReason::Alloc | SendFrameErrorReason::QueueFull => Ok(()),
            SendFrameErrorReason::SizeConstraintsViolation => Err(Self::Mtu),
        }
    }
}

/// An error in sending a packet on a temporary IP socket.
#[derive(Error, Copy, Clone, Debug)]
pub enum IpSockCreateAndSendError {
    /// Cannot send via temporary socket.
    #[error("cannot send via temporary socket: {0}")]
    Send(#[from] IpSockSendError),
    /// The temporary socket could not be created.
    #[error("the temporary socket could not be created: {0}")]
    Create(#[from] IpSockCreationError),
}

/// The error returned by
/// [`IpSocketHandler::send_oneshot_ip_packet_with_fallible_serializer`].
#[derive(Debug)]
#[allow(missing_docs)]
pub enum SendOneShotIpPacketError<E> {
    CreateAndSendError { err: IpSockCreateAndSendError },
    SerializeError(E),
}

/// Possible errors when retrieving the maximum transport message size.
#[derive(Error, Copy, Clone, Debug, Eq, PartialEq)]
pub enum MmsError {
    /// Cannot find the device that is used for the ip socket, possibly because
    /// there is no route.
    #[error("cannot find the device: {0}")]
    NoDevice(#[from] ResolveRouteError),
    /// The MTU provided by the device is too small such that there is no room
    /// for a transport message at all.
    #[error("invalid MTU: {0:?}")]
    MTUTooSmall(Mtu),
}

/// Gets device related information of an IP socket.
pub trait DeviceIpSocketHandler<I: IpExt, BC>: DeviceIdContext<AnyDevice> {
    /// Gets the maximum message size for the transport layer, it equals the
    /// device MTU minus the IP header size.
    ///
    /// This corresponds to the GET_MAXSIZES call described in:
    /// https://www.rfc-editor.org/rfc/rfc1122#section-3.4
    fn get_mms<O: RouteResolutionOptions<I>>(
        &mut self,
        bindings_ctx: &mut BC,
        ip_sock: &IpSock<I, Self::WeakDeviceId>,
        options: &O,
    ) -> Result<Mms, MmsError>;
}

/// An error encountered when creating an IP socket.
#[derive(Error, Copy, Clone, Debug, Eq, PartialEq)]
pub enum IpSockCreationError {
    /// An error occurred while looking up a route.
    #[error("a route cannot be determined: {0}")]
    Route(#[from] ResolveRouteError),
}

/// An IP socket.
#[derive(Clone, Debug)]
#[cfg_attr(test, derive(PartialEq))]
pub struct IpSock<I: IpExt, D> {
    /// The definition of the socket.
    ///
    /// This does not change for the lifetime of the socket.
    definition: IpSockDefinition<I, D>,
}

impl<I: IpExt, D> IpSock<I, D> {
    /// Returns the socket's definition.
    #[cfg(any(test, feature = "testutils"))]
    pub fn definition(&self) -> &IpSockDefinition<I, D> {
        &self.definition
    }
}

/// The definition of an IP socket.
///
/// These values are part of the socket's definition, and never change.
#[derive(Clone, Debug, PartialEq)]
pub struct IpSockDefinition<I: IpExt, D> {
    /// The socket's remote address.
    pub remote_ip: SocketIpAddr<I::Addr>,
    /// The socket's local address.
    ///
    /// Guaranteed to be unicast in its subnet since it's always equal to an
    /// address assigned to the local device. We can't use the `UnicastAddr`
    /// witness type since `Ipv4Addr` doesn't implement `UnicastAddress`.
    //
    // TODO(joshlf): Support unnumbered interfaces. Once we do that, a few
    // issues arise: A) Does the unicast restriction still apply, and is that
    // even well-defined for IPv4 in the absence of a subnet? B) Presumably we
    // have to always bind to a particular interface?
    pub local_ip: IpDeviceAddr<I::Addr>,
    /// The socket's bound output device.
    pub device: Option<D>,
    /// The IP protocol the socket is bound to.
    pub proto: I::Proto,
}

impl<I: IpExt, D> IpSock<I, D> {
    /// Returns the socket's local IP address.
    pub fn local_ip(&self) -> &IpDeviceAddr<I::Addr> {
        &self.definition.local_ip
    }
    /// Returns the socket's remote IP address.
    pub fn remote_ip(&self) -> &SocketIpAddr<I::Addr> {
        &self.definition.remote_ip
    }
    /// Returns the selected output interface for the socket, if any.
    pub fn device(&self) -> Option<&D> {
        self.definition.device.as_ref()
    }
    /// Returns the socket's protocol.
    pub fn proto(&self) -> I::Proto {
        self.definition.proto
    }
}

// TODO(joshlf): Once we support configuring transport-layer protocols using
// type parameters, use that to ensure that `proto` is the right protocol for
// the caller. We will still need to have a separate enforcement mechanism for
// raw IP sockets once we support those.

/// The bindings execution context for IP sockets.
pub trait IpSocketBindingsContext: InstantContext + TracingContext + FilterBindingsContext {}
impl<BC: InstantContext + TracingContext + FilterBindingsContext> IpSocketBindingsContext for BC {}

/// The context required in order to implement [`IpSocketHandler`].
///
/// Blanket impls of `IpSocketHandler` are provided in terms of
/// `IpSocketContext`.
pub trait IpSocketContext<I, BC: IpSocketBindingsContext>:
    DeviceIdContext<AnyDevice, DeviceId: InterfaceProperties<BC::DeviceClass>>
    + FilterHandlerProvider<I, BC>
where
    I: IpDeviceStateIpExt + IpExt,
{
    /// Returns a route for a socket.
    ///
    /// If `device` is specified, the available routes are limited to those that
    /// egress over the device.
    fn lookup_route(
        &mut self,
        bindings_ctx: &mut BC,
        device: Option<&Self::DeviceId>,
        src_ip: Option<IpDeviceAddr<I::Addr>>,
        dst_ip: RoutableIpAddr<I::Addr>,
        transparent: bool,
        marks: &Marks,
    ) -> Result<ResolvedRoute<I, Self::DeviceId>, ResolveRouteError>;

    /// Send an IP packet to the next-hop node.
    fn send_ip_packet<S>(
        &mut self,
        bindings_ctx: &mut BC,
        meta: SendIpPacketMeta<I, &Self::DeviceId, SpecifiedAddr<I::Addr>>,
        body: S,
        packet_metadata: IpLayerPacketMetadata<I, Self::WeakAddressId, BC>,
    ) -> Result<(), IpSendFrameError<S>>
    where
        S: TransportPacketSerializer<I>,
        S::Buffer: BufferMut;

    /// Returns `DeviceId` for the loopback device.
    fn get_loopback_device(&mut self) -> Option<Self::DeviceId>;

    /// Confirms the provided IP socket destination is reachable.
    ///
    /// Implementations must retrieve the next hop given the provided
    /// IP socket and confirm neighbor reachability for the resolved target
    /// device.
    fn confirm_reachable(
        &mut self,
        bindings_ctx: &mut BC,
        dst: SpecifiedAddr<I::Addr>,
        input: RuleInput<'_, I, Self::DeviceId>,
    );
}

/// Enables a blanket implementation of [`IpSocketHandler`].
///
/// Implementing this marker trait for a type enables a blanket implementation
/// of `IpSocketHandler` given the other requirements are met.
pub trait UseIpSocketHandlerBlanket {}

impl<I, BC, CC> IpSocketHandler<I, BC> for CC
where
    I: IpLayerIpExt + IpDeviceStateIpExt,
    BC: IpSocketBindingsContext,
    CC: IpSocketContext<I, BC> + CounterContext<IpCounters<I>> + UseIpSocketHandlerBlanket,
    CC::DeviceId: filter::InterfaceProperties<BC::DeviceClass>,
{
    fn new_ip_socket<O>(
        &mut self,
        bindings_ctx: &mut BC,
        device: Option<EitherDeviceId<&CC::DeviceId, &CC::WeakDeviceId>>,
        local_ip: Option<IpDeviceAddr<I::Addr>>,
        remote_ip: SocketIpAddr<I::Addr>,
        proto: I::Proto,
        options: &O,
    ) -> Result<IpSock<I, CC::WeakDeviceId>, IpSockCreationError>
    where
        O: RouteResolutionOptions<I>,
    {
        let device = device
            .as_ref()
            .map(|d| d.as_strong_ref().ok_or(ResolveRouteError::Unreachable))
            .transpose()?;
        let device = device.as_ref().map(|d| d.as_ref());

