memchr/arch/generic/memchr.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/*!
Generic crate-internal routines for the `memchr` family of functions.
*/
// What follows is a vector algorithm generic over the specific vector
// type to detect the position of one, two or three needles in a haystack.
// From what I know, this is a "classic" algorithm, although I don't
// believe it has been published in any peer reviewed journal. I believe
// it can be found in places like glibc and Go's standard library. It
// appears to be well known and is elaborated on in more detail here:
// https://gms.tf/stdfind-and-memchr-optimizations.html
//
// While the routine below is fairly long and perhaps intimidating, the basic
// idea is actually very simple and can be expressed straight-forwardly in
// pseudo code. The psuedo code below is written for 128 bit vectors, but the
// actual code below works for anything that implements the Vector trait.
//
// needle = (n1 << 15) | (n1 << 14) | ... | (n1 << 1) | n1
// // Note: shift amount is in bytes
//
// while i <= haystack.len() - 16:
// // A 16 byte vector. Each byte in chunk corresponds to a byte in
// // the haystack.
// chunk = haystack[i:i+16]
// // Compare bytes in needle with bytes in chunk. The result is a 16
// // byte chunk where each byte is 0xFF if the corresponding bytes
// // in needle and chunk were equal, or 0x00 otherwise.
// eqs = cmpeq(needle, chunk)
// // Return a 32 bit integer where the most significant 16 bits
// // are always 0 and the lower 16 bits correspond to whether the
// // most significant bit in the correspond byte in `eqs` is set.
// // In other words, `mask as u16` has bit i set if and only if
// // needle[i] == chunk[i].
// mask = movemask(eqs)
//
// // Mask is 0 if there is no match, and non-zero otherwise.
// if mask != 0:
// // trailing_zeros tells us the position of the least significant
// // bit that is set.
// return i + trailing_zeros(mask)
//
// // haystack length may not be a multiple of 16, so search the rest.
// while i < haystack.len():
// if haystack[i] == n1:
// return i
//
// // No match found.
// return NULL
//
// In fact, we could loosely translate the above code to Rust line-for-line
// and it would be a pretty fast algorithm. But, we pull out all the stops
// to go as fast as possible:
//
// 1. We use aligned loads. That is, we do some finagling to make sure our
// primary loop not only proceeds in increments of 16 bytes, but that
// the address of haystack's pointer that we dereference is aligned to
// 16 bytes. 16 is a magic number here because it is the size of SSE2
// 128-bit vector. (For the AVX2 algorithm, 32 is the magic number.)
// Therefore, to get aligned loads, our pointer's address must be evenly
// divisible by 16.
// 2. Our primary loop proceeds 64 bytes at a time instead of 16. It's
// kind of like loop unrolling, but we combine the equality comparisons
// using a vector OR such that we only need to extract a single mask to
// determine whether a match exists or not. If so, then we do some
// book-keeping to determine the precise location but otherwise mush on.
// 3. We use our "chunk" comparison routine in as many places as possible,
// even if it means using unaligned loads. In particular, if haystack
// starts with an unaligned address, then we do an unaligned load to
// search the first 16 bytes. We then start our primary loop at the
// smallest subsequent aligned address, which will actually overlap with
// previously searched bytes. But we're OK with that. We do a similar
// dance at the end of our primary loop. Finally, to avoid a
// byte-at-a-time loop at the end, we do a final 16 byte unaligned load
// that may overlap with a previous load. This is OK because it converts
// a loop into a small number of very fast vector instructions. The overlap
// is OK because we know the place where the overlap occurs does not
// contain a match.
//
// And that's pretty all there is to it. Note that since the below is
// generic and since it's meant to be inlined into routines with a
// `#[target_feature(enable = "...")]` annotation, we must mark all routines as
// both unsafe and `#[inline(always)]`.
//
// The fact that the code below is generic does somewhat inhibit us. For
// example, I've noticed that introducing an unlineable `#[cold]` function to
// handle the match case in the loop generates tighter assembly, but there is
// no way to do this in the generic code below because the generic code doesn't
// know what `target_feature` annotation to apply to the unlineable function.
// We could make such functions part of the `Vector` trait, but we instead live
// with the slightly sub-optimal codegen for now since it doesn't seem to have
// a noticeable perf difference.
use crate::{
ext::Pointer,
vector::{MoveMask, Vector},
};
/// Finds all occurrences of a single byte in a haystack.
#[derive(Clone, Copy, Debug)]
pub(crate) struct One<V> {
s1: u8,
v1: V,
}
impl<V: Vector> One<V> {
/// The number of bytes we examine per each iteration of our search loop.
const LOOP_SIZE: usize = 4 * V::BYTES;
/// Create a new searcher that finds occurrences of the byte given.
#[inline(always)]
pub(crate) unsafe fn new(needle: u8) -> One<V> {
One { s1: needle, v1: V::splat(needle) }
}
/// Returns the needle given to `One::new`.
#[inline(always)]
pub(crate) fn needle1(&self) -> u8 {
self.s1
}
/// Return a pointer to the first occurrence of the needle in the given
/// haystack. If no such occurrence exists, then `None` is returned.
///
/// When a match is found, the pointer returned is guaranteed to be
/// `>= start` and `< end`.
///
/// # Safety
///
/// * It must be the case that `start < end` and that the distance between
/// them is at least equal to `V::BYTES`. That is, it must always be valid
/// to do at least an unaligned load of `V` at `start`.
/// * Both `start` and `end` must be valid for reads.
/// * Both `start` and `end` must point to an initialized value.
