hashbrown/raw/bitmask.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
use super::imp::{BitMaskWord, BITMASK_MASK, BITMASK_STRIDE};
#[cfg(feature = "nightly")]
use core::intrinsics;
/// A bit mask which contains the result of a `Match` operation on a `Group` and
/// allows iterating through them.
///
/// The bit mask is arranged so that low-order bits represent lower memory
/// addresses for group match results.
///
/// For implementation reasons, the bits in the set may be sparsely packed, so
/// that there is only one bit-per-byte used (the high bit, 7). If this is the
/// case, `BITMASK_STRIDE` will be 8 to indicate a divide-by-8 should be
/// performed on counts/indices to normalize this difference. `BITMASK_MASK` is
/// similarly a mask of all the actually-used bits.
#[derive(Copy, Clone)]
pub struct BitMask(pub BitMaskWord);
#[allow(clippy::use_self)]
impl BitMask {
/// Returns a new `BitMask` with all bits inverted.
#[inline]
#[must_use]
pub fn invert(self) -> Self {
BitMask(self.0 ^ BITMASK_MASK)
}
/// Flip the bit in the mask for the entry at the given index.
///
/// Returns the bit's previous state.
#[inline]
#[allow(clippy::cast_ptr_alignment)]
#[cfg(feature = "raw")]
pub unsafe fn flip(&mut self, index: usize) -> bool {
// NOTE: The + BITMASK_STRIDE - 1 is to set the high bit.
let mask = 1 << (index * BITMASK_STRIDE + BITMASK_STRIDE - 1);
self.0 ^= mask;
// The bit was set if the bit is now 0.
self.0 & mask == 0
}
/// Returns a new `BitMask` with the lowest bit removed.
#[inline]
#[must_use]
pub fn remove_lowest_bit(self) -> Self {
BitMask(self.0 & (self.0 - 1))
}
/// Returns whether the `BitMask` has at least one set bit.
#[inline]
pub fn any_bit_set(self) -> bool {
self.0 != 0
}
/// Returns the first set bit in the `BitMask`, if there is one.
#[inline]
pub fn lowest_set_bit(self) -> Option<usize> {
if self.0 == 0 {
None
} else {
Some(unsafe { self.lowest_set_bit_nonzero() })
}
}
/// Returns the first set bit in the `BitMask`, if there is one. The
/// bitmask must not be empty.
#[inline]
#[cfg(feature = "nightly")]
pub unsafe fn lowest_set_bit_nonzero(self) -> usize {
intrinsics::cttz_nonzero(self.0) as usize / BITMASK_STRIDE
}
#[inline]
#[cfg(not(feature = "nightly"))]
pub unsafe fn lowest_set_bit_nonzero(self) -> usize {
self.trailing_zeros()
}
/// Returns the number of trailing zeroes in the `BitMask`.
#[inline]
pub fn trailing_zeros(self) -> usize {
// ARM doesn't have a trailing_zeroes instruction, and instead uses
// reverse_bits (RBIT) + leading_zeroes (CLZ). However older ARM
// versions (pre-ARMv7) don't have RBIT and need to emulate it
// instead. Since we only have 1 bit set in each byte on ARM, we can
// use swap_bytes (REV) + leading_zeroes instead.
if cfg!(target_arch = "arm") && BITMASK_STRIDE % 8 == 0 {
self.0.swap_bytes().leading_zeros() as usize / BITMASK_STRIDE
} else {
self.0.trailing_zeros() as usize / BITMASK_STRIDE
}
}
/// Returns the number of leading zeroes in the `BitMask`.
#[inline]
pub fn leading_zeros(self) -> usize {
self.0.leading_zeros() as usize / BITMASK_STRIDE
}
}
impl IntoIterator for BitMask {
type Item = usize;
type IntoIter = BitMaskIter;
#[inline]
fn into_iter(self) -> BitMaskIter {
BitMaskIter(self)
}
}
/// Iterator over the contents of a `BitMask`, returning the indices of set
/// bits.
pub struct BitMaskIter(BitMask);
impl Iterator for BitMaskIter {
type Item = usize;
#[inline]
fn next(&mut self) -> Option<usize> {
let bit = self.0.lowest_set_bit()?;
self.0 = self.0.remove_lowest_bit();
Some(bit)
}
}