        // Make sure the remote is routable with a local address before creating
        // the socket. We do not care about the actual destination here because
        // we will recalculate it when we send a packet so that the best route
        // available at the time is used for each outgoing packet.
        let resolved_route = self.lookup_route(
            bindings_ctx,
            device,
            local_ip,
            remote_ip,
            options.transparent(),
            options.marks(),
        )?;
        Ok(new_ip_socket(device, resolved_route, remote_ip, proto))
    }

    fn send_ip_packet<S, O>(
        &mut self,
        bindings_ctx: &mut BC,
        ip_sock: &IpSock<I, CC::WeakDeviceId>,
        body: S,
        options: &O,
    ) -> Result<(), IpSockSendError>
    where
        S: TransportPacketSerializer<I>,
        S::Buffer: BufferMut,
        O: SendOptions<I> + RouteResolutionOptions<I>,
    {
        // TODO(joshlf): Call `trace!` with relevant fields from the socket.
        self.increment(|counters| &counters.send_ip_packet);

        send_ip_packet(self, bindings_ctx, ip_sock, body, options)
    }

    fn confirm_reachable<O>(
        &mut self,
        bindings_ctx: &mut BC,
        socket: &IpSock<I, CC::WeakDeviceId>,
        options: &O,
    ) where
        O: RouteResolutionOptions<I>,
    {
        let bound_device = socket.device().and_then(|weak| weak.upgrade());
        let bound_device = bound_device.as_ref();
        let bound_address = Some((*socket.local_ip()).into());
        let destination = (*socket.remote_ip()).into();
        IpSocketContext::confirm_reachable(
            self,
            bindings_ctx,
            destination,
            RuleInput {
                packet_origin: PacketOrigin::Local { bound_address, bound_device },
                marks: options.marks(),
            },
        )
    }
}

/// Provides hooks for altering route resolution behavior of [`IpSock`].
///
/// Must be implemented by the socket option type of an `IpSock` when using it
/// to call [`IpSocketHandler::new_ip_socket`] or
/// [`IpSocketHandler::send_ip_packet`]. This is implemented as a trait instead
/// of an inherent impl on a type so that users of sockets that don't need
/// certain option types can avoid allocating space for those options.
// TODO(https://fxbug.dev/323389672): We need a mechanism to inform `IpSock` of
// changes in the route resolution options when it starts caching previously
// calculated routes. Any changes to the options here *MUST* cause the route to
// be re-calculated.
pub trait RouteResolutionOptions<I: Ip> {
    /// Whether the socket is transparent.
    ///
    /// This allows transparently proxying traffic to the socket, and allows the
    /// socket to be bound to a non-local address.
    fn transparent(&self) -> bool;

    /// Returns the marks carried by packets created on the socket.
    fn marks(&self) -> &Marks;
}

/// Provides hooks for altering sending behavior of [`IpSock`].
///
/// Must be implemented by the socket option type of an `IpSock` when using it
/// to call [`IpSocketHandler::send_ip_packet`]. This is implemented as a trait
/// instead of an inherent impl on a type so that users of sockets that don't
/// need certain option types, like TCP for anything multicast-related, can
/// avoid allocating space for those options.
pub trait SendOptions<I: IpExt> {
    /// Returns the hop limit to set on a packet going to the given destination.
    ///
    /// If `Some(u)`, `u` will be used as the hop limit (IPv6) or TTL (IPv4) for
    /// a packet going to the given destination. Otherwise the default value
    /// will be used.
    fn hop_limit(&self, destination: &SpecifiedAddr<I::Addr>) -> Option<NonZeroU8>;

    /// Returns true if outgoing multicast packets should be looped back and
    /// delivered to local receivers who joined the multicast group.
    fn multicast_loop(&self) -> bool;

    /// `Some` if the socket can be used to send broadcast packets.
    fn allow_broadcast(&self) -> Option<I::BroadcastMarker>;

    /// Returns TCLASS/TOS field value that should be set in IP headers.
    fn dscp_and_ecn(&self) -> DscpAndEcn;

    /// The IP MTU to use for this transmission.
    ///
    /// Note that the minimum overall MTU is used considering the device and
    /// path. This option can be used to restrict an MTU to an upper bound.
    fn mtu(&self) -> Mtu;
}

/// Empty send and creation options that never overrides default values.
#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
pub struct DefaultIpSocketOptions;

impl<I: IpExt> SendOptions<I> for DefaultIpSocketOptions {
    fn hop_limit(&self, _destination: &SpecifiedAddr<I::Addr>) -> Option<NonZeroU8> {
        None
    }

    fn multicast_loop(&self) -> bool {
        false
    }

    fn allow_broadcast(&self) -> Option<I::BroadcastMarker> {
        None
    }

    fn dscp_and_ecn(&self) -> DscpAndEcn {
        DscpAndEcn::default()
    }

    fn mtu(&self) -> Mtu {
        Mtu::no_limit()
    }
}

impl<I: Ip> RouteResolutionOptions<I> for DefaultIpSocketOptions {
    fn transparent(&self) -> bool {
        false
    }

    fn marks(&self) -> &Marks {
        &Marks::UNMARKED
    }
}

/// A trait providing send options delegation to an inner type.
///
/// A blanket impl of [`SendOptions`] is provided to all implementers. This
/// trait has the same shape as `SendOptions` but all the methods provide
/// default implementations that delegate to the value returned by
/// `DelegatedSendOptions::Delegate`. For brevity, the default `delegate` is
/// [`DefaultIpSocketOptions`].
#[allow(missing_docs)]
pub trait DelegatedSendOptions<I: IpExt>: OptionDelegationMarker {
    /// Returns the delegate providing the impl for all default methods.
    fn delegate(&self) -> &impl SendOptions<I> {
        &DefaultIpSocketOptions
    }

    fn hop_limit(&self, destination: &SpecifiedAddr<I::Addr>) -> Option<NonZeroU8> {
        self.delegate().hop_limit(destination)
    }

    fn multicast_loop(&self) -> bool {
        self.delegate().multicast_loop()
    }

    fn allow_broadcast(&self) -> Option<I::BroadcastMarker> {
        self.delegate().allow_broadcast()
    }

    fn dscp_and_ecn(&self) -> DscpAndEcn {
        self.delegate().dscp_and_ecn()
    }

    fn mtu(&self) -> Mtu {
        self.delegate().mtu()
    }
}

impl<O: DelegatedSendOptions<I> + OptionDelegationMarker, I: IpExt> SendOptions<I> for O {
    fn hop_limit(&self, destination: &SpecifiedAddr<I::Addr>) -> Option<NonZeroU8> {
        self.hop_limit(destination)
    }

    fn multicast_loop(&self) -> bool {
        self.multicast_loop()
    }

    fn allow_broadcast(&self) -> Option<I::BroadcastMarker> {
        self.allow_broadcast()
    }

    fn dscp_and_ecn(&self) -> DscpAndEcn {
        self.dscp_and_ecn()
    }

    fn mtu(&self) -> Mtu {
        self.mtu()
    }
}

/// A trait providing route resolution options delegation to an inner type.
///
/// A blanket impl of [`RouteResolutionOptions`] is provided to all
/// implementers. This trait has the same shape as `RouteResolutionOptions` but
/// all the methods provide default implementations that delegate to the value
/// returned by `DelegatedRouteResolutionOptions::Delegate`. For brevity, the
/// default `delegate` is [`DefaultIpSocketOptions`].
#[allow(missing_docs)]
pub trait DelegatedRouteResolutionOptions<I: Ip>: OptionDelegationMarker {
    /// Returns the delegate providing the impl for all default methods.
    fn delegate(&self) -> &impl RouteResolutionOptions<I> {
        &DefaultIpSocketOptions
    }

    fn transparent(&self) -> bool {
        self.delegate().transparent()
    }

    fn marks(&self) -> &Marks {
        self.delegate().marks()
    }
}

impl<O: DelegatedRouteResolutionOptions<I> + OptionDelegationMarker, I: IpExt>
    RouteResolutionOptions<I> for O
{
    fn transparent(&self) -> bool {
        self.transparent()
    }

    fn marks(&self) -> &Marks {
        self.marks()
    }
}

/// A marker trait to allow option delegation traits.
///
/// This trait sidesteps trait resolution rules around the delegation traits
/// because of the `Ip` parameter in them.
pub trait OptionDelegationMarker {}