/// * Both `start` and `end` must point to the same allocated object and
/// must either be in bounds or at most one byte past the end of the
/// allocated object.
/// * Both `start` and `end` must be _derived from_ a pointer to the same
/// object.
/// * The distance between `start` and `end` must not overflow `isize`.
/// * The distance being in bounds must not rely on "wrapping around" the
/// address space.
#[inline(always)]
pub(crate) unsafe fn find_raw(
&self,
start: *const u8,
end: *const u8,
) -> Option<*const u8> {
// If we want to support vectors bigger than 256 bits, we probably
// need to move up to using a u64 for the masks used below. Currently
// they are 32 bits, which means we're SOL for vectors that need masks
// bigger than 32 bits. Overall unclear until there's a use case.
debug_assert!(V::BYTES <= 32, "vector cannot be bigger than 32 bytes");
let topos = V::Mask::first_offset;
let len = end.distance(start);
debug_assert!(
len >= V::BYTES,
"haystack has length {}, but must be at least {}",
len,
V::BYTES
);
// Search a possibly unaligned chunk at `start`. This covers any part
// of the haystack prior to where aligned loads can start.
if let Some(cur) = self.search_chunk(start, topos) {
return Some(cur);
}
// Set `cur` to the first V-aligned pointer greater than `start`.
let mut cur = start.add(V::BYTES - (start.as_usize() & V::ALIGN));
debug_assert!(cur > start && end.sub(V::BYTES) >= start);
if len >= Self::LOOP_SIZE {
while cur <= end.sub(Self::LOOP_SIZE) {
debug_assert_eq!(0, cur.as_usize() % V::BYTES);
let a = V::load_aligned(cur);
let b = V::load_aligned(cur.add(1 * V::BYTES));
let c = V::load_aligned(cur.add(2 * V::BYTES));
let d = V::load_aligned(cur.add(3 * V::BYTES));
let eqa = self.v1.cmpeq(a);
let eqb = self.v1.cmpeq(b);
let eqc = self.v1.cmpeq(c);
let eqd = self.v1.cmpeq(d);
let or1 = eqa.or(eqb);
let or2 = eqc.or(eqd);
let or3 = or1.or(or2);
if or3.movemask_will_have_non_zero() {
let mask = eqa.movemask();
if mask.has_non_zero() {
return Some(cur.add(topos(mask)));
}
let mask = eqb.movemask();
if mask.has_non_zero() {
return Some(cur.add(1 * V::BYTES).add(topos(mask)));
}
let mask = eqc.movemask();
if mask.has_non_zero() {
return Some(cur.add(2 * V::BYTES).add(topos(mask)));
}
let mask = eqd.movemask();
debug_assert!(mask.has_non_zero());
return Some(cur.add(3 * V::BYTES).add(topos(mask)));
}
cur = cur.add(Self::LOOP_SIZE);
}
}
// Handle any leftovers after the aligned loop above. We use unaligned
// loads here, but I believe we are guaranteed that they are aligned
// since `cur` is aligned.
while cur <= end.sub(V::BYTES) {
debug_assert!(end.distance(cur) >= V::BYTES);
if let Some(cur) = self.search_chunk(cur, topos) {
return Some(cur);
}
cur = cur.add(V::BYTES);
}
// Finally handle any remaining bytes less than the size of V. In this
// case, our pointer may indeed be unaligned and the load may overlap
// with the previous one. But that's okay since we know the previous
// load didn't lead to a match (otherwise we wouldn't be here).
if cur < end {
debug_assert!(end.distance(cur) < V::BYTES);
cur = cur.sub(V::BYTES - end.distance(cur));
debug_assert_eq!(end.distance(cur), V::BYTES);
return self.search_chunk(cur, topos);
}
None
}
/// Return a pointer to the last occurrence of the needle in the given
/// haystack. If no such occurrence exists, then `None` is returned.
///
/// When a match is found, the pointer returned is guaranteed to be
/// `>= start` and `< end`.
///
/// # Safety
///
/// * It must be the case that `start < end` and that the distance between
/// them is at least equal to `V::BYTES`. That is, it must always be valid
/// to do at least an unaligned load of `V` at `start`.
/// * Both `start` and `end` must be valid for reads.
/// * Both `start` and `end` must point to an initialized value.
/// * Both `start` and `end` must point to the same allocated object and
/// must either be in bounds or at most one byte past the end of the
/// allocated object.
/// * Both `start` and `end` must be _derived from_ a pointer to the same
/// object.
/// * The distance between `start` and `end` must not overflow `isize`.
/// * The distance being in bounds must not rely on "wrapping around" the
/// address space.
#[inline(always)]
pub(crate) unsafe fn rfind_raw(
&self,
start: *const u8,
end: *const u8,
) -> Option<*const u8> {
// If we want to support vectors bigger than 256 bits, we probably
// need to move up to using a u64 for the masks used below. Currently
// they are 32 bits, which means we're SOL for vectors that need masks
// bigger than 32 bits. Overall unclear until there's a use case.