/// The configurable hop limits for a socket.
#[derive(Copy, Clone, Debug, Default, Eq, PartialEq)]
pub struct SocketHopLimits<I: Ip> {
    /// Unicast hop limit.
    pub unicast: Option<NonZeroU8>,
    /// Multicast hop limit.
    // TODO(https://fxbug.dev/42059735): Make this an Option<u8> to allow sending
    // multicast packets destined only for the local machine.
    pub multicast: Option<NonZeroU8>,
    /// An unused marker type signifying the IP version for which these hop
    /// limits are valid. Including this helps prevent using the wrong hop limits
    /// when operating on dualstack sockets.
    pub version: IpVersionMarker<I>,
}

impl<I: Ip> SocketHopLimits<I> {
    /// Returns a function that updates the unicast hop limit.
    pub fn set_unicast(value: Option<NonZeroU8>) -> impl FnOnce(&mut Self) {
        move |limits| limits.unicast = value
    }

    /// Returns a function that updates the multicast hop limit.
    pub fn set_multicast(value: Option<NonZeroU8>) -> impl FnOnce(&mut Self) {
        move |limits| limits.multicast = value
    }

    /// Returns the hop limits, or the provided defaults if unset.
    pub fn get_limits_with_defaults(&self, defaults: &HopLimits) -> HopLimits {
        let Self { unicast, multicast, version: _ } = self;
        HopLimits {
            unicast: unicast.unwrap_or(defaults.unicast),
            multicast: multicast.unwrap_or(defaults.multicast),
        }
    }

    /// Returns the appropriate hop limit to use for the given destination addr.
    pub fn hop_limit_for_dst(&self, destination: &SpecifiedAddr<I::Addr>) -> Option<NonZeroU8> {
        let Self { unicast, multicast, version: _ } = self;
        if destination.is_multicast() {
            *multicast
        } else {
            *unicast
        }
    }
}

fn new_ip_socket<I, D>(
    requested_device: Option<&D>,
    route: ResolvedRoute<I, D>,
    remote_ip: SocketIpAddr<I::Addr>,
    proto: I::Proto,
) -> IpSock<I, D::Weak>
where
    I: IpExt,
    D: StrongDeviceIdentifier,
{
    // TODO(https://fxbug.dev/323389672): Cache a reference to the route to
    // avoid the route lookup on send as long as the routing table hasn't
    // changed in between these operations.
    let ResolvedRoute {
        src_addr,
        device: route_device,
        local_delivery_device,
        next_hop: _,
        internal_forwarding: _,
    } = route;

    // If the source or destination address require a device, make sure to
    // set that in the socket definition. Otherwise defer to what was provided.
    let socket_device = (src_addr.as_ref().must_have_zone() || remote_ip.as_ref().must_have_zone())
        .then(|| {
            // NB: The route device might be loopback, and in such cases
            // we want to bind the socket to the device the source IP is
            // assigned to instead.
            local_delivery_device.unwrap_or(route_device)
        })
        .as_ref()
        .or(requested_device)
        .map(|d| d.downgrade());

    let definition =
        IpSockDefinition { local_ip: src_addr, remote_ip, device: socket_device, proto };
    IpSock { definition }
}

fn send_ip_packet<I, S, BC, CC, O>(
    core_ctx: &mut CC,
    bindings_ctx: &mut BC,
    socket: &IpSock<I, CC::WeakDeviceId>,
    mut body: S,
    options: &O,
) -> Result<(), IpSockSendError>
where
    I: IpExt + IpDeviceStateIpExt,
    S: TransportPacketSerializer<I>,
    S::Buffer: BufferMut,
    BC: IpSocketBindingsContext,
    CC: IpSocketContext<I, BC>,
    CC::DeviceId: filter::InterfaceProperties<BC::DeviceClass>,
    O: SendOptions<I> + RouteResolutionOptions<I>,
{
    trace_duration!(bindings_ctx, c"ip::send_packet");

    // Extracted to a function without the serializer parameter to ease code
    // generation.
    fn resolve<
        I: IpExt + IpDeviceStateIpExt,
        CC: IpSocketContext<I, BC>,
        BC: IpSocketBindingsContext,
    >(
        core_ctx: &mut CC,
        bindings_ctx: &mut BC,
        device: &Option<CC::WeakDeviceId>,
        local_ip: IpDeviceAddr<I::Addr>,
        remote_ip: RoutableIpAddr<I::Addr>,
        transparent: bool,
        marks: &Marks,
    ) -> Result<ResolvedRoute<I, CC::DeviceId>, IpSockSendError> {
        let device = match device.as_ref().map(|d| d.upgrade()) {
            Some(Some(device)) => Some(device),
            Some(None) => return Err(ResolveRouteError::Unreachable.into()),
            None => None,
        };
        let route = core_ctx
            .lookup_route(
                bindings_ctx,
                device.as_ref(),
                Some(local_ip),
                remote_ip,
                transparent,
                marks,
            )
            .map_err(|e| IpSockSendError::Unroutable(e))?;
        assert_eq!(local_ip, route.src_addr);
        Ok(route)
    }

    let IpSock {
        definition: IpSockDefinition { remote_ip, local_ip, device: socket_device, proto },
    } = socket;
    let ResolvedRoute {
        src_addr: local_ip,
        device: mut egress_device,
        mut next_hop,
        mut local_delivery_device,
        mut internal_forwarding,
    } = resolve(
        core_ctx,
        bindings_ctx,
        socket_device,
        *local_ip,
        *remote_ip,
        options.transparent(),
        options.marks(),
    )?;

    if matches!(next_hop, NextHop::Broadcast(_)) && options.allow_broadcast().is_none() {
        return Err(IpSockSendError::BroadcastNotAllowed);
    }

    let previous_dst = remote_ip.addr();
    let mut packet = filter::TxPacket::new(local_ip.addr(), remote_ip.addr(), *proto, &mut body);
    let mut packet_metadata = IpLayerPacketMetadata::default();

    match core_ctx.filter_handler().local_egress_hook(
        bindings_ctx,
        &mut packet,
        &egress_device,
        &mut packet_metadata,
    ) {
        filter::Verdict::Drop => {
            packet_metadata.acknowledge_drop();
            return Ok(());
        }
        filter::Verdict::Accept(()) => {}
    }

    let Some(mut local_ip) = IpDeviceAddr::new(packet.src_addr()) else {
        packet_metadata.acknowledge_drop();
        return Err(IpSockSendError::Unroutable(ResolveRouteError::NoSrcAddr));
    };
    let Some(remote_ip) = RoutableIpAddr::new(packet.dst_addr()) else {
        packet_metadata.acknowledge_drop();
        return Err(IpSockSendError::Unroutable(ResolveRouteError::Unreachable));
    };

    // If the LOCAL_EGRESS hook ended up rewriting the packet's destination, perform
    // re-routing based on the new destination.
    if remote_ip.addr() != previous_dst {
        let ResolvedRoute {
            src_addr: new_local_ip,
            device: new_device,
            next_hop: new_next_hop,
            local_delivery_device: new_local_delivery_device,
            internal_forwarding: new_internal_forwarding,
        } = resolve(
            core_ctx,
            bindings_ctx,
            socket_device,
            local_ip,
            remote_ip,
            options.transparent(),
            options.marks(),
        )
        .inspect_err(|_| {
            packet_metadata.acknowledge_drop();
        })?;
        local_ip = new_local_ip;
        egress_device = new_device;
        next_hop = new_next_hop;
        local_delivery_device = new_local_delivery_device;
        internal_forwarding = new_internal_forwarding;
    }

    // NB: Hit the forwarding hook if the route leverages internal forwarding.
    match internal_forwarding {
        InternalForwarding::Used(ingress_device) => {
            match core_ctx.filter_handler().forwarding_hook(
                &mut packet,
                &ingress_device,
                &egress_device,
                &mut packet_metadata,
            ) {
                filter::Verdict::Drop => {
                    packet_metadata.acknowledge_drop();
                    return Ok(());
                }
                filter::Verdict::Accept(()) => {}
            }
        }
        InternalForwarding::NotUsed => {}
    }