debug_assert!(V::BYTES <= 32, "vector cannot be bigger than 32 bytes");
let topos = V::Mask::last_offset;
let len = end.distance(start);
debug_assert!(
len >= V::BYTES,
"haystack has length {}, but must be at least {}",
len,
V::BYTES
);
if let Some(cur) = self.search_chunk(end.sub(V::BYTES), topos) {
return Some(cur);
}
let mut cur = end.sub(end.as_usize() & V::ALIGN);
debug_assert!(start <= cur && cur <= end);
if len >= Self::LOOP_SIZE {
while cur >= start.add(Self::LOOP_SIZE) {
debug_assert_eq!(0, cur.as_usize() % V::BYTES);
cur = cur.sub(Self::LOOP_SIZE);
let a = V::load_aligned(cur);
let b = V::load_aligned(cur.add(1 * V::BYTES));
let c = V::load_aligned(cur.add(2 * V::BYTES));
let d = V::load_aligned(cur.add(3 * V::BYTES));
let eqa = self.v1.cmpeq(a);
let eqb = self.v1.cmpeq(b);
let eqc = self.v1.cmpeq(c);
let eqd = self.v1.cmpeq(d);
let or1 = eqa.or(eqb);
let or2 = eqc.or(eqd);
let or3 = or1.or(or2);
if or3.movemask_will_have_non_zero() {
let mask = eqd.movemask();
if mask.has_non_zero() {
return Some(cur.add(3 * V::BYTES).add(topos(mask)));
}
let mask = eqc.movemask();
if mask.has_non_zero() {
return Some(cur.add(2 * V::BYTES).add(topos(mask)));
}
let mask = eqb.movemask();
if mask.has_non_zero() {
return Some(cur.add(1 * V::BYTES).add(topos(mask)));
}
let mask = eqa.movemask();
debug_assert!(mask.has_non_zero());
return Some(cur.add(topos(mask)));
}
}
}
while cur >= start.add(V::BYTES) {
debug_assert!(cur.distance(start) >= V::BYTES);
cur = cur.sub(V::BYTES);
if let Some(cur) = self.search_chunk(cur, topos) {
return Some(cur);
}
}
if cur > start {
debug_assert!(cur.distance(start) < V::BYTES);
return self.search_chunk(start, topos);
}
None
}
/// Return a count of all matching bytes in the given haystack.
///
/// # Safety
///
/// * It must be the case that `start < end` and that the distance between
/// them is at least equal to `V::BYTES`. That is, it must always be valid
/// to do at least an unaligned load of `V` at `start`.
/// * Both `start` and `end` must be valid for reads.
/// * Both `start` and `end` must point to an initialized value.
/// * Both `start` and `end` must point to the same allocated object and
/// must either be in bounds or at most one byte past the end of the
/// allocated object.
/// * Both `start` and `end` must be _derived from_ a pointer to the same
/// object.
/// * The distance between `start` and `end` must not overflow `isize`.
/// * The distance being in bounds must not rely on "wrapping around" the
/// address space.
#[inline(always)]
pub(crate) unsafe fn count_raw(
&self,
start: *const u8,
end: *const u8,
) -> usize {
debug_assert!(V::BYTES <= 32, "vector cannot be bigger than 32 bytes");
let confirm = |b| b == self.needle1();
let len = end.distance(start);
debug_assert!(
len >= V::BYTES,
"haystack has length {}, but must be at least {}",
len,
V::BYTES
);
// Set `cur` to the first V-aligned pointer greater than `start`.
let mut cur = start.add(V::BYTES - (start.as_usize() & V::ALIGN));
// Count any matching bytes before we start our aligned loop.
let mut count = count_byte_by_byte(start, cur, confirm);
debug_assert!(cur > start && end.sub(V::BYTES) >= start);
if len >= Self::LOOP_SIZE {
while cur <= end.sub(Self::LOOP_SIZE) {
debug_assert_eq!(0, cur.as_usize() % V::BYTES);
let a = V::load_aligned(cur);
let b = V::load_aligned(cur.add(1 * V::BYTES));
let c = V::load_aligned(cur.add(2 * V::BYTES));
let d = V::load_aligned(cur.add(3 * V::BYTES));
let eqa = self.v1.cmpeq(a);
let eqb = self.v1.cmpeq(b);
let eqc = self.v1.cmpeq(c);
let eqd = self.v1.cmpeq(d);
count += eqa.movemask().count_ones();
count += eqb.movemask().count_ones();
count += eqc.movemask().count_ones();
count += eqd.movemask().count_ones();
cur = cur.add(Self::LOOP_SIZE);
}
}
// Handle any leftovers after the aligned loop above. We use unaligned
// loads here, but I believe we are guaranteed that they are aligned
// since `cur` is aligned.
while cur <= end.sub(V::BYTES) {
debug_assert!(end.distance(cur) >= V::BYTES);
let chunk = V::load_unaligned(cur);
count += self.v1.cmpeq(chunk).movemask().count_ones();
cur = cur.add(V::BYTES);
}
// And finally count any leftovers that weren't caught above.
count += count_byte_by_byte(cur, end, confirm);
count
}
/// Search `V::BYTES` starting at `cur` via an unaligned load.
///
/// `mask_to_offset` should be a function that converts a `movemask` to
/// an offset such that `cur.add(offset)` corresponds to a pointer to the
/// match location if one is found. Generally it is expected to use either
/// `mask_to_first_offset` or `mask_to_last_offset`, depending on whether
/// one is implementing a forward or reverse search, respectively.
///
/// # Safety
///
/// `cur` must be a valid pointer and it must be valid to do an unaligned
/// load of size `V::BYTES` at `cur`.
#[inline(always)]
unsafe fn search_chunk(
&self,
cur: *const u8,
mask_to_offset: impl Fn(V::Mask) -> usize,
) -> Option<*const u8> {
let chunk = V::load_unaligned(cur);
let mask = self.v1.cmpeq(chunk).movemask();
if mask.has_non_zero() {
Some(cur.add(mask_to_offset(mask)))
} else {
None
}
}
}
/// Finds all occurrences of two bytes in a haystack.
///
/// That is, this reports matches of one of two possible bytes. For example,
/// searching for `a` or `b` in `afoobar` would report matches at offsets `0`,
/// `4` and `5`.
#[derive(Clone, Copy, Debug)]
pub(crate) struct Two<V> {
s1: u8,
s2: u8,
v1: V,
v2: V,
}
impl<V: Vector> Two<V> {
/// The number of bytes we examine per each iteration of our search loop.
const LOOP_SIZE: usize = 2 * V::BYTES;
/// Create a new searcher that finds occurrences of the byte given.
#[inline(always)]
pub(crate) unsafe fn new(needle1: u8, needle2: u8) -> Two<V> {
Two {
s1: needle1,
s2: needle2,
v1: V::splat(needle1),
v2: V::splat(needle2),
}
}
/// Returns the first needle given to `Two::new`.
#[inline(always)]
pub(crate) fn needle1(&self) -> u8 {
self.s1
}
/// Returns the second needle given to `Two::new`.
#[inline(always)]
pub(crate) fn needle2(&self) -> u8 {
self.s2
}
/// Return a pointer to the first occurrence of one of the needles in the
/// given haystack. If no such occurrence exists, then `None` is returned.
///
/// When a match is found, the pointer returned is guaranteed to be
/// `>= start` and `< end`.
///
/// # Safety
///
/// * It must be the case that `start < end` and that the distance between
/// them is at least equal to `V::BYTES`. That is, it must always be valid
/// to do at least an unaligned load of `V` at `start`.
/// * Both `start` and `end` must be valid for reads.
/// * Both `start` and `end` must point to an initialized value.
/// * Both `start` and `end` must point to the same allocated object and
/// must either be in bounds or at most one byte past the end of the
/// allocated object.
/// * Both `start` and `end` must be _derived from_ a pointer to the same
/// object.
/// * The distance between `start` and `end` must not overflow `isize`.
/// * The distance being in bounds must not rely on "wrapping around" the
/// address space.
#[inline(always)]
pub(crate) unsafe fn find_raw(
&self,
start: *const u8,
end: *const u8,
) -> Option<*const u8> {
// If we want to support vectors bigger than 256 bits, we probably
// need to move up to using a u64 for the masks used below. Currently
// they are 32 bits, which means we're SOL for vectors that need masks
// bigger than 32 bits. Overall unclear until there's a use case.
debug_assert!(V::BYTES <= 32, "vector cannot be bigger than 32 bytes");
let topos = V::Mask::first_offset;
let len = end.distance(start);
debug_assert!(
len >= V::BYTES,
"haystack has length {}, but must be at least {}",
len,
V::BYTES
);
// Search a possibly unaligned chunk at `start`. This covers any part
// of the haystack prior to where aligned loads can start.
if let Some(cur) = self.search_chunk(start, topos) {
return Some(cur);
}
// Set `cur` to the first V-aligned pointer greater than `start`.
let mut cur = start.add(V::BYTES - (start.as_usize() & V::ALIGN));
debug_assert!(cur > start && end.sub(V::BYTES) >= start);
if len >= Self::LOOP_SIZE {
while cur <= end.sub(Self::LOOP_SIZE) {
debug_assert_eq!(0, cur.as_usize() % V::BYTES);
let a = V::load_aligned(cur);
let b = V::load_aligned(cur.add(V::BYTES));
let eqa1 = self.v1.cmpeq(a);
let eqb1 = self.v1.cmpeq(b);
let eqa2 = self.v2.cmpeq(a);
let eqb2 = self.v2.cmpeq(b);
let or1 = eqa1.or(eqb1);
let or2 = eqa2.or(eqb2);
let or3 = or1.or(or2);
if or3.movemask_will_have_non_zero() {
let mask = eqa1.movemask().or(eqa2.movemask());
if mask.has_non_zero() {
return Some(cur.add(topos(mask)));
}
let mask = eqb1.movemask().or(eqb2.movemask());
debug_assert!(mask.has_non_zero());
return Some(cur.add(V::BYTES).add(topos(mask)));
}
cur = cur.add(Self::LOOP_SIZE);
}
}
// Handle any leftovers after the aligned loop above. We use unaligned
// loads here, but I believe we are guaranteed that they are aligned
// since `cur` is aligned.
while cur <= end.sub(V::BYTES) {
debug_assert!(end.distance(cur) >= V::BYTES);
if let Some(cur) = self.search_chunk(cur, topos) {
return Some(cur);
}
cur = cur.add(V::BYTES);
}
// Finally handle any remaining bytes less than the size of V. In this
// case, our pointer may indeed be unaligned and the load may overlap
// with the previous one. But that's okay since we know the previous
// load didn't lead to a match (otherwise we wouldn't be here).
if cur < end {
debug_assert!(end.distance(cur) < V::BYTES);
cur = cur.sub(V::BYTES - end.distance(cur));
debug_assert_eq!(end.distance(cur), V::BYTES);
return self.search_chunk(cur, topos);
}
None
}
/// Return a pointer to the last occurrence of the needle in the given
/// haystack. If no such occurrence exists, then `None` is returned.
///
/// When a match is found, the pointer returned is guaranteed to be
/// `>= start` and `< end`.
///
/// # Safety
///
/// * It must be the case that `start < end` and that the distance between
/// them is at least equal to `V::BYTES`. That is, it must always be valid
/// to do at least an unaligned load of `V` at `start`.
/// * Both `start` and `end` must be valid for reads.