    // The packet needs to be delivered locally if it's sent to a broadcast
    // or multicast address. For multicast packets this feature can be disabled
    // with IP_MULTICAST_LOOP.

    let loopback_packet = (!egress_device.is_loopback()
        && ((options.multicast_loop() && remote_ip.addr().is_multicast())
            || next_hop.is_broadcast()))
    .then(|| body.serialize_new_buf(PacketConstraints::UNCONSTRAINED, packet::new_buf_vec))
    .transpose()?
    .map(|buf| RawIpBody::new(*proto, local_ip.addr(), remote_ip.addr(), buf));

    let destination = match &local_delivery_device {
        Some(d) => IpPacketDestination::Loopback(d),
        None => IpPacketDestination::from_next_hop(next_hop, remote_ip.into()),
    };
    let ttl = options.hop_limit(&remote_ip.into());
    let meta = SendIpPacketMeta {
        device: &egress_device,
        src_ip: local_ip.into(),
        dst_ip: remote_ip.into(),
        destination,
        ttl,
        proto: *proto,
        mtu: options.mtu(),
        dscp_and_ecn: options.dscp_and_ecn(),
    };
    IpSocketContext::send_ip_packet(core_ctx, bindings_ctx, meta, body, packet_metadata).or_else(
        |IpSendFrameError { serializer: _, error }| IpSockSendError::from_ip_send_frame(error),
    )?;

    match (loopback_packet, core_ctx.get_loopback_device()) {
        (Some(loopback_packet), Some(loopback_device)) => {
            let meta = SendIpPacketMeta {
                device: &loopback_device,
                src_ip: local_ip.into(),
                dst_ip: remote_ip.into(),
                destination: IpPacketDestination::Loopback(&egress_device),
                ttl,
                proto: *proto,
                mtu: options.mtu(),
                dscp_and_ecn: options.dscp_and_ecn(),
            };
            let packet_metadata = IpLayerPacketMetadata::default();

            // The loopback packet will hit the egress hook. LOCAL_EGRESS hook
            // is not called again.
            IpSocketContext::send_ip_packet(
                core_ctx,
                bindings_ctx,
                meta,
                loopback_packet,
                packet_metadata,
            )
            .unwrap_or_else(|IpSendFrameError { serializer: _, error }| {
                error!("failed to send loopback packet: {error:?}")
            });
        }
        (Some(_loopback_packet), None) => {
            error!("can't send a loopback packet without the loopback device")
        }
        _ => (),
    }

    Ok(())
}

/// Enables a blanket implementation of [`DeviceIpSocketHandler`].
///
/// Implementing this marker trait for a type enables a blanket implementation
/// of `DeviceIpSocketHandler` given the other requirements are met.
pub trait UseDeviceIpSocketHandlerBlanket {}

impl<I, BC, CC> DeviceIpSocketHandler<I, BC> for CC
where
    I: IpLayerIpExt + IpDeviceStateIpExt,
    BC: IpSocketBindingsContext,
    CC: IpDeviceMtuContext<I> + IpSocketContext<I, BC> + UseDeviceIpSocketHandlerBlanket,
{
    fn get_mms<O: RouteResolutionOptions<I>>(
        &mut self,
        bindings_ctx: &mut BC,
        ip_sock: &IpSock<I, Self::WeakDeviceId>,
        options: &O,
    ) -> Result<Mms, MmsError> {
        let IpSockDefinition { remote_ip, local_ip, device, proto: _ } = &ip_sock.definition;
        let device = device
            .as_ref()
            .map(|d| d.upgrade().ok_or(ResolveRouteError::Unreachable))
            .transpose()?;

        let ResolvedRoute {
            src_addr: _,
            local_delivery_device: _,
            device,
            next_hop: _,
            internal_forwarding: _,
        } = self
            .lookup_route(
                bindings_ctx,
                device.as_ref(),
                Some(*local_ip),
                *remote_ip,
                options.transparent(),
                options.marks(),
            )
            .map_err(MmsError::NoDevice)?;
        let mtu = self.get_mtu(&device);
        // TODO(https://fxbug.dev/42072935): Calculate the options size when they
        // are supported.
        Mms::from_mtu::<I>(mtu, 0 /* no ip options used */).ok_or(MmsError::MTUTooSmall(mtu))
    }
}

/// IPv6 source address selection as defined in [RFC 6724 Section 5].
pub(crate) mod ipv6_source_address_selection {
    use net_types::ip::{AddrSubnet, IpAddress as _};

    use super::*;

    use netstack3_base::Ipv6DeviceAddr;

    /// A source address selection candidate.
    pub struct SasCandidate<D> {
        /// The candidate address and subnet.
        pub addr_sub: AddrSubnet<Ipv6Addr, Ipv6DeviceAddr>,
        /// True if the address is assigned (i.e. non tentative).
        pub assigned: bool,
        /// True if the address is deprecated (i.e. not preferred).
        pub deprecated: bool,
        /// True if the address is temporary (i.e. not permanent).
        pub temporary: bool,
        /// The device this address belongs to.
        pub device: D,
    }

    /// Selects the source address for an IPv6 socket using the algorithm
    /// defined in [RFC 6724 Section 5].
    ///
    /// This algorithm is only applicable when the user has not explicitly
    /// specified a source address.
    ///
    /// `remote_ip` is the remote IP address of the socket, `outbound_device` is
    /// the device over which outbound traffic to `remote_ip` is sent (according
    /// to the forwarding table), and `addresses` is an iterator of all
    /// addresses on all devices. The algorithm works by iterating over
    /// `addresses` and selecting the address which is most preferred according
    /// to a set of selection criteria.
    pub fn select_ipv6_source_address<
        'a,
        D: PartialEq,
        A,
        I: Iterator<Item = A>,
        F: FnMut(&A) -> SasCandidate<D>,
    >(
        remote_ip: Option<SpecifiedAddr<Ipv6Addr>>,
        outbound_device: &D,
        addresses: I,
        mut get_candidate: F,
    ) -> Option<A> {
        // Source address selection as defined in RFC 6724 Section 5.
        //
        // The algorithm operates by defining a partial ordering on available
        // source addresses, and choosing one of the best address as defined by
        // that ordering (given multiple best addresses, the choice from among
        // those is implementation-defined). The partial order is defined in
        // terms of a sequence of rules. If a given rule defines an order
        // between two addresses, then that is their order. Otherwise, the next
        // rule must be consulted, and so on until all of the rules are
        // exhausted.

        addresses
            .map(|item| {
                let candidate = get_candidate(&item);
                (item, candidate)
            })
            // Tentative addresses are not considered available to the source
            // selection algorithm.
            .filter(|(_, candidate)| candidate.assigned)
            .max_by(|(_, a), (_, b)| {
                select_ipv6_source_address_cmp(remote_ip, outbound_device, a, b)
            })
            .map(|(item, _candidate)| item)
    }

    /// Comparison operator used by `select_ipv6_source_address`.
    fn select_ipv6_source_address_cmp<D: PartialEq>(
        remote_ip: Option<SpecifiedAddr<Ipv6Addr>>,
        outbound_device: &D,
        a: &SasCandidate<D>,
        b: &SasCandidate<D>,
    ) -> Ordering {
        // TODO(https://fxbug.dev/42123500): Implement rules 4, 5.5, and 6.
        let SasCandidate {
            addr_sub: a_addr_sub,
            assigned: a_assigned,
            deprecated: a_deprecated,
            temporary: a_temporary,
            device: a_device,
        } = a;
        let SasCandidate {
            addr_sub: b_addr_sub,
            assigned: b_assigned,
            deprecated: b_deprecated,
            temporary: b_temporary,
            device: b_device,
        } = b;

        let a_addr = a_addr_sub.addr().into_specified();
        let b_addr = b_addr_sub.addr().into_specified();

        // Assertions required in order for this implementation to be valid.