/// * Both `start` and `end` must point to an initialized value.
/// * Both `start` and `end` must point to the same allocated object and
/// must either be in bounds or at most one byte past the end of the
/// allocated object.
/// * Both `start` and `end` must be _derived from_ a pointer to the same
/// object.
/// * The distance between `start` and `end` must not overflow `isize`.
/// * The distance being in bounds must not rely on "wrapping around" the
/// address space.
#[inline(always)]
pub(crate) unsafe fn rfind_raw(
&self,
start: *const u8,
end: *const u8,
) -> Option<*const u8> {
// If we want to support vectors bigger than 256 bits, we probably
// need to move up to using a u64 for the masks used below. Currently
// they are 32 bits, which means we're SOL for vectors that need masks
// bigger than 32 bits. Overall unclear until there's a use case.
debug_assert!(V::BYTES <= 32, "vector cannot be bigger than 32 bytes");
let topos = V::Mask::last_offset;
let len = end.distance(start);
debug_assert!(
len >= V::BYTES,
"haystack has length {}, but must be at least {}",
len,
V::BYTES
);
if let Some(cur) = self.search_chunk(end.sub(V::BYTES), topos) {
return Some(cur);
}
let mut cur = end.sub(end.as_usize() & V::ALIGN);
debug_assert!(start <= cur && cur <= end);
if len >= Self::LOOP_SIZE {
while cur >= start.add(Self::LOOP_SIZE) {
debug_assert_eq!(0, cur.as_usize() % V::BYTES);
cur = cur.sub(Self::LOOP_SIZE);
let a = V::load_aligned(cur);
let b = V::load_aligned(cur.add(V::BYTES));
let eqa1 = self.v1.cmpeq(a);
let eqb1 = self.v1.cmpeq(b);
let eqa2 = self.v2.cmpeq(a);
let eqb2 = self.v2.cmpeq(b);
let or1 = eqa1.or(eqb1);
let or2 = eqa2.or(eqb2);
let or3 = or1.or(or2);
if or3.movemask_will_have_non_zero() {
let mask = eqb1.movemask().or(eqb2.movemask());
if mask.has_non_zero() {
return Some(cur.add(V::BYTES).add(topos(mask)));
}
let mask = eqa1.movemask().or(eqa2.movemask());
debug_assert!(mask.has_non_zero());
return Some(cur.add(topos(mask)));
}
}
}
while cur >= start.add(V::BYTES) {
debug_assert!(cur.distance(start) >= V::BYTES);
cur = cur.sub(V::BYTES);
if let Some(cur) = self.search_chunk(cur, topos) {
return Some(cur);
}
}
if cur > start {
debug_assert!(cur.distance(start) < V::BYTES);
return self.search_chunk(start, topos);
}
None
}
/// Search `V::BYTES` starting at `cur` via an unaligned load.
///
/// `mask_to_offset` should be a function that converts a `movemask` to
/// an offset such that `cur.add(offset)` corresponds to a pointer to the
/// match location if one is found. Generally it is expected to use either
/// `mask_to_first_offset` or `mask_to_last_offset`, depending on whether
/// one is implementing a forward or reverse search, respectively.
///
/// # Safety
///
/// `cur` must be a valid pointer and it must be valid to do an unaligned
/// load of size `V::BYTES` at `cur`.
#[inline(always)]
unsafe fn search_chunk(
&self,
cur: *const u8,
mask_to_offset: impl Fn(V::Mask) -> usize,
) -> Option<*const u8> {
let chunk = V::load_unaligned(cur);
let eq1 = self.v1.cmpeq(chunk);
let eq2 = self.v2.cmpeq(chunk);
let mask = eq1.or(eq2).movemask();
if mask.has_non_zero() {
let mask1 = eq1.movemask();
let mask2 = eq2.movemask();
Some(cur.add(mask_to_offset(mask1.or(mask2))))
} else {
None
}
}
}
/// Finds all occurrences of two bytes in a haystack.
///
/// That is, this reports matches of one of two possible bytes. For example,
/// searching for `a` or `b` in `afoobar` would report matches at offsets `0`,
/// `4` and `5`.
#[derive(Clone, Copy, Debug)]
pub(crate) struct Three<V> {
s1: u8,
s2: u8,
s3: u8,
v1: V,
v2: V,
v3: V,
}
impl<V: Vector> Three<V> {
/// The number of bytes we examine per each iteration of our search loop.
const LOOP_SIZE: usize = 2 * V::BYTES;
/// Create a new searcher that finds occurrences of the byte given.
#[inline(always)]
pub(crate) unsafe fn new(
needle1: u8,
needle2: u8,
needle3: u8,
) -> Three<V> {
Three {
s1: needle1,
s2: needle2,
s3: needle3,
v1: V::splat(needle1),
v2: V::splat(needle2),
v3: V::splat(needle3),
}
}
/// Returns the first needle given to `Three::new`.
#[inline(always)]
pub(crate) fn needle1(&self) -> u8 {
self.s1
}
/// Returns the second needle given to `Three::new`.
#[inline(always)]
pub(crate) fn needle2(&self) -> u8 {
self.s2
}
/// Returns the third needle given to `Three::new`.
#[inline(always)]
pub(crate) fn needle3(&self) -> u8 {
self.s3
}
/// Return a pointer to the first occurrence of one of the needles in the
/// given haystack. If no such occurrence exists, then `None` is returned.
///
/// When a match is found, the pointer returned is guaranteed to be
/// `>= start` and `< end`.
///
/// # Safety
///
/// * It must be the case that `start < end` and that the distance between
/// them is at least equal to `V::BYTES`. That is, it must always be valid
/// to do at least an unaligned load of `V` at `start`.
/// * Both `start` and `end` must be valid for reads.
/// * Both `start` and `end` must point to an initialized value.
/// * Both `start` and `end` must point to the same allocated object and
/// must either be in bounds or at most one byte past the end of the
/// allocated object.
/// * Both `start` and `end` must be _derived from_ a pointer to the same
/// object.
/// * The distance between `start` and `end` must not overflow `isize`.
/// * The distance being in bounds must not rely on "wrapping around" the
/// address space.
#[inline(always)]
pub(crate) unsafe fn find_raw(
&self,
start: *const u8,
end: *const u8,
) -> Option<*const u8> {
// If we want to support vectors bigger than 256 bits, we probably
// need to move up to using a u64 for the masks used below. Currently
// they are 32 bits, which means we're SOL for vectors that need masks
// bigger than 32 bits. Overall unclear until there's a use case.
debug_assert!(V::BYTES <= 32, "vector cannot be bigger than 32 bytes");
let topos = V::Mask::first_offset;
let len = end.distance(start);
debug_assert!(
len >= V::BYTES,
"haystack has length {}, but must be at least {}",
len,
V::BYTES
);
// Search a possibly unaligned chunk at `start`. This covers any part
// of the haystack prior to where aligned loads can start.
if let Some(cur) = self.search_chunk(start, topos) {
return Some(cur);
}
// Set `cur` to the first V-aligned pointer greater than `start`.
let mut cur = start.add(V::BYTES - (start.as_usize() & V::ALIGN));
debug_assert!(cur > start && end.sub(V::BYTES) >= start);
if len >= Self::LOOP_SIZE {
while cur <= end.sub(Self::LOOP_SIZE) {
debug_assert_eq!(0, cur.as_usize() % V::BYTES);
let a = V::load_aligned(cur);
let b = V::load_aligned(cur.add(V::BYTES));
let eqa1 = self.v1.cmpeq(a);
let eqb1 = self.v1.cmpeq(b);
let eqa2 = self.v2.cmpeq(a);
let eqb2 = self.v2.cmpeq(b);
let eqa3 = self.v3.cmpeq(a);
let eqb3 = self.v3.cmpeq(b);
let or1 = eqa1.or(eqb1);
let or2 = eqa2.or(eqb2);
let or3 = eqa3.or(eqb3);
let or4 = or1.or(or2);
let or5 = or3.or(or4);
if or5.movemask_will_have_non_zero() {
let mask = eqa1
.movemask()
.or(eqa2.movemask())
.or(eqa3.movemask());
if mask.has_non_zero() {
return Some(cur.add(topos(mask)));
}
let mask = eqb1
.movemask()
.or(eqb2.movemask())
.or(eqb3.movemask());
debug_assert!(mask.has_non_zero());
return Some(cur.add(V::BYTES).add(topos(mask)));
}
cur = cur.add(Self::LOOP_SIZE);
}
}
// Handle any leftovers after the aligned loop above. We use unaligned
// loads here, but I believe we are guaranteed that they are aligned
// since `cur` is aligned.
while cur <= end.sub(V::BYTES) {
debug_assert!(end.distance(cur) >= V::BYTES);
if let Some(cur) = self.search_chunk(cur, topos) {
return Some(cur);
}
cur = cur.add(V::BYTES);
}
// Finally handle any remaining bytes less than the size of V. In this
// case, our pointer may indeed be unaligned and the load may overlap
// with the previous one. But that's okay since we know the previous
// load didn't lead to a match (otherwise we wouldn't be here).
if cur < end {
debug_assert!(end.distance(cur) < V::BYTES);
cur = cur.sub(V::BYTES - end.distance(cur));
debug_assert_eq!(end.distance(cur), V::BYTES);
return self.search_chunk(cur, topos);
}
None
}
/// Return a pointer to the last occurrence of the needle in the given
/// haystack. If no such occurrence exists, then `None` is returned.
///
/// When a match is found, the pointer returned is guaranteed to be
/// `>= start` and `< end`.
///
/// # Safety
///
/// * It must be the case that `start < end` and that the distance between
/// them is at least equal to `V::BYTES`. That is, it must always be valid
/// to do at least an unaligned load of `V` at `start`.
/// * Both `start` and `end` must be valid for reads.
/// * Both `start` and `end` must point to an initialized value.
/// * Both `start` and `end` must point to the same allocated object and
/// must either be in bounds or at most one byte past the end of the
/// allocated object.
/// * Both `start` and `end` must be _derived from_ a pointer to the same
/// object.
/// * The distance between `start` and `end` must not overflow `isize`.
/// * The distance being in bounds must not rely on "wrapping around" the
/// address space.