        // Required by the implementation of Rule 1.
        if let Some(remote_ip) = remote_ip {
            debug_assert!(!(a_addr == remote_ip && b_addr == remote_ip));
        }

        // Addresses that are not considered assigned are not valid source
        // addresses.
        debug_assert!(a_assigned);
        debug_assert!(b_assigned);

        rule_1(remote_ip, a_addr, b_addr)
            .then_with(|| rule_2(remote_ip, a_addr, b_addr))
            .then_with(|| rule_3(*a_deprecated, *b_deprecated))
            .then_with(|| rule_5(outbound_device, a_device, b_device))
            .then_with(|| rule_7(*a_temporary, *b_temporary))
            .then_with(|| rule_8(remote_ip, *a_addr_sub, *b_addr_sub))
    }

    // Assumes that `a` and `b` are not both equal to `remote_ip`.
    fn rule_1(
        remote_ip: Option<SpecifiedAddr<Ipv6Addr>>,
        a: SpecifiedAddr<Ipv6Addr>,
        b: SpecifiedAddr<Ipv6Addr>,
    ) -> Ordering {
        let remote_ip = match remote_ip {
            Some(remote_ip) => remote_ip,
            None => return Ordering::Equal,
        };
        if (a == remote_ip) != (b == remote_ip) {
            // Rule 1: Prefer same address.
            //
            // Note that both `a` and `b` cannot be equal to `remote_ip` since
            // that would imply that we had added the same address twice to the
            // same device.
            //
            // If `(a == remote_ip) != (b == remote_ip)`, then exactly one of
            // them is equal. If this inequality does not hold, then they must
            // both be unequal to `remote_ip`. In the first case, we have a tie,
            // and in the second case, the rule doesn't apply. In either case,
            // we move onto the next rule.
            if a == remote_ip {
                Ordering::Greater
            } else {
                Ordering::Less
            }
        } else {
            Ordering::Equal
        }
    }

    fn rule_2(
        remote_ip: Option<SpecifiedAddr<Ipv6Addr>>,
        a: SpecifiedAddr<Ipv6Addr>,
        b: SpecifiedAddr<Ipv6Addr>,
    ) -> Ordering {
        // Scope ordering is defined by the Multicast Scope ID, see
        // https://datatracker.ietf.org/doc/html/rfc6724#section-3.1 .
        let remote_scope = match remote_ip {
            Some(remote_ip) => remote_ip.scope().multicast_scope_id(),
            None => return Ordering::Equal,
        };
        let a_scope = a.scope().multicast_scope_id();
        let b_scope = b.scope().multicast_scope_id();
        if a_scope < b_scope {
            if a_scope < remote_scope {
                Ordering::Less
            } else {
                Ordering::Greater
            }
        } else if a_scope > b_scope {
            if b_scope < remote_scope {
                Ordering::Greater
            } else {
                Ordering::Less
            }
        } else {
            Ordering::Equal
        }
    }

    fn rule_3(a_deprecated: bool, b_deprecated: bool) -> Ordering {
        match (a_deprecated, b_deprecated) {
            (true, false) => Ordering::Less,
            (true, true) | (false, false) => Ordering::Equal,
            (false, true) => Ordering::Greater,
        }
    }

    fn rule_5<D: PartialEq>(outbound_device: &D, a_device: &D, b_device: &D) -> Ordering {
        if (a_device == outbound_device) != (b_device == outbound_device) {
            // Rule 5: Prefer outgoing interface.
            if a_device == outbound_device {
                Ordering::Greater
            } else {
                Ordering::Less
            }
        } else {
            Ordering::Equal
        }
    }

    // Prefer temporary addresses following rule 7.
    fn rule_7(a_temporary: bool, b_temporary: bool) -> Ordering {
        match (a_temporary, b_temporary) {
            (true, false) => Ordering::Greater,
            (true, true) | (false, false) => Ordering::Equal,
            (false, true) => Ordering::Less,
        }
    }

    fn rule_8(
        remote_ip: Option<SpecifiedAddr<Ipv6Addr>>,
        a: AddrSubnet<Ipv6Addr, Ipv6DeviceAddr>,
        b: AddrSubnet<Ipv6Addr, Ipv6DeviceAddr>,
    ) -> Ordering {
        let remote_ip = match remote_ip {
            Some(remote_ip) => remote_ip,
            None => return Ordering::Equal,
        };
        // Per RFC 6724 Section 2.2:
        //
        //   We define the common prefix length CommonPrefixLen(S, D) of a
        //   source address S and a destination address D as the length of the
        //   longest prefix (looking at the most significant, or leftmost, bits)
        //   that the two addresses have in common, up to the length of S's
        //   prefix (i.e., the portion of the address not including the
        //   interface ID).  For example, CommonPrefixLen(fe80::1, fe80::2) is
        //   64.
        fn common_prefix_len(
            src: AddrSubnet<Ipv6Addr, Ipv6DeviceAddr>,
            dst: SpecifiedAddr<Ipv6Addr>,
        ) -> u8 {
            core::cmp::min(src.addr().common_prefix_len(&dst), src.subnet().prefix())
        }

        // Rule 8: Use longest matching prefix.
        //
        // Note that, per RFC 6724 Section 5:
        //
        //   Rule 8 MAY be superseded if the implementation has other means of
        //   choosing among source addresses.  For example, if the
        //   implementation somehow knows which source address will result in
        //   the "best" communications performance.
        //
        // We don't currently make use of this option, but it's an option for
        // the future.
        common_prefix_len(a, remote_ip).cmp(&common_prefix_len(b, remote_ip))
    }

    #[cfg(test)]
    mod tests {
        use net_declare::net_ip_v6;

        use super::*;

        #[test]
        fn test_select_ipv6_source_address() {
            // Test the comparison operator used by `select_ipv6_source_address`
            // by separately testing each comparison condition.

            let remote = SpecifiedAddr::new(net_ip_v6!("2001:0db8:1::")).unwrap();
            let local0 = SpecifiedAddr::new(net_ip_v6!("2001:0db8:2::")).unwrap();
            let local1 = SpecifiedAddr::new(net_ip_v6!("2001:0db8:3::")).unwrap();
            let link_local_remote = SpecifiedAddr::new(net_ip_v6!("fe80::1:2:42")).unwrap();
            let link_local = SpecifiedAddr::new(net_ip_v6!("fe80::1:2:4")).unwrap();
            let dev0 = &0;
            let dev1 = &1;
            let dev2 = &2;

            // Rule 1: Prefer same address
            assert_eq!(rule_1(Some(remote), remote, local0), Ordering::Greater);
            assert_eq!(rule_1(Some(remote), local0, remote), Ordering::Less);
            assert_eq!(rule_1(Some(remote), local0, local1), Ordering::Equal);
            assert_eq!(rule_1(None, local0, local1), Ordering::Equal);

            // Rule 2: Prefer appropriate scope
            assert_eq!(rule_2(Some(remote), local0, local1), Ordering::Equal);
            assert_eq!(rule_2(Some(remote), local1, local0), Ordering::Equal);
            assert_eq!(rule_2(Some(remote), local0, link_local), Ordering::Greater);
            assert_eq!(rule_2(Some(remote), link_local, local0), Ordering::Less);
            assert_eq!(rule_2(Some(link_local_remote), local0, link_local), Ordering::Less);
            assert_eq!(rule_2(Some(link_local_remote), link_local, local0), Ordering::Greater);
            assert_eq!(rule_1(None, local0, link_local), Ordering::Equal);

            // Rule 3: Avoid deprecated states
            assert_eq!(rule_3(false, true), Ordering::Greater);
            assert_eq!(rule_3(true, false), Ordering::Less);
            assert_eq!(rule_3(true, true), Ordering::Equal);
            assert_eq!(rule_3(false, false), Ordering::Equal);

            // Rule 5: Prefer outgoing interface
            assert_eq!(rule_5(dev0, dev0, dev2), Ordering::Greater);
            assert_eq!(rule_5(dev0, dev2, dev0), Ordering::Less);
            assert_eq!(rule_5(dev0, dev0, dev0), Ordering::Equal);
            assert_eq!(rule_5(dev0, dev2, dev2), Ordering::Equal);

            // Rule 7: Prefer temporary address.
            assert_eq!(rule_7(true, false), Ordering::Greater);
            assert_eq!(rule_7(false, true), Ordering::Less);
            assert_eq!(rule_7(true, true), Ordering::Equal);
            assert_eq!(rule_7(false, false), Ordering::Equal);

            // Rule 8: Use longest matching prefix.
            {
                let new_addr_entry = |addr, prefix_len| AddrSubnet::new(addr, prefix_len).unwrap();

                // First, test that the longest prefix match is preferred when
                // using addresses whose common prefix length is shorter than
                // the subnet prefix length.