#[inline(always)]
pub(crate) unsafe fn rfind_raw(
&self,
start: *const u8,
end: *const u8,
) -> Option<*const u8> {
// If we want to support vectors bigger than 256 bits, we probably
// need to move up to using a u64 for the masks used below. Currently
// they are 32 bits, which means we're SOL for vectors that need masks
// bigger than 32 bits. Overall unclear until there's a use case.
debug_assert!(V::BYTES <= 32, "vector cannot be bigger than 32 bytes");
let topos = V::Mask::last_offset;
let len = end.distance(start);
debug_assert!(
len >= V::BYTES,
"haystack has length {}, but must be at least {}",
len,
V::BYTES
);
if let Some(cur) = self.search_chunk(end.sub(V::BYTES), topos) {
return Some(cur);
}
let mut cur = end.sub(end.as_usize() & V::ALIGN);
debug_assert!(start <= cur && cur <= end);
if len >= Self::LOOP_SIZE {
while cur >= start.add(Self::LOOP_SIZE) {
debug_assert_eq!(0, cur.as_usize() % V::BYTES);
cur = cur.sub(Self::LOOP_SIZE);
let a = V::load_aligned(cur);
let b = V::load_aligned(cur.add(V::BYTES));
let eqa1 = self.v1.cmpeq(a);
let eqb1 = self.v1.cmpeq(b);
let eqa2 = self.v2.cmpeq(a);
let eqb2 = self.v2.cmpeq(b);
let eqa3 = self.v3.cmpeq(a);
let eqb3 = self.v3.cmpeq(b);
let or1 = eqa1.or(eqb1);
let or2 = eqa2.or(eqb2);
let or3 = eqa3.or(eqb3);
let or4 = or1.or(or2);
let or5 = or3.or(or4);
if or5.movemask_will_have_non_zero() {
let mask = eqb1
.movemask()
.or(eqb2.movemask())
.or(eqb3.movemask());
if mask.has_non_zero() {
return Some(cur.add(V::BYTES).add(topos(mask)));
}
let mask = eqa1
.movemask()
.or(eqa2.movemask())
.or(eqa3.movemask());
debug_assert!(mask.has_non_zero());
return Some(cur.add(topos(mask)));
}
}
}
while cur >= start.add(V::BYTES) {
debug_assert!(cur.distance(start) >= V::BYTES);
cur = cur.sub(V::BYTES);
if let Some(cur) = self.search_chunk(cur, topos) {
return Some(cur);
}
}
if cur > start {
debug_assert!(cur.distance(start) < V::BYTES);
return self.search_chunk(start, topos);
}
None
}
/// Search `V::BYTES` starting at `cur` via an unaligned load.
///
/// `mask_to_offset` should be a function that converts a `movemask` to
/// an offset such that `cur.add(offset)` corresponds to a pointer to the
/// match location if one is found. Generally it is expected to use either
/// `mask_to_first_offset` or `mask_to_last_offset`, depending on whether
/// one is implementing a forward or reverse search, respectively.
///
/// # Safety
///
/// `cur` must be a valid pointer and it must be valid to do an unaligned
/// load of size `V::BYTES` at `cur`.
#[inline(always)]
unsafe fn search_chunk(
&self,
cur: *const u8,
mask_to_offset: impl Fn(V::Mask) -> usize,
) -> Option<*const u8> {
let chunk = V::load_unaligned(cur);
let eq1 = self.v1.cmpeq(chunk);
let eq2 = self.v2.cmpeq(chunk);
let eq3 = self.v3.cmpeq(chunk);
let mask = eq1.or(eq2).or(eq3).movemask();
if mask.has_non_zero() {
let mask1 = eq1.movemask();
let mask2 = eq2.movemask();
let mask3 = eq3.movemask();
Some(cur.add(mask_to_offset(mask1.or(mask2).or(mask3))))
} else {
None
}
}
}
/// An iterator over all occurrences of a set of bytes in a haystack.
///
/// This iterator implements the routines necessary to provide a
/// `DoubleEndedIterator` impl, which means it can also be used to find
/// occurrences in reverse order.
///
/// The lifetime parameters are as follows:
///
/// * `'h` refers to the lifetime of the haystack being searched.
///
/// This type is intended to be used to implement all iterators for the
/// `memchr` family of functions. It handles a tiny bit of marginally tricky
/// raw pointer math, but otherwise expects the caller to provide `find_raw`
/// and `rfind_raw` routines for each call of `next` and `next_back`,
/// respectively.
#[derive(Clone, Debug)]
pub(crate) struct Iter<'h> {
/// The original starting point into the haystack. We use this to convert
/// pointers to offsets.
original_start: *const u8,
/// The current starting point into the haystack. That is, where the next
/// search will begin.
start: *const u8,
/// The current ending point into the haystack. That is, where the next
/// reverse search will begin.
end: *const u8,
/// A marker for tracking the lifetime of the start/cur_start/cur_end
/// pointers above, which all point into the haystack.
haystack: core::marker::PhantomData<&'h [u8]>,
}
// SAFETY: Iter contains no shared references to anything that performs any
// interior mutations. Also, the lifetime guarantees that Iter will not outlive
// the haystack.
unsafe impl<'h> Send for Iter<'h> {}
// SAFETY: Iter perform no interior mutations, therefore no explicit
// synchronization is necessary. Also, the lifetime guarantees that Iter will
// not outlive the haystack.
unsafe impl<'h> Sync for Iter<'h> {}
impl<'h> Iter<'h> {
/// Create a new generic memchr iterator.
#[inline(always)]
pub(crate) fn new(haystack: &'h [u8]) -> Iter<'h> {
Iter {
original_start: haystack.as_ptr(),
start: haystack.as_ptr(),
end: haystack.as_ptr().wrapping_add(haystack.len()),
haystack: core::marker::PhantomData,
}
}
/// Returns the next occurrence in the forward direction.
///
/// # Safety
///
/// Callers must ensure that if a pointer is returned from the closure
/// provided, then it must be greater than or equal to the start pointer
/// and less than the end pointer.
#[inline(always)]
pub(crate) unsafe fn next(
&mut self,
mut find_raw: impl FnMut(*const u8, *const u8) -> Option<*const u8>,
) -> Option<usize> {
// SAFETY: Pointers are derived directly from the same &[u8] haystack.