                // 4 leading 0x01 bytes.
                let remote = SpecifiedAddr::new(net_ip_v6!("1111::")).unwrap();
                // 3 leading 0x01 bytes.
                let local0 = new_addr_entry(net_ip_v6!("1110::"), 64);
                // 2 leading 0x01 bytes.
                let local1 = new_addr_entry(net_ip_v6!("1100::"), 64);

                assert_eq!(rule_8(Some(remote), local0, local1), Ordering::Greater);
                assert_eq!(rule_8(Some(remote), local1, local0), Ordering::Less);
                assert_eq!(rule_8(Some(remote), local0, local0), Ordering::Equal);
                assert_eq!(rule_8(Some(remote), local1, local1), Ordering::Equal);
                assert_eq!(rule_8(None, local0, local1), Ordering::Equal);

                // Second, test that the common prefix length is capped at the
                // subnet prefix length.

                // 3 leading 0x01 bytes, but a subnet prefix length of 8 (1 byte).
                let local0 = new_addr_entry(net_ip_v6!("1110::"), 8);
                // 2 leading 0x01 bytes, but a subnet prefix length of 8 (1 byte).
                let local1 = new_addr_entry(net_ip_v6!("1100::"), 8);

                assert_eq!(rule_8(Some(remote), local0, local1), Ordering::Equal);
                assert_eq!(rule_8(Some(remote), local1, local0), Ordering::Equal);
                assert_eq!(rule_8(Some(remote), local0, local0), Ordering::Equal);
                assert_eq!(rule_8(Some(remote), local1, local1), Ordering::Equal);
                assert_eq!(rule_8(None, local0, local1), Ordering::Equal);
            }

            {
                let new_addr_entry = |addr, device| SasCandidate {
                    addr_sub: AddrSubnet::new(addr, 128).unwrap(),
                    deprecated: false,
                    assigned: true,
                    temporary: false,
                    device,
                };

                // If no rules apply, then the two address entries are equal.
                assert_eq!(
                    select_ipv6_source_address_cmp(
                        Some(remote),
                        dev0,
                        &new_addr_entry(*local0, *dev1),
                        &new_addr_entry(*local1, *dev2),
                    ),
                    Ordering::Equal
                );
            }
        }

        #[test]
        fn test_select_ipv6_source_address_no_remote() {
            // Verify that source address selection correctly applies all
            // applicable rules when the remote is `None`.
            let dev0 = &0;
            let dev1 = &1;
            let dev2 = &2;

            let local0 = SpecifiedAddr::new(net_ip_v6!("2001:0db8:2::")).unwrap();
            let local1 = SpecifiedAddr::new(net_ip_v6!("2001:0db8:3::")).unwrap();

            let new_addr_entry = |addr, deprecated, device| SasCandidate {
                addr_sub: AddrSubnet::new(addr, 128).unwrap(),
                deprecated,
                assigned: true,
                temporary: false,
                device,
            };

            // Verify that Rule 3 still applies (avoid deprecated states).
            assert_eq!(
                select_ipv6_source_address_cmp(
                    None,
                    dev0,
                    &new_addr_entry(*local0, false, *dev1),
                    &new_addr_entry(*local1, true, *dev2),
                ),
                Ordering::Greater
            );

            // Verify that Rule 5 still applies (Prefer outgoing interface).
            assert_eq!(
                select_ipv6_source_address_cmp(
                    None,
                    dev0,
                    &new_addr_entry(*local0, false, *dev0),
                    &new_addr_entry(*local1, false, *dev1),
                ),
                Ordering::Greater
            );
        }
    }
}

/// Test fake implementations of the traits defined in the `socket` module.
#[cfg(any(test, feature = "testutils"))]
pub(crate) mod testutil {
    use alloc::boxed::Box;
    use alloc::collections::HashMap;
    use alloc::vec::Vec;
    use core::num::NonZeroUsize;

    use derivative::Derivative;
    use net_types::ip::{GenericOverIp, IpAddr, IpAddress, Ipv4, Ipv4Addr, Ipv6, Subnet};
    use net_types::{MulticastAddr, Witness as _};
    use netstack3_base::testutil::{FakeCoreCtx, FakeStrongDeviceId, FakeWeakDeviceId};
    use netstack3_base::{SendFrameContext, SendFrameError};
    use netstack3_filter::Tuple;

    use super::*;
    use crate::internal::base::{
        BaseTransportIpContext, HopLimits, MulticastMembershipHandler, DEFAULT_HOP_LIMITS,
    };
    use crate::internal::routing::testutil::FakeIpRoutingCtx;
    use crate::internal::routing::{self, RoutingTable};
    use crate::internal::types::{Destination, Entry, Metric, RawMetric};

    /// A fake implementation of the traits required by the transport layer from
    /// the IP layer.
    #[derive(Derivative, GenericOverIp)]
    #[generic_over_ip(I, Ip)]
    #[derivative(Default(bound = ""))]
    pub struct FakeIpSocketCtx<I: Ip, D> {
        pub(crate) table: RoutingTable<I, D>,
        forwarding: FakeIpRoutingCtx<D>,
        devices: HashMap<D, FakeDeviceState<I>>,
    }

    /// A trait enabling [`FakeIpSockeCtx`]'s implementations for
    /// [`FakeCoreCtx`] with types that hold a [`FakeIpSocketCtx`] internally,
    pub trait InnerFakeIpSocketCtx<I: Ip, D> {
        /// Gets a mutable reference to the inner fake context.
        fn fake_ip_socket_ctx_mut(&mut self) -> &mut FakeIpSocketCtx<I, D>;
    }

    impl<I: Ip, D> InnerFakeIpSocketCtx<I, D> for FakeIpSocketCtx<I, D> {
        fn fake_ip_socket_ctx_mut(&mut self) -> &mut FakeIpSocketCtx<I, D> {
            self
        }
    }

    impl<I: IpExt, D: FakeStrongDeviceId, BC> BaseTransportIpContext<I, BC> for FakeIpSocketCtx<I, D> {
        fn get_default_hop_limits(&mut self, device: Option<&D>) -> HopLimits {
            device.map_or(DEFAULT_HOP_LIMITS, |device| {
                let hop_limit = self.get_device_state(device).default_hop_limit;
                HopLimits { unicast: hop_limit, multicast: DEFAULT_HOP_LIMITS.multicast }
            })
        }

        type DevicesWithAddrIter<'a> = Box<dyn Iterator<Item = D> + 'a>;

        fn with_devices_with_assigned_addr<O, F: FnOnce(Self::DevicesWithAddrIter<'_>) -> O>(
            &mut self,
            addr: SpecifiedAddr<I::Addr>,
            cb: F,
        ) -> O {
            cb(Box::new(self.devices.iter().filter_map(move |(device, state)| {
                state.addresses.contains(&addr).then(|| device.clone())
            })))
        }

        fn get_original_destination(&mut self, _tuple: &Tuple<I>) -> Option<(I::Addr, u16)> {
            unimplemented!()
        }
    }

    impl<I: IpExt, D: FakeStrongDeviceId> DeviceIdContext<AnyDevice> for FakeIpSocketCtx<I, D> {
        type DeviceId = D;
        type WeakDeviceId = D::Weak;
    }

    impl<I: IpExt, State: InnerFakeIpSocketCtx<I, D>, Meta, D: FakeStrongDeviceId, BC>
        IpSocketHandler<I, BC> for FakeCoreCtx<State, Meta, D>
    where
        FakeCoreCtx<State, Meta, D>:
            SendFrameContext<BC, SendIpPacketMeta<I, Self::DeviceId, SpecifiedAddr<I::Addr>>>,
    {
        fn new_ip_socket<O>(
            &mut self,
            _bindings_ctx: &mut BC,
            device: Option<EitherDeviceId<&Self::DeviceId, &Self::WeakDeviceId>>,
            local_ip: Option<IpDeviceAddr<I::Addr>>,
            remote_ip: SocketIpAddr<I::Addr>,
            proto: I::Proto,
            options: &O,
        ) -> Result<IpSock<I, Self::WeakDeviceId>, IpSockCreationError>
        where
            O: RouteResolutionOptions<I>,
        {
            self.state.fake_ip_socket_ctx_mut().new_ip_socket(
                device,
                local_ip,
                remote_ip,
                proto,
                options.transparent(),
            )
        }

        fn send_ip_packet<S, O>(
            &mut self,
            bindings_ctx: &mut BC,
            socket: &IpSock<I, Self::WeakDeviceId>,
            body: S,
            options: &O,
        ) -> Result<(), IpSockSendError>
        where
            S: TransportPacketSerializer<I>,
            S::Buffer: BufferMut,
            O: SendOptions<I> + RouteResolutionOptions<I>,
        {
            let meta = self.state.fake_ip_socket_ctx_mut().resolve_send_meta(socket, options)?;
            self.send_frame(bindings_ctx, meta, body).or_else(
                |SendFrameError { serializer: _, error }| IpSockSendError::from_send_frame(error),
            )
        }

        fn confirm_reachable<O>(
            &mut self,
            _bindings_ctx: &mut BC,
            _socket: &IpSock<I, Self::WeakDeviceId>,
            _options: &O,
        ) {
        }
    }

    impl<I: IpExt, D: FakeStrongDeviceId, BC> MulticastMembershipHandler<I, BC>
        for FakeIpSocketCtx<I, D>
    {
        fn join_multicast_group(
            &mut self,
            _bindings_ctx: &mut BC,
            device: &Self::DeviceId,
            addr: MulticastAddr<<I as Ip>::Addr>,
        ) {
            let value = self.get_device_state_mut(device).multicast_groups.entry(addr).or_insert(0);
            *value = value.checked_add(1).unwrap();
        }

        fn leave_multicast_group(
            &mut self,
            _bindings_ctx: &mut BC,
            device: &Self::DeviceId,
            addr: MulticastAddr<<I as Ip>::Addr>,
        ) {
            let value = self
                .get_device_state_mut(device)
                .multicast_groups
                .get_mut(&addr)
                .unwrap_or_else(|| panic!("no entry for {addr} on {device:?}"));
            *value = value.checked_sub(1).unwrap();
        }

        fn select_device_for_multicast_group(
            &mut self,
            addr: MulticastAddr<<I as Ip>::Addr>,
            _marks: &Marks,
        ) -> Result<Self::DeviceId, ResolveRouteError> {
            let remote_ip = SocketIpAddr::new_from_multicast(addr);
            self.lookup_route(None, None, remote_ip, /* transparent */ false)
                .map(|ResolvedRoute { device, .. }| device)
        }
    }

    impl<I, BC, D, State, Meta> BaseTransportIpContext<I, BC> for FakeCoreCtx<State, Meta, D>
    where
        I: IpExt,
        D: FakeStrongDeviceId,
        State: InnerFakeIpSocketCtx<I, D>,
        Self: IpSocketHandler<I, BC, DeviceId = D, WeakDeviceId = FakeWeakDeviceId<D>>,
    {
        type DevicesWithAddrIter<'a> = Box<dyn Iterator<Item = D> + 'a>;

        fn with_devices_with_assigned_addr<O, F: FnOnce(Self::DevicesWithAddrIter<'_>) -> O>(
            &mut self,
            addr: SpecifiedAddr<I::Addr>,
            cb: F,
        ) -> O {
            BaseTransportIpContext::<I, BC>::with_devices_with_assigned_addr(
                self.state.fake_ip_socket_ctx_mut(),
                addr,
                cb,
            )
        }

        fn get_default_hop_limits(&mut self, device: Option<&Self::DeviceId>) -> HopLimits {
            BaseTransportIpContext::<I, BC>::get_default_hop_limits(
                self.state.fake_ip_socket_ctx_mut(),
                device,
            )
        }

        fn get_original_destination(&mut self, tuple: &Tuple<I>) -> Option<(I::Addr, u16)> {
            BaseTransportIpContext::<I, BC>::get_original_destination(
                self.state.fake_ip_socket_ctx_mut(),
                tuple,
            )
        }
    }

    /// A fake context providing [`IpSocketHandler`] for tests.
    #[derive(Derivative)]
    #[derivative(Default(bound = ""))]
    pub struct FakeDualStackIpSocketCtx<D> {
        v4: FakeIpSocketCtx<Ipv4, D>,
        v6: FakeIpSocketCtx<Ipv6, D>,
    }

    impl<D: FakeStrongDeviceId> FakeDualStackIpSocketCtx<D> {
        /// Creates a new [`FakeDualStackIpSocketCtx`] with `devices`.
        pub fn new<A: Into<SpecifiedAddr<IpAddr>>>(
            devices: impl IntoIterator<Item = FakeDeviceConfig<D, A>>,
        ) -> Self {
            let partition =
                |v: Vec<A>| -> (Vec<SpecifiedAddr<Ipv4Addr>>, Vec<SpecifiedAddr<Ipv6Addr>>) {
                    v.into_iter().fold((Vec::new(), Vec::new()), |(mut v4, mut v6), i| {
                        match IpAddr::from(i.into()) {
                            IpAddr::V4(a) => v4.push(a),
                            IpAddr::V6(a) => v6.push(a),
                        }
                        (v4, v6)
                    })
                };

            let (v4, v6): (Vec<_>, Vec<_>) = devices
                .into_iter()
                .map(|FakeDeviceConfig { device, local_ips, remote_ips }| {
                    let (local_v4, local_v6) = partition(local_ips);
                    let (remote_v4, remote_v6) = partition(remote_ips);
                    (
                        FakeDeviceConfig {
                            device: device.clone(),
                            local_ips: local_v4,
                            remote_ips: remote_v4,
                        },
                        FakeDeviceConfig { device, local_ips: local_v6, remote_ips: remote_v6 },
                    )
                })
                .unzip();
            Self { v4: FakeIpSocketCtx::new(v4), v6: FakeIpSocketCtx::new(v6) }
        }

        /// Returns the [`FakeIpSocketCtx`] for IP version `I`.
        pub fn inner_mut<I: Ip>(&mut self) -> &mut FakeIpSocketCtx<I, D> {
            I::map_ip_out(self, |s| &mut s.v4, |s| &mut s.v6)
        }

        fn inner<I: Ip>(&self) -> &FakeIpSocketCtx<I, D> {
            I::map_ip_out(self, |s| &s.v4, |s| &s.v6)
        }

        /// Adds a fake direct route to `ip` through `device`.
        pub fn add_route(&mut self, device: D, ip: SpecifiedAddr<IpAddr>) {
            match IpAddr::from(ip) {
                IpAddr::V4(ip) => {
                    routing::testutil::add_on_link_routing_entry(&mut self.v4.table, ip, device)
                }
                IpAddr::V6(ip) => {
                    routing::testutil::add_on_link_routing_entry(&mut self.v6.table, ip, device)
                }
            }
        }

        /// Adds a fake route to `subnet` through `device`.
        pub fn add_subnet_route<A: IpAddress>(&mut self, device: D, subnet: Subnet<A>) {
            let entry = Entry {
                subnet,
                device,
                gateway: None,
                metric: Metric::ExplicitMetric(RawMetric(0)),
            };
            A::Version::map_ip::<_, ()>(
                entry,
                |entry_v4| {
                    let _ = routing::testutil::add_entry(&mut self.v4.table, entry_v4)
                        .expect("Failed to add route");
                },
                |entry_v6| {
                    let _ = routing::testutil::add_entry(&mut self.v6.table, entry_v6)
                        .expect("Failed to add route");
                },
            );
        }

        /// Returns a mutable reference to fake device state.
        pub fn get_device_state_mut<I: IpExt>(&mut self, device: &D) -> &mut FakeDeviceState<I> {
            self.inner_mut::<I>().get_device_state_mut(device)
        }