// We only ever modify start/end corresponding to a matching offset
// found between start and end. Thus all changes to start/end maintain
// our safety requirements.
//
// The only other assumption we rely on is that the pointer returned
// by `find_raw` satisfies `self.start <= found < self.end`, and that
// safety contract is forwarded to the caller.
let found = find_raw(self.start, self.end)?;
let result = found.distance(self.original_start);
self.start = found.add(1);
Some(result)
}
/// Returns the number of remaining elements in this iterator.
#[inline(always)]
pub(crate) fn count(
self,
mut count_raw: impl FnMut(*const u8, *const u8) -> usize,
) -> usize {
// SAFETY: Pointers are derived directly from the same &[u8] haystack.
// We only ever modify start/end corresponding to a matching offset
// found between start and end. Thus all changes to start/end maintain
// our safety requirements.
count_raw(self.start, self.end)
}
/// Returns the next occurrence in reverse.
///
/// # Safety
///
/// Callers must ensure that if a pointer is returned from the closure
/// provided, then it must be greater than or equal to the start pointer
/// and less than the end pointer.
#[inline(always)]
pub(crate) unsafe fn next_back(
&mut self,
mut rfind_raw: impl FnMut(*const u8, *const u8) -> Option<*const u8>,
) -> Option<usize> {
// SAFETY: Pointers are derived directly from the same &[u8] haystack.
// We only ever modify start/end corresponding to a matching offset
// found between start and end. Thus all changes to start/end maintain
// our safety requirements.
//
// The only other assumption we rely on is that the pointer returned
// by `rfind_raw` satisfies `self.start <= found < self.end`, and that
// safety contract is forwarded to the caller.
let found = rfind_raw(self.start, self.end)?;
let result = found.distance(self.original_start);
self.end = found;
Some(result)
}
/// Provides an implementation of `Iterator::size_hint`.
#[inline(always)]
pub(crate) fn size_hint(&self) -> (usize, Option<usize>) {
(0, Some(self.end.as_usize().saturating_sub(self.start.as_usize())))
}
}
/// Search a slice using a function that operates on raw pointers.
///
/// Given a function to search a contiguous sequence of memory for the location
/// of a non-empty set of bytes, this will execute that search on a slice of
/// bytes. The pointer returned by the given function will be converted to an
/// offset relative to the starting point of the given slice. That is, if a
/// match is found, the offset returned by this routine is guaranteed to be a
/// valid index into `haystack`.
///
/// Callers may use this for a forward or reverse search.
///
/// # Safety
///
/// Callers must ensure that if a pointer is returned by `find_raw`, then the
/// pointer must be greater than or equal to the starting pointer and less than
/// the end pointer.
#[inline(always)]
pub(crate) unsafe fn search_slice_with_raw(
haystack: &[u8],
mut find_raw: impl FnMut(*const u8, *const u8) -> Option<*const u8>,
) -> Option<usize> {
// SAFETY: We rely on `find_raw` to return a correct and valid pointer, but
// otherwise, `start` and `end` are valid due to the guarantees provided by
// a &[u8].
let start = haystack.as_ptr();
let end = start.add(haystack.len());
let found = find_raw(start, end)?;
Some(found.distance(start))
}
/// Performs a forward byte-at-a-time loop until either `ptr >= end_ptr` or
/// until `confirm(*ptr)` returns `true`. If the former occurs, then `None` is
/// returned. If the latter occurs, then the pointer at which `confirm` returns
/// `true` is returned.
///
/// # Safety
///
/// Callers must provide valid pointers and they must satisfy `start_ptr <=
/// ptr` and `ptr <= end_ptr`.
#[inline(always)]
pub(crate) unsafe fn fwd_byte_by_byte<F: Fn(u8) -> bool>(
start: *const u8,
end: *const u8,
confirm: F,
) -> Option<*const u8> {
debug_assert!(start <= end);
let mut ptr = start;
while ptr < end {
if confirm(*ptr) {
return Some(ptr);
}
ptr = ptr.offset(1);
}
None
}
/// Performs a reverse byte-at-a-time loop until either `ptr < start_ptr` or
/// until `confirm(*ptr)` returns `true`. If the former occurs, then `None` is
/// returned. If the latter occurs, then the pointer at which `confirm` returns
/// `true` is returned.
///
/// # Safety
///
/// Callers must provide valid pointers and they must satisfy `start_ptr <=
/// ptr` and `ptr <= end_ptr`.
#[inline(always)]
pub(crate) unsafe fn rev_byte_by_byte<F: Fn(u8) -> bool>(
start: *const u8,
end: *const u8,
confirm: F,
) -> Option<*const u8> {
debug_assert!(start <= end);
let mut ptr = end;
while ptr > start {
ptr = ptr.offset(-1);
if confirm(*ptr) {
return Some(ptr);
}
}
None
}
/// Performs a forward byte-at-a-time loop until `ptr >= end_ptr` and returns
/// the number of times `confirm(*ptr)` returns `true`.
///
/// # Safety
///
/// Callers must provide valid pointers and they must satisfy `start_ptr <=
/// ptr` and `ptr <= end_ptr`.
#[inline(always)]
pub(crate) unsafe fn count_byte_by_byte<F: Fn(u8) -> bool>(
start: *const u8,
end: *const u8,
confirm: F,
) -> usize {
debug_assert!(start <= end);
let mut ptr = start;
let mut count = 0;
while ptr < end {
if confirm(*ptr) {
count += 1;
}
ptr = ptr.offset(1);
}
count
}