        /// Returns the fake multicast memberships.
        pub fn multicast_memberships<I: IpExt>(
            &self,
        ) -> HashMap<(D, MulticastAddr<I::Addr>), NonZeroUsize> {
            self.inner::<I>().multicast_memberships()
        }
    }

    impl<I: IpExt, S: InnerFakeIpSocketCtx<I, D>, Meta, D: FakeStrongDeviceId, BC>
        MulticastMembershipHandler<I, BC> for FakeCoreCtx<S, Meta, D>
    {
        fn join_multicast_group(
            &mut self,
            bindings_ctx: &mut BC,
            device: &Self::DeviceId,
            addr: MulticastAddr<<I as Ip>::Addr>,
        ) {
            MulticastMembershipHandler::<I, BC>::join_multicast_group(
                self.state.fake_ip_socket_ctx_mut(),
                bindings_ctx,
                device,
                addr,
            )
        }

        fn leave_multicast_group(
            &mut self,
            bindings_ctx: &mut BC,
            device: &Self::DeviceId,
            addr: MulticastAddr<<I as Ip>::Addr>,
        ) {
            MulticastMembershipHandler::<I, BC>::leave_multicast_group(
                self.state.fake_ip_socket_ctx_mut(),
                bindings_ctx,
                device,
                addr,
            )
        }

        fn select_device_for_multicast_group(
            &mut self,
            addr: MulticastAddr<<I as Ip>::Addr>,
            marks: &Marks,
        ) -> Result<Self::DeviceId, ResolveRouteError> {
            MulticastMembershipHandler::<I, BC>::select_device_for_multicast_group(
                self.state.fake_ip_socket_ctx_mut(),
                addr,
                marks,
            )
        }
    }

    impl<I: Ip, D, State: InnerFakeIpSocketCtx<I, D>, Meta> InnerFakeIpSocketCtx<I, D>
        for FakeCoreCtx<State, Meta, D>
    {
        fn fake_ip_socket_ctx_mut(&mut self) -> &mut FakeIpSocketCtx<I, D> {
            self.state.fake_ip_socket_ctx_mut()
        }
    }

    impl<I: Ip, D: FakeStrongDeviceId> InnerFakeIpSocketCtx<I, D> for FakeDualStackIpSocketCtx<D> {
        fn fake_ip_socket_ctx_mut(&mut self) -> &mut FakeIpSocketCtx<I, D> {
            self.inner_mut::<I>()
        }
    }

    /// A device configuration for fake socket contexts.
    #[derive(Clone, GenericOverIp)]
    #[generic_over_ip()]
    pub struct FakeDeviceConfig<D, A> {
        /// The device.
        pub device: D,
        /// The device's local IPs.
        pub local_ips: Vec<A>,
        /// The remote IPs reachable from this device.
        pub remote_ips: Vec<A>,
    }

    /// State associated with a fake device in [`FakeIpSocketCtx`].
    pub struct FakeDeviceState<I: Ip> {
        /// The default hop limit used by the device.
        pub default_hop_limit: NonZeroU8,
        /// The assigned device addresses.
        pub addresses: Vec<SpecifiedAddr<I::Addr>>,
        /// The joined multicast groups.
        pub multicast_groups: HashMap<MulticastAddr<I::Addr>, usize>,
    }

    impl<I: Ip> FakeDeviceState<I> {
        /// Returns whether this fake device has joined multicast group `addr`.
        pub fn is_in_multicast_group(&self, addr: &MulticastAddr<I::Addr>) -> bool {
            self.multicast_groups.get(addr).is_some_and(|v| *v != 0)
        }
    }

    impl<I: IpExt, D: FakeStrongDeviceId> FakeIpSocketCtx<I, D> {
        /// Creates a new `FakeIpSocketCtx` with the given device
        /// configs.
        pub fn new(
            device_configs: impl IntoIterator<Item = FakeDeviceConfig<D, SpecifiedAddr<I::Addr>>>,
        ) -> Self {
            let mut table = RoutingTable::default();
            let mut devices = HashMap::default();
            for FakeDeviceConfig { device, local_ips, remote_ips } in device_configs {
                for addr in remote_ips {
                    routing::testutil::add_on_link_routing_entry(&mut table, addr, device.clone())
                }
                let state = FakeDeviceState {
                    default_hop_limit: DEFAULT_HOP_LIMITS.unicast,
                    addresses: local_ips,
                    multicast_groups: Default::default(),
                };
                assert!(
                    devices.insert(device.clone(), state).is_none(),
                    "duplicate entries for {device:?}",
                );
            }

            Self { table, devices, forwarding: Default::default() }
        }

        /// Returns an immutable reference to the fake device state.
        pub fn get_device_state(&self, device: &D) -> &FakeDeviceState<I> {
            self.devices.get(device).unwrap_or_else(|| panic!("no device {device:?}"))
        }

        /// Returns a mutable reference to the fake device state.
        pub fn get_device_state_mut(&mut self, device: &D) -> &mut FakeDeviceState<I> {
            self.devices.get_mut(device).unwrap_or_else(|| panic!("no device {device:?}"))
        }

        pub(crate) fn multicast_memberships(
            &self,
        ) -> HashMap<(D, MulticastAddr<I::Addr>), NonZeroUsize> {
            self.devices
                .iter()
                .map(|(device, state)| {
                    state.multicast_groups.iter().filter_map(|(group, count)| {
                        NonZeroUsize::new(*count).map(|count| ((device.clone(), *group), count))
                    })
                })
                .flatten()
                .collect()
        }

        fn new_ip_socket(
            &mut self,
            device: Option<EitherDeviceId<&D, &D::Weak>>,
            local_ip: Option<IpDeviceAddr<I::Addr>>,
            remote_ip: SocketIpAddr<I::Addr>,
            proto: I::Proto,
            transparent: bool,
        ) -> Result<IpSock<I, D::Weak>, IpSockCreationError> {
            let device = device
                .as_ref()
                .map(|d| d.as_strong_ref().ok_or(ResolveRouteError::Unreachable))
                .transpose()?;
            let device = device.as_ref().map(|d| d.as_ref());
            let resolved_route = self.lookup_route(device, local_ip, remote_ip, transparent)?;
            Ok(new_ip_socket(device, resolved_route, remote_ip, proto))
        }

        fn lookup_route(
            &mut self,
            device: Option<&D>,
            local_ip: Option<IpDeviceAddr<I::Addr>>,
            addr: RoutableIpAddr<I::Addr>,
            transparent: bool,
        ) -> Result<ResolvedRoute<I, D>, ResolveRouteError> {
            let Self { table, devices, forwarding } = self;
            let (destination, ()) = table
                .lookup_filter_map(forwarding, device, addr.addr(), |_, d| match &local_ip {
                    None => Some(()),
                    Some(local_ip) => {
                        if transparent {
                            return Some(());
                        }
                        devices.get(d).and_then(|state| {
                            state.addresses.contains(local_ip.as_ref()).then_some(())
                        })
                    }
                })
                .next()
                .ok_or(ResolveRouteError::Unreachable)?;

            let Destination { device, next_hop } = destination;
            let mut addrs = devices.get(device).unwrap().addresses.iter();
            let local_ip = match local_ip {
                None => {
                    let addr = addrs.next().ok_or(ResolveRouteError::NoSrcAddr)?;
                    IpDeviceAddr::new(addr.get()).expect("not valid device addr")
                }
                Some(local_ip) => {
                    if !transparent {
                        // We already constrained the set of devices so this
                        // should be a given.
                        assert!(
                            addrs.any(|a| a.get() == local_ip.addr()),
                            "didn't find IP {:?} in {:?}",
                            local_ip,
                            addrs.collect::<Vec<_>>()
                        );
                    }
                    local_ip
                }
            };

            Ok(ResolvedRoute {
                src_addr: local_ip,
                device: device.clone(),
                local_delivery_device: None,
                next_hop,
                // NB: Keep unit tests simple and skip internal forwarding
                // logic. Instead, this is verified by integration tests.
                internal_forwarding: InternalForwarding::NotUsed,
            })
        }

        fn resolve_send_meta<O>(
            &mut self,
            socket: &IpSock<I, D::Weak>,
            options: &O,
        ) -> Result<SendIpPacketMeta<I, D, SpecifiedAddr<I::Addr>>, IpSockSendError>
        where
            O: SendOptions<I> + RouteResolutionOptions<I>,
        {
            let IpSockDefinition { remote_ip, local_ip, device, proto } = &socket.definition;
            let device = device
                .as_ref()
                .map(|d| d.upgrade().ok_or(ResolveRouteError::Unreachable))
                .transpose()?;
            let ResolvedRoute {
                src_addr,
                device,
                next_hop,
                local_delivery_device: _,
                internal_forwarding: _,
            } = self.lookup_route(
                device.as_ref(),
                Some(*local_ip),
                *remote_ip,
                options.transparent(),
            )?;

            let remote_ip: &SpecifiedAddr<_> = remote_ip.as_ref();

            let destination = IpPacketDestination::from_next_hop(next_hop, *remote_ip);
            Ok(SendIpPacketMeta {
                device,
                src_ip: src_addr.into(),
                dst_ip: *remote_ip,
                destination,
                proto: *proto,
                ttl: options.hop_limit(remote_ip),
                mtu: options.mtu(),
                dscp_and_ecn: DscpAndEcn::default(),
            })
        }
    }
}